
Appendix409

A Notation410

In addition to O(·) notation, for two functions f, g, we use the shorthand f . g (resp. &) to indicate411
that f ≤ Cg (resp. ≥) for an absolute constant C. We use f h g to mean cf ≤ g ≤ Cf for412
constants c, C.413

B Oblivious and Non-oblivious sketching matrix414

In this section we introduce techniques in sketching. In order to optimize performance, we introduce415
multiple types of sketching matrices, which are used in Section 3. In Section B.1, we provide the416
definition of CountSketch and Gaussian Transforms. In Section B.2, we introduce leverage scores417
and sampling based on leverage scores.418

B.1 CountSketch and Gaussian Transforms419

CountSketch matrix comes from the data stream literature [CCF02, TZ12].420

Definition B.1 (Sparse embedding matrix or CountSketch transform). A CountSketch transform is421
defined to be Π = ΦD ∈ Rm×n. Here, D is an n× n random diagonal matrix with each diagonal422
entry independently chosen to be +1 or −1 with equal probability, and Φ ∈ {0, 1}m×n is an m×n423
binary matrix with Φh(i),i = 1 and all remaining entries 0, where h : [n] → [m] is a random424
map such that for each i ∈ [n], h(i) = j with probability 1/m for each j ∈ [m]. For any matrix425
A ∈ Rn×d, ΠA can be computed in O(nnz(A)) time.426

To obtain the optimal number of rows, we need to apply Gaussian matrix, which is another well-427
known oblivious sketching matrix.428

Definition B.2 (Gaussian matrix or Gaussian transform). Let S = 1√
m
· G ∈ Rm×n where each429

entry of G ∈ Rm×n is chosen independently from the standard Gaussian distribution. For any430
matrix A ∈ Rn×d, SA can be computed in O(m · nnz(A)) time.431

We can combine CountSketch and Gaussian transforms to achieve the following:432

Definition B.3 (CountSketch + Gaussian transform). Let S′ = SΠ, where Π ∈ Rt×n is the CountS-433
ketch transform (defined in Definition B.1) and S ∈ Rm×t is the Gaussian transform (defined in434
Definition B.2). For any matrix A ∈ Rn×d, S′A can be computed in O(nnz(A) + dtmω−2) time,435
where ω is the matrix multiplication exponent.436

B.2 Leverage Scores437

We do want to note that there are other ways of constructing sketching matrix though, such as438
through sampling the rows of A via a certain distribution and reweighting them. This is called439
leverage score sampling [DMM06b, DMM06a, DMMS11]. We first give the concrete definition of440
leverage scores.441

Definition B.4 (Leverage scores). Let U ∈ Rn×k have orthonormal columns with n ≥ k. We will442
use the notation pi = u2

i /k, where u2
i = ‖e>i U‖22 is referred to as the i-th leverage score of U .443

Next we explain the leverage score sampling. Given A ∈ Rn×d with rank k, let U ∈ Rn×k be444
an orthonormal basis of the column span of A, and for each i let k · pi be the squared row norm445
of the i-th row of U . Let pi denote the i-th leverage score of U . Let β > 0 be a constant and446
q = (q1, · · · , qn) denote a distribution such that, for each i ∈ [n], qi ≥ βpi. Let s be a parameter.447
Construct an n×s sampling matrixB and an s×s rescaling matrixD as follows. Initially,B = 0n×s448
and D = 0s×s. For the same column index j of B and of D, independently, and with replacement,449
pick a row index i ∈ [n] with probability qi, and set Bi,j = 1 and Dj,j = 1/

√
qis. We denote this450

procedure LEVERAGE SCORE SAMPLING according to the matrix A.451

Leverage score sampling is efficient in the sense that leverage score can be efficiently approximated.452

11



Theorem B.5 (Running time of over-estimation of leverage score, Theorem 14 in [NN13]). For any453
ε > 0, with probability at least 2/3, we can compute 1 ± ε approximation of all leverage scores of454
matrix A ∈ Rn×d in time Õ(nnz(A) + rωε−2ω) where r is the rank of A and ω ≈ 2.373 is the455
exponent of matrix multiplication [CW87, Wil12].456

In Section C we show how to apply matrix sketching to solve regression problems faster. In Sec-457
tion D, we give a structural result on rank-constrained approximation problems.458

C Multiple Regression459

Linear regression is a fundamental problem in Machine Learning. There are a lot of attempts trying460
to speed up the running time of different kind of linear regression problems via sketching matrices461
[CW13, MM13, PSW17, LHW17, DSSW18, ALS+18, CWW19]. A natural generalization of linear462
regression is multiple regression.463

We first show how to use CountSketch to reduce to a multiple regression problem:464

