
A Additional experimental results and implementation details

A.1 Synthetic examples (Figure 1)

With n = 1000 and d = 2000, we sample two matrices with orthonormal columns U ∈ Rn×n
and V ∈ Rd×n, uniformly at random from their respective spaces. We construct two diagonal
matrices Σpoly,Σexp ∈ Rn×n, such that their respective diagonal elements are Σpoly

jj =
√
nj−1 and

Σexp
jj =

√
ne−0.05j . We set Aexp = UΣexpV > and Apoly = UΣpolyV >, and we sample a planted

vector xgd ∈ Rd with iid entries N (0, 1).

In the case of binary logistic regression, for each A ∈ {Aexp, Apoly}, we set yi =
0.5 (sign (〈ai, xgd〉) + 1), for i = 1, . . . , n.

For the ReLU model, we set yi = (〈ai, xgd〉)+, where (z)+ = max(0, z). Hence, each observation
yi is the result of a linear operation zi = 〈x, ai〉 and a non-linear operation yi = (zi)+. Additionally,
it can be shown that the global minimum of the optimization problem

min
x

1

2

n∑
i=1

(a>i x)2
+ − 2(a>i x)yi,

is equal to xgd, which motivates using such a convex relaxation.

A.2 Numerical illustration of the iterative and power methods (Figure 2)

We use the MNIST dataset with 50000 training images and 10000 testing images. We rescale the pixel
values between [0, 1]. Each image is mapped through random cosines ϕ(·) ∈ RD which approximate
the Gaussian kernel, i.e., 〈ϕ(a), ϕ(a′)〉 ≈ exp(−γ‖a− a2‖22). We choose D = 10000 and γ = 0.02.

We perform binary logistic regression for even-vs-odd classification of the digits.

For the iterative method, we use the sketching matrix S = (A>A)2A>S̃, where S̃ is Gaussian iid.
That is, we run the iterative method on top of the power method, with q = 2.

A.3 Adaptive Gaussian sketching on MNIST and CIFAR10 datasets (Table 3 and Figure 3)

Table 5: Empirical standard deviation of test classification error on MNIST and CIFAR10 datasets,
mapped through Gaussian random Fourier features, respectively with D = 10000 and γ = 0.02, and,
D = 60000 and γ = 0.002. The notation x̃m refers to the solution of (2), with sketching size m.

λ x∗MNIST x̃64 x̃128 x̃256 x̃512 x̃1024 x∗CIFAR x̃64 x̃128 x̃256 x̃512 x̃1024

10−4 - 0.2 0.2 0.1 0.1 0.1 - - - - - -
5 · 10−5 - 0.2 0.2 0.2 0.1 0.1 - 0.5 0.3 0.3 0.2 0.2
10−5 - 2.0 0.8 0.2 0.1 0.1 - 4.8 3.2 0.6 0.2 0.2

5 · 10−6 - 3.2 2.1 0.3 0.2 0.1 - 4.1 3.5 2.1 0.6 0.6

Experiments were run in Python on a workstation with 20 cores and 256 GB of RAM. The MNIST
and CIFAR10 datasets were downloaded through the PyTorch.torchvision module and converted to
NumPy arrays. We use the Sklearn.kernel_approximation.RBFSampler module to generate random
cosines. We use our own implementation of each algorithm for a fair comparison.

For SGD, we use a batch size equal to 128. For SVRG, we use a batch size equal to 128 and update
the gradient correction every 400 iterations. For Sketch-SGD, we use a batch size equal to 1024. For
Sketch-SVRG, we use a batch size equal to 64 and update the gradient correction every 200 iterations.
Each iteration of the sub-sampled Newton method (Sketch-Newton) computes a full-batch gradient,
and, the Hessian with respect to a batch of size 1500.

For SGD and SVRG, we considered step sizes η between 10−2 and 102. We obtained best perfor-
mance for η = 101. For the sub-sampled Newton method, we use a step size η = 1, except for the
first 5 iterations, for which we use η = 0.2.
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In Figure 3, we did not report results for SVRG for solving the primal (1) on CIFAR, as the
computation time for reaching a satisfying performance was significantly larger than for the other
algorithms.

