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Appendix A: Meijer-G Functions

The MeijerG-functions are a family of univariate functions, each of them determined by finitely many
indexes. The G-function is a linear combination of certain special functions of standard type, and
hence it is often use to solve indefinite integrals [1]. Despite their useful properties, G-functions are
not very well known in the mathematical community. In this Section, we provide a brief background
on Meijer G-functions, presenting its formal definition along with its basic properties.

Definition

The Meijer-G Function is a univariate function given by a line integral in the complex plane [2, 3]:
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where Γ(.) is the Gamma function, 0 ≤ m ≤ q, 0 ≤ n ≤ p, where m, n, p and q are integer numbers,
ak − bj 6= 1, 2, 3, . . . for k = 1, 2, . . ., n, j = 1, 2 . . .,m and x 6= 0. This means that no pole of any
Γ(bj − s) coincides with any pole of any Γ(1− ak + s). In (0.1), the integration path L separates the
poles of the factors Γ(bj − s) from those of the factors Γ(1− ak + s).

Case 1 Case 2 Case 3 

The integration path L in (0.1) can be chosen as follows [3, 4, 1]:

1. L goes from −i∞ to i∞.

2. L is a loop that starts at i∞ on a line parallel to the +ve real axis, encircles the poles of the
factors Γ(bj − s) and returns to i∞ on another line parallel to the +ve real axis.

3. L is a loop that starts at i∞ on a line parallel to the −ve real axis, encircles the poles of the
factors Γ(1− ak + s) and returns to∞ on another line parallel to the −ve real axis.
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The integration paths for the three cases are illustrated on the complex plane in the Figure above.
When more than one of Cases 1, 2, and 3 is applicable the same value is obtained for the G-function

The conditions for convergence of the line integral can be established by applying Stirling’s asymptotic
approximation to the gamma functions Γ(bj−s) and Γ(1−ak+s) in the integrand. As a consequence
of the definition above, the Meijer G-function is an analytic function of x (with possible exception of
the origin x = 0 and the unit circle |x| = 1).

Another definition of the G-function is as a solution to a linear differential equations. In particular,
the G-function satisfies the following linear differential equation of order max(p, q):(−1)p−m−n x
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In the rest of this Section, we present the basic properties of the G-function in addition to some of its
special values for which the G-function reduces to familiar special functions.
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Basic properties

Order reduction

From the definition of the G-function, we can see that if equal parameters appear among the
(a1, . . ., ap) and (b1, . . ., bp) factors in the numerator and the denominator of the integrand, then some
poles and zeros would cancel each other and the integrand will be simplified, i.e., the order m or n
will be reduced. That is, we have the following:
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This property is important because it means that we can have an optimization domain with fixed
dimensions in the Bayesian optimization algorithm. In order to span arbitrary number of parameters
p and q, we can set some of the parameters in (a1, . . ., ap) and (b1, . . ., bp) to the same values so that
some of the Gamma factors in the denominator and the numerator cancel each other.

G-function identities

To gain insight into the flexibility of the G-functions, we present the following identities [2, 3]:
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This means that if a G-function correspond to an exponential function exp(x), then we can recover
the function exp(1/x) by using the parameters (1− a1, . . ., 1− aq) and (1− b1, . . ., 1− bq) instead
of (a1, . . ., ap) and (b1, . . ., bq). Similarly, we can recover a function x2 exp(x) by adding 2 to the
parameters (a1, . . ., ap) and (b1, . . ., bq).

Derivatives

The kth derivative of the G-function with respect to the input x is given by [1]:
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Thus, we can always obtain the derivatives of a function represented in terms of a G-function. The
derivative is also a G-function, and hence G-functions are closed under differentiation.

The relation above is satisfied for h < 0 as well, which means that the antiderivative of a G-function
can be computed as easily as the derivative, and can always be represented as a G-function as well.

Representation of familiar functions in terms of the G-function

The main advantage of modeling univariate functions using a G-function representation is that the
G-function reduces to almost all familiar functional forms (closed-form, algebraic and analytic
expressions, in addition to special functions) as special cases. Thus, a G-function gives us a
parameterizable space of diverse functional forms of interest.

The following table lists some special cases where the G-function reduces to familiar functional
forms for different settings of the parameters (a1, . . . , ap, b1, . . . , bq).
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To illustrate the expressive power of G-functions, consider the following example of a G-function
parametrized by two parameters a and b as follows:

f̂(x; a, b) = G1,2
2,2

( a,a
a,b

∣∣x) .
As we can see in this figure, the function f̂(x; a, b)
takes different forms for different settings of the
parameters a and b. For instance, f̂(x; a = 1, b =

1) is a rational function x/(x+1), f̂(x; a = 1, b =
0) is a logarithmic function log(x + 1), whereas
f̂(x; a = 0, b = −1) is 1

x log(x + 1). Thus, by
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∣∣x). To model more diverse
forms for f , we can use a richer parametrization to
recover the functions in the Table above.
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Appendix B: Experimental Details

Synthetic data sets

we replicate the experimental setup in [5] with the following benchmark synthetic datasets:

� 2-dimensional XOR as binary classification. The feature x is a 10-dimensional standard
Gaussian. The response is generated from P(y = 1 |x) ∝ exp {x1 x2}.

� Orange skin. The feature x is a 10-dimensional standard Gaussian. The response is gener-
ated from P(y = 1 |x) ∝ exp {x1 + x2 + x3 + x4 − 4}.

� Nonlinear additive model. The feature x is generated from a 10-dimensional standard
Gaussian, and P(y = 1 |x) ∝ exp {−100 sin(2x1) + 2|x2|+ x3 + exp{−x4}}.

� Switch feature. Generate x1 from a mixture of two Gaussians centered at ±3 respectively
with equal probability. If x1 is generated from the Gaussian centered at 3, the 2-5th dimen-
sions are used to generate y like the orange skin model. Otherwise, the 6-9th dimensions are
used to generate y from the nonlinear additive model.

The first three datasets are commonly used datasets in the feature selection literature [6]. The first
dataset is designed specifically for feature interaction, whereas the fourth dataset is designed for
instancewise feature selection. In all these datasets, ground-truth about functional forms, feature
importance and interactions are known.

Breast cancer data set

The UK Cancer Database is a registry of patients with diagnosed breast cancer from 2000 onwards,
with 601,272 patients having been diagnosed between the years 2000 and 2016, with a median follow
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up of six years. The database includes women between 30-90 years of age. (We only included women
>35 years of age). We excluded patients who did not undergo surgery, as these were not included in
the original study for which the competing PREDICT score was fit. We restricted our training and
internal validation set to individuals who had information on all variables used by PREDICT. Our
final training data set included 50,288 individuals, with a median follow up of 6 years.
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