Theorem C.1 (Multiple regression, [Woo14]). Given A ∈ Rn×d and B ∈ Rn×m, let S ∈ Rs×n465
denote a sampling and rescaling matrix according to A. Let X∗ denote arg minX ‖AX −B‖2F and466
X ′ denote arg minX ‖SAX − SB‖2F . If S has s = O(d/ε) rows, then we have that467

‖AX ′ −B‖2F ≤ (1 + ε)‖AX∗ −B‖2F
holds with probability at least 0.999.468

The following theorem says leverage score sampling solves multiple response regression:469

Theorem C.2 (See, e.g., the combination of Corollary C.30 and Lemma C.31 in [SWZ19]). Given470
A ∈ Rn×d and B ∈ Rn×m, let D ∈ Rn×n denote a sampling and rescaling matrix according to471
A. Let X∗ denote arg minX ‖AX − B‖2F and X ′ denote arg minX ‖DAX − SB‖2F . If D has472
O(d log d+d/ε) non-zeros in expectation, that is, this is the expected number of sampled rows, then473
we have that474

‖AX ′ −B‖2F ≤ (1 + ε)‖AX∗ −B‖2F
holds with probability at least 0.999.475

D Generalized Rank-Constrained Matrix Approximation476

We state a tool which has been used in several recent works [BWZ16, SWZ17, SWZ19].477

Theorem D.1 (Generalized rank-constrained matrix approximation, Theorem 2 in [FT07]). Given478
matrices A ∈ Rn×d, B ∈ Rn×p, and C ∈ Rq×d, let the singular value decomposition (SVD) of B479
be B = UBΣBV

>
B and the SVD of C be C = UCΣCV

>
C . Then480

B†(UBU
>
BAVCV

>
C )kC

† = arg min
rank−k X∈Rp×q

‖A−BXC‖F

where (UBU
>
BAVCV

>
C )k ∈ Rn×d is of rank at most k and denotes the best rank-k approximation481

to UBU>BAVCV
>
C ∈ Rn×d in Frobenius norm.482

Moreover, (UBU
>
BAVCV

>
C )k can be computed by first computing the SVD decomposition483

of UBU
>
BAVCV

>
C in time O(nd2), then only keeping the largest k coordinates. Hence484

B†(UBU>BAVCV
>
C )kC

† can be computed in O(nd2 + np2 + qd2) time.485

E Closed Form for the Total Least Squares Problem486

Markovsky and Huffel [MVH07] propose the following alternative formulation of total least squares487
problem.488

min
rank−n C′∈Rm×(n+d)

‖C ′ − C‖F (6)

12



When program (1) has a solution (X,∆A,∆B), we can see that (1) and (6) are in general equivalent489
by setting C ′ = [A + ∆A, B + ∆B]. However, there are cases when program (1) fails to have a490
solution, while (6) always has a solution.491

As discussed, a solution to the total least squares problem can sometimes be written in closed form.492
Letting C = [A, B], denote the singular value decomposition (SVD) of C by UΣV >, where Σ =493
diag(σ1, · · · , σn+d) ∈ Rm×(n+d) with σ1 ≥ σ2 ≥ · · · ≥ σn+d. Also we represent (n+d)×(n+d)494

matrix V as
[
V11 V12

V21 V22

]
where V11 ∈ Rn×n and V22 ∈ Rd×d.495

Clearly Ĉ = Udiag(σ1, · · · , σn, 0, · · · , 0)V > is a minimizer of program (6). But whether a solution496
to program (1) exists depends on the singularity of V22. In the rest of this section we introduce497
different cases of the solution to program (1), and discuss how our algorithm deals with each case.498

E.1 Unique Solution499

We first consider the case when the Total Least Squares problem has a unique solution.500

Theorem E.1 (Theorem 2.6 and Theorem 3.1 in [VHV91]). If σn > σn+1, and V22 is non-singular,501
then the minimizer Ĉ is given by Udiag(σ1, · · · , σn, 0, · · · , 0)V >, and the optimal solution X̂ is502
given by −V12V

−1
22 .503

Our algorithm will first find a rank n matrix C ′ = [A′, B′] so that ‖C ′ − C‖F is small, then solve504
a regression problem to find X ′ so that A′X ′ = B′. In this sense, this is the most favorable case505
to work with, because a unique optimal solution Ĉ exists, so if C ′ approximates Ĉ well, then the506
regression problem A′X ′ = B′ is solvable.507

E.2 Solution exists, but is not unique508

If σn = σn+1, then it is still possible that the Total Least Squares problem has a unique solution,509
although this time, the solution X̂ is not unique. Theorem E.2 is a generalization of Theorem E.1.510

Theorem E.2 (Theorem 3.9 in [VHV91]). Let p ≤ n be a number so that σp > σp+1 = · · · = σn+1.511
Let Vp be the submatrix that contains the last d rows and the last n − p + d columns of V . If Vp512

is non-singular, then multiple minimizers Ĉ = [Â, B̂] exist, and there exists X̂ ∈ Rn×d so that513
ÂX̂ = B̂.514