In Table 3, we did not investigate results for CIFAR with λ = 10−4, as the primal classifier had a test
error significantly larger than smaller values of λ.

B Proofs of main results

Here, we establish our main technical results, that is, the deterministic regret bounds (4) and (5) stated
in Theorem 1 and its high-probability version stated in Corollary 1, along with its extension to the
iterative Algorithm 2 as given in Theorem 2, and its variant for kernel methods, given in Theorem 3.
Our analysis is based on convex analysis and Fenchel duality arguments.

B.1 Proof of Theorem 1

We introduce the Fenchel dual program of (1),

min
z
f∗(z) +

1

2λ
‖A>z‖22. (14)

For a sketching matrix S ∈ Rd×m, the Fenchel dual program of (2) is

min
y
f∗(y) +

1

2λ
‖PSA>y‖

2

2. (15)

Let α∗ be any minimizer of the sketched program (2). Then, according to Proposition 2, the unique
solution of the dual sketched program (15) is

y∗ = ∇f(ASα∗)

and the subgradient set ∂f∗(y∗) is non-empty. We fix gy∗ ∈ ∂f∗(y∗).

According to Proposition 1, the dual program (14) admits a unique solution z∗, which satisfies

z∗ = ∇f(Ax∗),

and which subgradient set ∂f∗(z∗) is non-empty. We fix gz∗ ∈ ∂f∗(z∗).

We denote the error between the two dual solutions by ∆ = y∗− z∗. By optimality of y∗ with respect
to the sketched dual (15) and by feasibility of z∗, first-order optimality conditions imply that

〈 1
λ
APSA

>y∗ + gy∗ ,∆〉 6 0.

Similarly, by optimality of z∗ with respect to the dual (14) and by feasibility of y∗, we get by
first-order optimality conditions that

〈 1
λ
AA>z∗ + gz∗ ,∆〉 > 0.

It follows that

〈 1
λ
APSA

>∆,∆〉 = 〈 1
λ
APSA

>y∗,∆〉 − 〈 1
λ
APSA

>z∗,∆〉

= 〈 1
λ
APSA

>y∗ + gy∗ ,∆〉︸ ︷︷ ︸
60

+〈gz∗ − gy∗ ,∆〉 − 〈
1

λ
APSA

>z∗ + gz∗ ,∆〉

6 〈gz∗ − gy∗ ,∆〉 − 〈
1

λ
APSA

>z∗ + gz∗ ,∆〉

= 〈gz∗ − gy∗ ,∆〉+ 〈 1
λ
AP⊥S A

>z∗,∆〉 − 〈 1
λ
AA>z∗ + gz∗ ,∆〉︸ ︷︷ ︸

>0

6 〈gz∗ − gy∗ ,∆〉+ 〈 1
λ
AP⊥S A

>z∗,∆〉.

(16)
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Strong µ-smoothness of f implies that the function f∗ is 1
µ -strongly convex. Hence, it follows that

〈gz∗ − gy∗ ,∆〉+
1

µ
‖∆‖22 6 0. (17)

Therefore, combining (17) with the previous set of inequalities (16), we get

〈 1
λ
APSA

>∆,∆〉+
1

µ
‖∆‖22 6 〈 1

λ
AP⊥S A

>z∗,∆〉,

and, multiplying both sides by λ,

〈APSA>∆,∆〉+
λ

µ
‖∆‖22 6 〈AP⊥S A>z∗,∆〉. (18)

By definition of Zf and since ∆ ∈ domf∗ − z∗, it holds that

∆>AP⊥S A
>∆

‖∆‖22
6 Z2

f ,

which we can rewrite as

〈APSA>∆,∆〉 > 〈AA>∆,∆〉 − Z2
f‖∆‖22. (19)

Hence, combining (19) and (18), we obtain(
λ

µ
− Z2

f

)
‖∆‖22 + ‖A>∆‖22 6 〈AP⊥S A>z∗,∆〉, (20)

Under the assumption that λ > 2µZ2
f , it holds that λ/µ− Z2

f > λ/(2µ). Thus,(
λ

µ
− Z2

f

)
‖∆‖22 + ‖A>∆‖22 >

λ

2µ
‖∆‖22 + ‖A>∆‖22

>

√
2λ

µ
‖∆‖2‖A>∆‖2.

where we used the fact that for any a, b > 0, a+ b > 2
√
ab, with a = λ

2µ‖∆‖22 and b = ‖A>∆‖22.
Combining the former inequality with inequality (20), we obtain√

2λ

µ
‖∆‖2‖A>∆‖2 6 〈AP⊥S A>z∗,∆〉. (21)

The right-hand side of the latter inequality can be bounded as

〈AP⊥S A>z∗,∆〉 = 〈A>z∗, P⊥S A>∆〉
6
(i)
‖A>z∗‖2‖P⊥S A>∆‖2

6 ‖A>z∗‖2‖∆‖2 sup
∆∈domf∗−z∗

(‖P⊥S A>∆‖2
‖∆‖2

)
=
(ii)
‖A>z∗‖2‖∆‖2Zf .

where (i) follows from Cauchy-Schwartz inequality, and (ii) holds by definition of Zf . Thus,
inequality (21) becomes √

2λ

µ
‖∆‖2‖A>∆‖2 6 ‖A>z∗‖2‖∆‖2Zf . (22)

From Propositions 1 and 2, we have that A>z∗ = −λx∗ and y∗ = ∇f(ASα∗). By definition of x̃, it
follows that A>∆ = −λ (x̃− x∗). Then, rearranging inequality (22),

‖x̃− x∗‖2 6

√
µ

2λ
Zf‖x∗‖2,

which is exactly the desired regret bound (4). The regret bound (5) immediately follows from the fact
that Zf 6 ‖P⊥S A>‖2.
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B.2 Proof of Corollary 1

The proof combines our deterministic regret bound (5), along with the following result, which is a
re-writing of Corollary 10.9, in [15].
Lemma 1. Let k > 2 be a target rank and m > 1 a sketching dimension such that k < m 6
min(n, d). Let S̃ be an n×m random matrix with iid Gaussian entries. Define the oversampling
ratio r = (m − k)/k, and the sketching matrix S = A>S̃. Then, provided rk > 4, it holds with
probability at least 1− 6e−rk that

‖P⊥S A>‖2 6
c0√

2

√
r + 1

r

σ2
k+1 +

1

rk

min(n,d)∑
j=k+1

σ2
j

 1
2

. (23)

where σ1 > σ2 > . . . are the singular values of A, and the universal constant c0 satisfies c0 6 36.
In particular, if m = 2k, then it holds with probability at least 1− 6e−k that

‖P⊥S A>‖2 6 c0

σ2
k+1 +

1

k

min(n,d)∑
j=k+1

σ2
j

 1
2

= c0Rk(A).

(24)

From Theorem 1, if λ > 2µZ2
f , then

‖x̃− x∗‖2 6

√
µ

2λ
‖P⊥S A>‖2‖x∗‖2.

Hence, combining the latter inequality with Lemma 1, provided 2 6 k 6 1
2 min(n, d), m = 2k and

λ > 2µZ2
f , it holds with probability at least 1− 6e−k that

‖x̃− x∗‖2 6 c0

√
µ

2λ
Rk(A)‖x∗‖2.

We want to establish the latter inequality, but under the condition λ > 2c20µR
2
k(A). But, by Lemma 1,

the condition λ > 2c20µR
2
k(A) implies that λ > 2µZ2

f with probability at least 1− 6e−k. By union
bound, it follows that if λ > 2c20µR

2
k(A), then

‖x̃− x∗‖2 6 c0

√
µ

2λ
Rk(A)‖x∗‖2,

with probability at least 1− 12e−k.

B.3 Proof of Theorem 2

First, we show that for any t > 0, provided λ > 2µZ2
f ,

‖x̃(t+1) − x∗‖2 6

√
µ

2λ
Zf‖x̃(t) − x∗‖2. (25)

It should be noted that for t = 0, the latter inequality is exactly the regret bound (4). The proof for
t > 0 follows similar steps.