We can also handle this case. As long as the Total Least Squares problem has a solution X̂ , we are515
able to approximate it by first finding C ′ = [A′, B′] and then solving a regression problem.516

E.3 Solution does not exist517

Notice that the cost ‖Ĉ−C‖2F , where Ĉ is the optimal solution to program (6), always lower bounds518
the cost of program (1). But there are cases where this cost is not approchable in program (1).519

Theorem E.3 (Lemma 3.2 in [VHV91]). If V22 is singular, letting Ĉ denote [Â, B̂], then ÂX = B̂520
has no solution.521

Theorem E.3 shows that even if we can compute Ĉ precisely, we cannot output X , because the522
first n columns of Ĉ cannot span the rest d columns. In order to generate a meaningful result, our523
algorithm will perturb C ′ by an arbitrarily small amount so that A′X ′ = B′ has a solution. This524
will introduce an arbitrarily small additive error in addition to our relative error guarantee.525

F Omitted Proofs in Section 3526

F.1 Proof of Claim 3.1527

Proof. Let C∗ be the optimal solution of minrank−n C′∈Rm×(n+d) ‖C ′ − [A, B]‖F . Since528
rank(C∗) = n � m, there exist U∗ ∈ Rm×s1 and V ∗ ∈ Rs1×(n+d) so that C∗ = U∗V ∗, and529

13



Algorithm 2 Least Squares and Total Least Squares Algorithms

1: procedure LEASTSQUARES(A,B)
2: X ← minX ‖AX −B‖F
3: CLS ← [A, AX]
4: return CLS

5: procedure TOTALLEASTSQUARES(A,B)
6: CTLS ← minrank−n C′ ‖C − C ′‖F
7: return CTLS

rank(U∗) = rank(V ∗) = n. Therefore530

min
V ∈Rs1×(n+d)

‖U∗V − C‖2F = OPT2 .

Now consider the problem formed by multiplying by S1 on the left,531

min
V ∈Rs1×(n+d)

‖S1U
∗V − S1C‖2F .

Letting V ′ be the minimizer to the above problem, we have532

V ′ = (S1U
∗)†S1C.

Thus, we have533

min
rank−n U∈Rm×s1

‖US1C − C‖2F ≤ ‖U∗(S1U
∗)†S1C − C‖2F

= ‖U∗V ′ − C‖2F
≤ (1 + ε)‖S1U

∗V ′ − S1C‖2F
≤ (1 + ε)‖S1U

∗V ∗ − S1C‖2F
≤ (1 + ε)2‖U∗V ∗ − C‖2F
= (1 + ε)2 OPT2

where the first step uses the fact that U∗(S1U
∗)†S1 ∈ Rm×s1 with rank n, the second step is534

the definition of V ′, the third step follows from the definition of the Count-Sketch matrix S1 and535
Theorem C.1, the fourth step uses the optimality of V ′, and the fifth step again uses Theorem C.1.536

537

F.2 Proof of Claim 3.2538

Proof. We have539

‖U2S1C − C‖2F ≤ (1 + ε)‖U2S1CD1 − CD1‖2F
≤ (1 + ε)‖U1S1CD1 − CD1‖2F
≤ (1 + ε)2‖U1S1C − C‖2F ,

where the first step uses the property of a leverage score sampling matrixD1, the second step follows540
from the definition of U2 (i.e., U2 is the minimizer), and the last step follows from the property of541
the leverage score sampling matrix D1 again.542

F.3 Proof of Claim 3.4543

Proof. From Claim 3.2 we have that U2 ∈ colspan(CD1). Hence we can choose Z so thatCD1Z =544
U2. Then by Claim 3.1 and Claim 3.2, we have545

‖CD1ZS1C − C‖2F = ‖U2S1C − C‖2F ≤ (1 + ε)4 OPT2 .

Since Z1 is the optimal solution, the objective value can only be smaller.546

14



F.4 Proof of Claim 3.5547

Proof. Recall that Z1 = arg minrank−n Z∈Rd1×s1 ‖CD1ZS1C − C‖2F . Then we have548

‖CD1Z2S1C − C‖2F ≤ (1 + ε)‖D2CD1Z2S1C −D2C‖2F
≤ (1 + ε)‖D2CD1Z1S1C −D2C‖2F
≤ (1 + ε)2‖CD1Z1S1C − C‖2F ,

where the first step uses the property of the leverage score sampling matrix D2, the second step549
follows from the definition of Z2 (i.e., Z2 is a minimizer), and the last step follows from the property550
of the leverage score sampling matrix D2.551

F.5 Proof of Claim 3.6552

Proof.