Fix t > 0. Consider the optimization problem

min
δ∈Rd

f(Aδ +Ax̃(t)) +
λ

2
‖δ + x̃(t)‖22. (26)

which is equivalent to the primal program (1), up to a translation of the optimization variable. Thus,
the unique optimal solution of (26) – which exists by strong convexity of the objective – is given by
δ∗ = x∗ − x̃(t). By Fenchel duality (Corollary 31.2.1, [22]), it holds that

min
δ
f(Aδ +Ax̃(t)) +

λ

2
‖δ + x̃(t)‖22 = max

z
−f∗(z)− 1

2λ
z>AA>z,
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and the optimal dual solution z∗ exists and is unique (by strong concavity of the dual objective).
Further, by the Karush-Kuhn-Tucker conditions (Theorem 31.3, [22]), we have{

δ∗ = −x̃(t) − 1
λA
>z∗

z∗ = ∇f(Aδ∗ +Ax̃(t)).

Observe that, by using the change of variables α =
(
S>S

)− 1
2 α†, the optimization problem (8) can

be rewritten as

min
α∈Rm

f(ASα+Ax̃(t)) + λα>S>x̃(t) +
λ

2
‖Sα‖22

≡ min
α∈Rm

f(ASα+Ax̃(t)) +
λ

2
‖Sα+ x̃(t)‖22.

Let α(t+1)
† be the unique solution of (8). Then, setting α(t+1) =

(
S>S

)− 1
2 α

(t+1)
† , we have

α(t+1) ∈ argmin
α∈Rm

f(ASα+Ax̃(t)) +
λ

2
‖Sα+ x̃(t)‖22. (27)

By Fenchel duality, we get

min
α
f(ASα+Ax̃(t))+

λ

2
‖Sα+ x̃(t)‖22 = max

y
−f∗(y)+y>Ax̃(t)− 1

2λ
y>APSA

>y+
λ

2
x̃(t)P⊥S x̃

(t).

By strong concavity of the dual objective, there exists a unique maximizer y∗. Further, by the
Karush-Kuhn-Tucker conditions (Theorem 31.3, [22]), we have

ASα(t+1) +Ax̃(t) ∈ ∂f∗(y∗)
and, thus, y∗ = ∇f

(
ASα(t+1) +Ax̃(t)

)
.

We define ∆ = y∗ − z∗. Following similar steps as in the proof of Theorem 1, we obtain

‖A>∆‖22 +

(
λ

µ
− Z2

f

)
‖∆‖22 6 〈AP⊥S (λx̃(t) +A>z∗),∆〉

= −λ〈AP⊥S δ∗,∆〉.
Since λ > 2µZ2

f , it follows that λ/µ− Z2
f > λ/(2µ). Using the fact that for any a, b > 0, we have

2
√
ab 6 a+ b, we obtain the inequality√

2λ

µ
‖A>∆‖2‖∆‖2 6 −λ〈AP⊥S δ∗,∆〉

6 λ‖δ∗‖2Zf‖∆‖2.
Dividing both sides by λ‖∆‖2 and using the identities δ∗ = x∗ − x̃(t) and A>∆/λ = x∗ − x̃(t+1),
we obtain the desired contraction inequality

‖x̃(t+1) − x∗‖2 6

√
µ

2λ
Zf‖x̃(t) − x∗‖2.

By induction, it immediately follows that for any number of iterations T > 1,

‖x̃(T ) − x∗‖2 6
( µ

2λ
Z2
f

)T
2 ‖x∗‖2.

The high-probability version follows by immediate application of Lemma 1 to the previous inequality.

B.4 Proof of Theorem 3

Define
x∗ = argmin

x
f(K

1
2x) +

λ

2
‖x‖22.

Set x̃ = − 1
λK

1
2∇f(KS̃α∗), and

Zf = Zf

(
K

1
2 ,K

1
2 S̃
)
.

Then, by application of Theorem 1 with S = K
1
2 S̃, it holds that ‖x̃− x∗‖2 6

√
µ/(2λ)Zf‖x∗‖2,

provided that λ > 2µZ2
f . We conclude by using the facts that x̃ = K

1
2 w̃ and x∗ = K

1
2w∗.
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C Proofs of intermediate results

C.1 Proposition 1 – Strong duality and Karush-Kuhn-Tucker conditions of the primal
objective (1)

Denote g(x) = λ
2 ‖x‖22. The functions f and g are proper, closed, convex and their domains are

respectively equal to Rn and Rd. It is then trivial that for any x ∈ Rd, we have x ∈ dom(g) and
Ax ∈ dom(f). Hence, all conditions to apply strong Fenchel duality results hold (Theorem 31.2, [22]).
Using the fact that g∗(z) = 1

2λ‖z‖22, we get

inf
x
f(Ax) +

λ

2
‖x‖22 = sup

z
−f∗(z)− 1

2λ
‖A>z‖22,

and the supremum is attained for some z∗ ∈ dom(f∗). The uniqueness of z∗ follows from strong
concavity of the dual objective, which comes from the 1

µ -strong convexity of f∗.

Further, the primal objective is also strongly convex over Rd, which implies the existence and
uniqueness of a minimizer x∗.

The Karush-Kuhn-Tucker conditions (Theorem 31.3, [22]) imply that Ax∗ ∈ ∂f∗(z∗). Since
∂f∗ = (∇f)−1 (Theorem 23.5, [22]), it follows that z∗ = ∇f(Ax∗). Finally, by first-order
optimality conditions of x∗, we have that A>∇f(Ax∗) + λx∗ = 0, i.e., x∗ = −λ−1A>z∗.

C.2 Proposition 2 – Strong duality and Karush-Kuhn-Tucker conditions of the sketched
primal objective (1)

Denote g(α) = λ
2 ‖Sα‖22. The functions f and g are proper, closed, convex and their domains are

respectively equal to Rn and Rm. It is then trivial that for any α ∈ Rm, we have α ∈ dom(g)
and ASα ∈ dom(f). Hence, all conditions to apply strong Fenchel duality results hold (Theo-
rem 31.2, [22]). Using the fact that g∗(y) = 1

2λy
>(S>S)†y, we get

inf
α
f(ASα) +

λ

2
‖Sα‖22 = sup

y
−f∗(y)− 1

2λ
‖PSA>y‖22,

and the supremum is attained for some y∗ ∈ dom(f∗). The uniqueness of y∗ follows from strong
concavity of the dual objective, which comes from the 1

µ -strong convexity of f∗.

We establish the existence of a minimizer α of α 7→ f(ASα) + λ
2 ‖Sα‖22. The latter function is

strongly convex over the subspace (KerS)
⊥. Thus, there exists a unique minimizer α over (KerS)

⊥.
Then, for any α ∈ Rm, writing α = α⊥ + α‖ where α⊥ ∈ Ker(S)⊥ and α‖ ∈ Ker(S), we have

f(ASα) +
λ

2
‖Sα‖22 = f(ASα⊥) +

λ

2
‖Sα⊥‖22

> f(ASα) +
λ

2
‖Sα‖22.

Thus, the point α is a minimizer.

Let α∗ be any minimizer. The Karush-Kuhn-Tucker conditions (Theorem 31.3, [22]) imply that
ASα∗ ∈ ∂f∗(y∗). Since ∂f∗ = (∇f)−1 (Theorem 23.5, [22]), it follows that y∗ = ∇f(ASα∗).

C.3 Proof of Proposition 3 – Numerical conditioning of the re-scaled sketched program

The condition number κ† of the re-scaled sketched program is equal to

κ† =
supα λ+ σ1

(
I>S A>∇2f(ASα)IS

)
infα λ+ σm

(
I>S A>∇2f(ASα)IS

) ,
where IS = S(S>S)−

1
2 .

In order to show that κ† 6 κ, it suffices to upper bound the numerator in the definition of κ† by the
numerator of κ and to lower bound the denominator of κ† by the denominator of κ, i.e., it suffices to
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show that

sup
α
σ1

(
I>S A>∇2f(ASα)AIS

)
6 sup

x
σ1

(
A>∇2f(Ax)A

)
,

inf
α
σm
(
I>S A>∇2f(ASα)AIS

)
> inf

x
σd
(
A>∇2f(Ax)A

)
.