‖Ĉ − C‖2F = ‖CD1 · Z2 · S1C − C‖2F
≤ (1 + ε)2‖CD1Z1S1C − C‖2F
≤ (1 +O(ε)) OPT2

where the first step is the definition of Ĉ, the second step is Claim 3.5, and the last step is Claim553
3.4.554

F.6 Proof of Claim 3.7555

Proof. By the condition that Ĉ = [Â ÂX̂], B̂ = ÂX̂ , hence X̂ is the optimal solution to the556
program minX∈Rn×d ‖ÂX − B̂‖2F . Hence by Theorem C.1, with probability at least 0.99,557

‖ÂX − B̂‖2F ≤ (1 + ε)‖ÂX̂ − B̂‖2F = 0

Therefore558
‖[Â, ÂX]− [A, B]‖2F = ‖[Â, B̂]− C‖2F = ‖Ĉ − C‖2F .

Then it follows from Claim 3.6.559

F.7 Proof of Lemma 3.8560

Proof. Proof of running time. Let us first check the running time. We can compute C = S2 · Ĉ by561
first computing S2 · CD1, then computing (S2CD1) · Z2, then finally computing S2CD1Z2S1C.562
Notice that D1 is a leverage score sampling matrix, so nnz(CD1) ≤ nnz(C). So by Definition B.1,563
we can compute S2 · CD1 in time O(nnz(C)). All the other matrices have smaller size, so we can564
do matrix multiplication in time O(d · poly(n/ε)). Once we have C, the independence between565
columns in A can be checked in time O(s2 · n). The FOR loop will be executed at most n times,566
and inside each loop, line (21) will take at most d linear independence checks. So the running time567
of the FOR loop is at most O(s2 · n) · n · d = O(d · poly(n/ε)). Therefore the running time is as568
desired.569

Proof of Correctness. We next argue the correctness of procedure SPLIT. Since rank(Ĉ) = n, with570
high probability rank(C) = rank(S2 ·Ĉ) = n. Notice thatB is never changed in this subroutine. In571
order to show there exists an X so that AX = B, it is sufficient to show that at the end of procedure572
SPLIT, rank(A) = rank(C), because this means that the columns of A span each of the columns of573
C, including B. Indeed, whenever rank(A∗,[i]) < i, line 25 will be executed. Then by doing line574
26, the rank of A will increase by 1, since by the choice of j, A∗,i + δ · B∗,j is independent form575
A∗,[i−1]. Because rank(C) = n, at the end of the FOR loop we will have rank(A) = n.576

Finally let us compute the cost. In line (10) we use δ/poly(m), and thus577

‖[Â, B̂]− Ĉ‖2F ≤
δ2

poly(m)
· ‖B̂‖2F ≤ δ2. (7)

15



We know that X is the optimal solution to the program minX∈Rn×d ‖S2ÂX − S2B̂‖2F . Hence by578
Theorem C.1, with probability 0.99,579

‖ÂX − B̂‖2F ≤ (1 + ε) min
X∈Rn×d

‖S2ÂX − S2B̂‖2F = 0.

which implies ÂX = B̂. Hence we have580

‖[Â, ÂX]− C‖F ≤ ‖[Â, ÂX]− Ĉ‖F + ‖Ĉ − C‖F
= ‖[Â, B̂]− Ĉ‖F + ‖Ĉ − C‖F
≤ δ + ‖Ĉ − C‖F

where the first step follows by triangle inequality, and the last step follows by (7).581

F.8 Proof of Lemma 3.9582

Proof. We bound the time of each step:583

1. Construct the s1 ×m Count-Sketch matrix S1 and compute S1C with s1 = O(n/ε). This step584
takes time nnz(C) + d · poly(n/ε).585

2. Construct the (n+d)×d1 leverage sampling and rescaling matrixD1 with d1 = Õ(n/ε) nonzero586
diagonal entries and compute CD1. This step takes time Õ(nnz(C) + d · poly(n/ε)).587

3. Construct the d2 × m leverage sampling and rescaling matrix D2 with d2 = Õ(n/ε) nonzero588
diagonal entries. This step takes time Õ(nnz(C) + d · poly(n/ε)) according to Theorem B.5.589

4. Compute Z2 ∈ Rd1×s1 by solving the rank-constrained system:590

min
rank−n Z∈Rd1×s1

‖D2CD1ZS1C −D2C‖2F .