By the trivial inclusion {Sα | α ∈ Rm} ⊆ Rd, it holds that

sup
α
σ1

(
I>S A>∇2f(ASα)AIS

)
6 sup

x
σ1

(
I>S A>∇2f(Ax)AIS

)
,

inf
α
σm
(
I>S A>∇2f(ASα)AIS

)
> inf

x
σm
(
I>S A>∇2f(Ax)AIS

)
.

Therefore, to establish that κ† 6 κ, it is sufficient to show that for any x ∈ Rd,

σ1

(
I>S A>∇2f(Ax)AIS

)
6 σ1

(
A>∇2f(Ax)A

)
,

σm
(
I>S A>∇2f(Ax)AIS

)
> σd

(
A>∇2f(Ax)A

)
.

The first inequality follows from the fact that ‖IS‖2 6 1. Hence, we have

σ1

(
I>S A>∇2f(Ax)AIS

)
= sup
w 6=0

w>I>S A>∇2f(Ax)AISw
‖w‖2

= sup
w 6=0

(ISw)>A>∇2f(Ax)A(ISw)

‖ISw‖2
‖ISw‖2
‖w‖2︸ ︷︷ ︸
61

6 sup
z 6=0

z>A>∇2f(Ax)Az

‖z‖2
= σ1

(
A>∇2f(Ax)A

)
.

For the second inequality, we distinguish two cases.

If the sketching matrix S ∈ Rd×m is full-column rank, then, the matrix IS is actually an isometry,
i.e., for any w ∈ Rm, we have ‖S(S>S)−

1
2w‖2 = ‖w‖2, which implies that

σm
(
I>S A>∇2f(Ax)AIS

)
= inf
w 6=0

w>I>S A>∇2f(Ax)AISw
‖w‖2

= inf
w 6=0

(ISw)>A>∇2f(Ax)A(ISw)

‖ISw‖2
‖ISw‖2
‖w‖2︸ ︷︷ ︸

=1

> inf
z 6=0

z>A>∇2f(Ax)Az

‖z‖2
= σd

(
A>∇2f(Ax)A

)
.

Suppose now that the sketching matrix S ∈ Rd×m is not full column-rank. By assumption, S = A>S̃

where S̃ ∈ Rn×m is Gaussian iid, hence, full-column rank almost surely. It implies that there exists a
vector v 6= 0 such that Av = 0. Indeed, let v 6= 0 be a vector such that S>v = 0, which exists since
m < d. The equation S>v = 0 can be rewritten as S̃>Av = 0. Since S̃> is full row-rank, we get
that Av = 0, i.e., KerA 6= {0}.
From KerA 6= {0}, we get σd

(
A>∇2f(Ax)A

)
= 0 and σm

(
I>S A>∇2f(Ax)AIS

)
= 0, which

concludes the proof.
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D Proof of bounds in Table 1

D.1 Adaptive Gaussian sketching

From Corollary 1, we have that for a target rank k and a sketching dimension mA = 2k, with
probability at least 1− 12e−k,

‖x̃− x∗‖2
‖x∗‖2

. λ−
1
2

νk +
1

k

ρ∑
j=k+1

νj

 1
2

.

For a matrix A with rank ρ� min(n, d), with k > ρ+ 1, the right hand side of the latter equation is
equal to 0. In order to achieve this with probability at least 1− η, it is sufficient to oversample by an
amount log(12/η), that is, mA = ρ+ 1 + log(12/η) is sufficient to achieve a (ε = 0, η)-guarantee.

For a κ-exponential decay with κ > 0, we have νj ∼ e−κj , andνk +
1

k

ρ∑
j=k+1

νj

 1
2

∼ e−κ(k+1)/2,

and it is sufficient for the sketching dimension mA to satisfy

mA & κ−1 log

(
1

λε

)
+ log

(
12

η

)
.

For a β-polynomial decay with β > 1/2, we have νj ∼ j−2β andνk +
1

k

ρ∑
j=k+1

νj

 1
2

∼ k−β ,

and it is sufficient to have

mA & λ−
1
2β ε−

1
β + log

(
12

η

)
.

D.2 Oblivious Gaussian sketching

For a ρ-rank matrix A, it has been shown in [32] that, provided the sketching dimension mO satisfies

mO &
(ρ+ 1) log (2ρ/η)

ε2
,

then,
‖x̃− x∗‖2
‖x∗‖2

. ε,

with probability at least 1− η, for any ε ∈ (0, 1
2 ).