Note that D2CD1 has size Õ(n/ε) × Õ(n/ε), S1C has size O(n/ε) × (n + d), and D2C has size591
Õ(n/ε) × (n + d), so according to Theorem D.1, we have an explicit closed form for Z2, and the592
time taken is d · poly(n/ε).593

5. Run procedure SPLIT to get A ∈ Rs2×n and B ∈ Rs2×d with s2 = O(n/ε). By Lemma 3.8, this594
step takes time O(nnz(C) + d · poly(n/ε)).595

6. ComputeX by solving the regression problem minX∈Rn×d ‖AX−B‖2F in timeO(d·poly(n/ε)).596
This is because X = (A)†B, and A has size O(n/ε) × n, so we can compute (A)† in time597
O((n/ε)ω) = poly(n/ε), and then compute X in time O((n/ε)2 · d) since B is an O(n/ε) × d598
matrix.599

Notice that nnz(C) = nnz(A) + nnz(B), so we have the desired running time.600

F.9 Procedure EVALUATE601

In this subsection we explain what procedure EVALUATE does. Ideally, we would like to apply pro-602
cedure SPLIT on the matrix Ĉ directly so that the linear system ÂX = B̂ has a solution. However,603
Ĉ has m rows, which is computationally expensive to work with. So in the main algorithm we604
actually apply procedure SPLIT on the sketched matrix S2Ĉ. When we need to compute the cost,605
we shall redo the operations in procedure SPLIT on Ĉ to split Ĉ correctly. This is precisely what we606
are doing in lines (24) to (27).607

F.10 Putting it all together608

Proof. The running time follows from Lemma 3.9. For the approximation ratio, let Â, A be defined609
as in Lemma 3.8. From Lemma 3.8, there exists X ∈ Rn×d satisfying AX = B. Since X is610
obtained from solving the regression problem ‖AX − B‖2F , we also have AX = B. Hence with611
probability 0.9,612

16



Algorithm 3 Our Fast Total Least Squares Algorithm with Regularization

1: procedure FASTREGULARIZEDTOTALLEASTSQUARES(A,B, n, d, λε, δ) . Theorem G.7
2: s1 ← Õ(n/ε), s2 ← Õ(n/ε), , s3 ← Õ(n/ε), d1 ← Õ(n/ε)
3: Choose S1 ∈ Rs1×m to be a CountSketch matrix, then compute S1C
4: Choose S2 ∈ Rs2×(n+d) to be a CountSketch matrix, then compute CS>2
5: Choose D1 ∈ Rd1×m to be a leverage score sampling and rescaling matrix according to the

rows of CS>2
6: Ẑ1, Ẑ2 ← arg minZ1∈Rn×s1 ,Z2∈Rs2×n ‖D1CS

>
2 Z2Z1S1C−D1C‖2F +λ‖D1CS

>
2 Z2‖2F +

λ‖Z1S1C‖2F . Theorem G.2
7: A,B, π ← SPLIT(CS>2 , Ẑ1, Ẑ2, S1C, n, d, δ/poly(m)), X ← min ‖AX −B‖F
8: return X
9: procedure SPLIT(CS>2 , Ẑ1, Ẑ2, S1C, n, d, δ) . Lemma 3.8

10: Choose S3 ∈ Rs3×m to be a CountSketch matrix
11: C ← (S3 · CS>2 ) · Ẑ2 · Ẑ1 · S1C . Ĉ = CS>2 Ẑ2Ẑ1S1C ; C = S3Ĉ

12: A← C∗,[n], B ← C∗,[n+d]\[n] . Â = Ĉ∗,[n], B̂ = Ĉ∗,[n+d]\[n]; A = S3Â, B = S3B̂
13: T ← ∅, π(i) = −1 for all i ∈ [n]
14: for i = 1→ n do
15: if A∗,i is linearly dependent of A∗,[n]\{i} then
16: j ← minj∈[d]\T {B∗,j is linearly independent of A}, A∗,i ← A∗,i + δ · B∗,j , T ←

T ∪ {j}, π(i)← j

17: return A, B, π . π : [n]→ {−1} ∪ ([n+ d]\[n])

‖[Â, ÂX]− C‖F ≤ δ + ‖Ĉ − C‖F ≤ δ + (1 +O(ε)) OPT,613

where the first step uses Lemma 3.8 and the second step uses Claim 3.6. Rescaling ε gives the614
desired statement.615

G Extension to regularized total least squares problem616

In this section we provide our algorithm for the regularized total least squares problem and prove its617
correctness. Recall our regularized total least squares problem is defined as follows.618

OPT := min
Â∈Rm×n,X∈Rn×d,U∈Rm×n,V ∈Rn×(n+d)

‖UV − [A, B]‖2F + λ‖U‖2F + λ‖V ‖2F (8)

subject to [Â, ÂX] = UV

619

Definition G.1 (Statistical Dimension, e.g., see [ACW17]). For λ > 0 and rank k matrix A, the620
statistical dimension of the ridge regression problem with regularizing weight λ is defined as621

sdλ(A) :=
∑

i∈[k]

1

1 + λ/σ2
i

where σi is the i-th singular value of A for i ∈ [k].622

Notice that sdλ(A) is decreasing in λ, so we always have sdλ(A) ≤ sd0(A) = rank(A).623

Lemma G.2 (Exact solution of low rank approximation with regularization, Lemma 27 of624
[ACW17]). Given positive integers n1, n2, r, s, k and parameter λ ≥ 0. For C ∈ Rn1×r,625
D ∈ Rs×n2 , B ∈ Rn1×n2 , the problem of finding626

min
ZR∈Rr×k,ZS∈Rk×s

‖CZRZSD −B‖2F + λ‖CZR‖2F + λ‖ZSD‖2F ,

and the minimizing of CZR ∈ Rn1×k and ZSD ∈ Rk×n2 , can be solved in627

O(n1r · rank(C) + n2s · rank(D) + rank(D) · n1(n2 + rC))

time.628

17



Theorem G.3 (Sketching for solving ridge regression, Theorem 19 in [ACW17]). Fix m ≥ n. For629
A ∈ Rm×n, B ∈ Rn×d and λ > 0, consider the rigid regression problem630

min
X∈Rn×d

‖AX −B‖2F + λ‖X‖2F .

Let S ∈ Rs×m be a CountSketch matrix with s = Õ(sdλ(A)/ε) = Õ(n/ε), then with probability631
0.99,632

min
X∈Rn×d

‖SAX − SB‖2F + λ‖X‖2F ≤ (1 + ε) min
X∈Rn×d

‖AX −B‖2F + λ‖X‖2F

Moreover, SA, SB can be computed in time633

O(nnz(A) + nnz(B)) + Õ
(
(n+ d)(sdλ(A)/ε+ sdλ(A)2)

)
.

We claim that it is sufficient to look at solutions of the form CS>2 Z2Z1S1C.634

Claim G.4 (CountSketch matrix for low rank approximation problem). Given matrix C ∈635
Rm×(n+d). Let OPT be defined as in (8). For any ε > 0, let S1 ∈ Rs1×m, S2 ∈ Rs2×m be636
the sketching matrices defined in Algorithm 3, then with probability 0.98,637

min
Z1∈Rn×s1 ,Z2∈Rs2×n

‖CS>2 Z2Z1S1C − C‖2F + λ‖CS>2 Z2‖2F + λ‖Z1S1C‖2F ≤ (1 + ε)2 OPT .

Proof. Let U∗ ∈ Rm×n and V ∗ ∈ Rn×(n+d) be the optimal solution to the program (8). Consider638
the following optimization problem:639

min
V ∈Rn×(n+d)

‖U∗V − C‖2F + λ‖V ‖2F (9)

Clearly V ∗ ∈ Rn×(n+d) is the optimal solution to program (9), since for any solution V ∈ Rn×(n+d)640
to program (9) with cost c, (U∗, V ) is a solution to program (8) with cost c+ λ‖U∗‖2F .641

Program (9) is a ridge regression problem. Hence we can take a CountSketch matrix S ∈ Rs1×m642
with s1 = Õ(n/ε) to obtain643

min
V ∈Rn×(n+d)

‖S1U
∗V − S1C‖2F + λ‖V ‖2F (10)

Let V1 ∈ Rn×(n+d) be the minimizer of the above program, then we know644

V1 =

[
S1U

∗√
λIn

]† [
S1C

0

]
,

which means V1 ∈ Rn×(n+d) lies in the row span of S1C ∈ Rs1×(n+d). Moreover, by Theorem645
G.3, with probability at least 0.99 we have646

‖U∗V1 − C‖2F + λ‖V1‖2F ≤ (1 + ε)‖U∗V ∗ − C‖2F + λ‖V ∗‖2F (11)

Now consider the problem647

min
U∈Rm×n

‖UV1 − C‖2F + λ‖U‖2F (12)

Let U0 ∈ Rm×n be the minimizer of program (12). Similarly, we can take a CountSketch matrix648
S2 ∈ Rs2×(n+d) with s2 = Õ(n/ε) to obtain649

min
U∈Rm×n

‖UV1S
>
2 − CS>2 ‖2F + λ‖U‖2F (13)

Let U1 ∈ Rm×n be the minimizer of program (13), then we know650

U>1 =

[
S2V

>
1√

λIn

]† [
S2C

>

0

]
,

18



which means U1 ∈ Rm×n lies in the column span of CS>2 ∈ Rm×s2 . Moreover, with probability at651
least 0.99 we have652

‖U1V1 − C‖2F + λ‖U1‖2F ≤ (1 + λ) · (‖U0V1 − C‖2F + λ‖U0‖2F )

≤ (1 + λ) · (‖U∗V1 − C‖2F + λ‖U∗‖2F ) (14)

where the first step we use Theorem G.3 and the second step follows that U0 is the minimizer.653

Now let us compute the cost.654

‖U1V1 − C‖2F + λ‖U1‖2F + λ‖V1‖2F
= λ‖V1‖2F + (‖U1V1 − C‖2F + λ‖U1‖2F )

≤ λ‖V1‖2F + (1 + ε)(‖U∗V1 − C‖2F + λ‖U∗‖2F )

≤ (1 + ε) ·
(
λ‖U∗‖2F + (‖U∗V1 − C‖2F + λ‖V1‖2F )

)

≤ (1 + ε) ·
(
λ‖U∗‖2F + (1 + ε)2 · (‖U∗V ∗ − C‖2F + λ‖V ∗‖2F )

)

≤ (1 + ε)2 · (‖U∗V ∗ − C‖2F + λ‖U∗‖2F + λ‖V ∗‖2F )

= (1 + ε)2 OPT

where the second step follows from (14), the fourth step follows from (11), and the last step follows655
from the definition of U∗ ∈ Rm×n, V ∗ ∈ Rn×(n+d).656

Finally, since V1 ∈ Rn×(n+d) lies in the row span of S1C ∈ Rs1×(n+d) and U1 ∈ Rm×n lies in the657
column span of CS>2 ∈ Rm×s2 , there exists Z∗1 ∈ Rn×s1 and Z∗2 ∈ Rs2×n so that V1 = Z∗1S1C ∈658
Rn×(n+d) and U1 = CS>2 Z

∗
2 ∈ Rm×n. Then the claim stated just follows from (Z∗1 , Z

∗
2 ) are also659

feasible.660

Now we just need to solve the optimization problem661

min
Z1∈Rn×s1 ,Z2∈Rs2×n

‖CS>2 Z2Z1S1C − C‖2F + λ‖CS>2 Z2‖2F + λ‖Z1S1C‖2F (15)

The size of this program is quite huge, i.e., we need to work with an m×d2 matrix CS>2 . To handle662
this problem, we again apply sketching techniques. Let D1 ∈ Rd1×m be a leverage score sampling663
and rescaling matrix according to the matrix CS2 ∈ Rm×s2 , so that D1 has d1 = Õ(n/ε) nonzeros664
on the diagonal. Now, we arrive at the small program that we are going to directly solve:665

min
Z1∈Rn×s1 ,Z2∈Rs2×n

‖D1CS
>
2 Z2Z1S1C −D1C‖2F + λ‖D1CS

>
2 Z2‖2F + λ‖Z1S1C‖2F (16)

We have the following approximation guarantee.666

Claim G.5. Let (Z∗1 , Z
∗
2 ) be the optimal solution to program (15). Let (Ẑ1, Ẑ2) be the optimal667

solution to program (16). With probability 0.96,668

‖CS>2 Ẑ2Ẑ1S1C − C‖2F + λ‖CS>2 Ẑ2‖2F + λ‖Ẑ1S1C‖2F
≤(1 + ε)2(‖CS>2 Z∗2Z∗1S1C − C‖2F + λ‖CS>2 Z∗2‖2F + λ‖Z∗1S1C‖2F )

Proof. This is because669

‖CS>2 Ẑ2Ẑ1S1C − C‖2F + λ‖CS>2 Ẑ2‖2F + λ‖Ẑ1S1C‖2F
≤(1 + ε)

(
‖D1CS

>
2 Ẑ2Ẑ1S1C −D1C‖2F + λ‖D1CS

>
2 Ẑ2‖2F

)
+ λ‖Ẑ1S1C‖2F

≤(1 + ε)
(
‖D1CS

>
2 Ẑ2Ẑ1S1C −D1C‖2F + λ‖D1CS

>
2 Ẑ2‖2F + λ‖Ẑ1S1C‖2F

)

≤(1 + ε)
(
‖D1CS

>
2 Z
∗
2Z
∗
1S1C −D1C‖2F + λ‖D1CS

>
2 Z
∗
2‖2F + λ‖Z∗1S1C‖2F

)

≤(1 + ε)2
(
‖CS>2 Z∗2Z∗1S1C − C‖2F + λ‖CS>2 Z∗2‖2F + λ‖Z∗1S1C‖2F

)

where the first step uses property of the leverage score sampling matrix D1, the third step follows670
from (Ẑ1, Ẑ2) are minimizers of program (16), and the fourth step again uses property of the leverage671
score sampling matrix D1.672

19



Let Û = CS>2 Ẑ2,V̂ = Ẑ1S1C and Ĉ = Û V̂ . Combining Claim G.4 and Claim G.5 together, we673
get with probability at least 0.91,674

‖Û V̂ − [A, B]‖2F + λ‖Û‖2F + λ‖V̂ ‖2F ≤ (1 + ε)4 OPT (17)

If the first n columns of Ĉ can span the whole matrix Ĉ, then we are in good shape. In this case we675
have:676

Claim G.6 (Perfect first n columns). Let S3 ∈ Rs3×m be the CountSketch matrix defined in Algo-677
rithm 3. Write Ĉ as [Â, B̂] where Â ∈ Rm×n and B̂ ∈ Rm×d. If there exists X̂ ∈ Rn×d so that678
B̂ = ÂX̂ , let X̄ ∈ Rn×d be the minimizer of minX∈Rn×d ‖S3ÂX − S3B̂‖2F , then with probability679
0.9,680

‖[Â, ÂX̄]− [A, B]‖2F + λ‖Û‖2F + λ‖V̂ ‖2F ≤ (1 + ε)4 OPT

Proof. We have with probability 0.99,681

‖ÂX̄ − B̂‖2F ≤ (1 + ε)‖ÂX̂ − B̂‖2F = 0

where the first step follows from Theorem C.1 and the second step follows from the assumption.682
Recall that Ĉ = Û V̂ , so683

‖[Â, ÂX̄]− [A, B]‖2F + λ‖Û‖2F + λ‖V̂ ‖2F
=‖Û V̂ − [A, B]‖2F + λ‖Û‖2F + λ‖V̂ ‖2F ≤ (1 + ε)4 OPT

where the last step uses (17).684

However, if Ĉ does not have nice structure, then we need to apply our procedure SPLIT, which would685
introduce the additive error δ. Overall, by rescaling ε, our main result is summarized as follows.686

Theorem G.7 (Restatement of Theorem 3.11, algorithm for the regularized total least squares prob-687
lem). Given two matrices A ∈ Rm×n and B ∈ Rm×d and λ > 0, letting688

OPT = min
U∈Rm×n,V ∈Rn×(n+d)

‖UV − [A, B]‖2F + λ‖U‖2F + λ‖V ‖2F ,

we have that for any ε ∈ (0, 1), there is an algorithm that runs in689

Õ(nnz(A) + nnz(B) + d · poly(n/ε))

time and outputs a matrix X ∈ Rn×d such that there is a matrix Â ∈ Rm×n, Û ∈ Rm×n and690
V̂ ∈ Rn×(n+d) satisfying that ‖[Â, ÂX]− Û V̂ ‖2F ≤ δ and691

‖[Â, ÂX]− [A, B]‖F + λ‖Û‖2F + λ‖V̂ ‖2F ≤ (1 + ε) OPT +δ

H Toy Example692

We first run our FTLS algorithm on the following toy example, for which we have an analytical693
solution exactly. LetA ∈ Rm×n beAii = 1 for i = 1, · · · , n and 0 everywhere else. LetB ∈ Rm×1694
be Bn+1 = 3 and 0 everywhere else.695

The cost of LS is 9, since AX can only have non-zero entries on the first n coordinates, so the696
(n+1)-th coordinate ofAX−B must have absolute value 3. Hence the cost is at least 9. Moreover,697
a cost 9 can be achieved by setting X = 0 and ∆B = −B.698

However, for the TLS algorithm, the cost is only 1. Consider ∆A ∈ Rm×n where A11 = −1 and 0699
everywhere else. Then C ′ := [(A+ ∆A), B] does have rank n, and ‖C ′ − C‖F = 1.700

20



For a concrete example, we set m = 10, n = 5. That is,701

C := [A, B] =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




We first run experiments on this small matrix. Because we know the solution of LS and TLS exactly702
in this case, it is convenient for us to compare their results with that of the FTLS algorithm. When703
we run the FTLS algorithm, we sample 6 rows in all the sketching algorithms.704

The experimental solution of LS is CLS which is the same as the theoretical solution. The cost is 9.705
The experimental solution of TLS is CTLS which is also the same as the theoretical result. The cost706
is 1.707

CLS =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




CTLS =




0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




708

FTLS is a randomized algorithm, so the output varies. We post several outputs:709

CFTLS =




0 0 0 0 0 0
0 0.5 0.5 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0.1 −0.3
0 0 0 0 −0.9 2.7
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




This solution has a cost of 4.3.710

ĈFTLS =




0.5 −0.5 0 0 0 0
−0.5 0.5 0 0 0 0

0 0 0 0 0 0
0 0 0.09 0.09 0 0.27
0 0 0 0 0 0
0 0 0.82 0.82 0 2.45
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




This solution has a cost of 5.5455.711

21



CFTLS =




0.5 0.5 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 −0.9 0 2.7
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




This solution has a cost of 3.4.712

I More Experiments713

Figure 2 is shows the experimental result described in Section 4.1. It collects 1000 runs of our FTLS714
algorithm on 2 small toy examples. In both figures, the x-axis is the cost of the FTLS algorithm,715
measured by ‖C ′ −C‖2F where C ′ is the output of our FTLS algorithm; the y-axix is the frequency716
of each cost that is grouped in suitable range.

Figure 2: Cost distribution of our fast least squares algorithm on toy examples. The x-axis is the cost
for FTLS. (Note that we want to minimize the cost); the y-axis is the frequency of each cost. (Left) First toy
example, TLS cost is 1, LS cost is 9. (Right) Second toy example, TLS cost is 1.30, LS cost is 40.4

717

22