We now justify the bounds for the κ-exponential and β-polynomial decays. Let ρ be the effective
rank of the matrix AA>, defined as

ρ =

ρ∑
i=1

νi
λ+ νi

.

In [32], the authors have shown that, provided

mO &
ρ

ε2(λ+ 1)
log

(
2d

η

)
,

then the relative error satisfies

‖x̃− x∗‖2
‖x∗‖2

. ε

(
1 +

√
λ

νk

)
,
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with probability at least 1 − η, under the additional condition that the minimizer x∗ lies in the
subspace spanned by the top k-left singular vectors of A. For simplicity of comparison, we neglect
the latter (restrictive) requirement on x∗, and the term

√
λ/νk in the latter upper bound, which yields

a smaller lower bound on a sufficient sketching size mO to achieve a (ε, η)-guarantee. Based on
those simplifications, oblivious Gaussian sketching yields a relative error such that

‖x̃− x∗‖2
‖x∗‖2

6 ε,

with probability at least 1− η, provided that mO > ρε−2 log
(

2d
η

)
.

For a κ-exponential decay, it holds that

ρ =

ρ∑
i=1

e−κi

e−κi + λ
>
∫ ρ

1

e−κt

e−κt + λ
dt =

∫ e−κ

e−κρ

1

κ

1

u+ λ
du =

1

κ
log

(
e−κ + λ

e−κρ + λ

)
.

Since λ ∈ (νρ, 1) = (e−κρ, 1), it follows that

ρ & κ−1 log
1

λ
.

Hence, their theoretical predictions state that the sketching dimension mO must be greater than

mO & κ−1ε−2 log

(
1

λ

)
log

(
2d

η

)
in order to achieve a (ε, η)-guarantee.

For a β-polynomial decay, it holds that

ρ =

ρ∑
i=0

1

1 + λi2β
≥ −1 +

∫ ρ

0

1

1 + λt2β
dt = −1 +

λ−1/2β

2β

∫ λρ2β

0

u
1
2β−1

1 + u
du

≥ −1 +
λ−1/2β

2β

∫ 1

0

u
1
2β−1

1 + u
du,

where the last inequality is justified by the fact that the integrand is non-negative, and the fact that
λ > ρ−2β . Since the integral is finite and independent of λ, it follows that

ρ & λ−
1
2β ,

and the sketching dimension mO must satisfy

mO & λ−
1
2β ε−2 log

(
2d

η

)
in order to achieve a (ε, η)-guarantee, according to their theoretical predictions.

D.3 Leverage score column sampling.

LetA = UΣV > be a singular value decomposition of the matrixA, where Σ = diag(σ1, σ2, . . . , σρ),
and σ1 > σ2 > . . . > σρ. For a given target rank k, let u1, . . . , uk be the first k columns of the
matrix U , and denote U1 = [u1, . . . , uk] ∈ Rn×k. For j = 1, . . . , n, define pj = k−1‖U1,j‖22, where
U1,j is the j-th row of the matrix U1. By orthonormality of the family (u1, . . . , uk), it holds that∑n
j=1 pj = 1, and pj > 0. The family {pj}nj=1 is called the leverage score probability distribution

of the Gram matrix AA>.

Leverage based column sampling consists in, first, computing the exact or approximated leverage
score distribution of the matrix AA>, and, second, sampling m columns of AA> from the latter
probability distribution, with replacement. Precisely, the sketching matrix S ∈ Rd×m is given as

S = A>RD,
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where R ∈ Rn×m is a column selecting matrix drawn according to the leverage scores, and D ∈
Rm×m is a diagonal rescaling matrix, with Djj = (mpi)

− 1
2 , if Rij = 1.

In order to compare the theoretical guarantees of adaptive Gaussian sketching and leverage-based
column sampling, we assume that the leverage scores are computed exactly. Note that if this is not
the case, then the sketching size increases as the quality of approximation of the leverage score
distribution decreases. As our primary goal is to lower bound the ratio mS/mA, our qualitative
comparison is not affected (at least not in the favor of adaptive Gaussian sketching) by this assumption.

The authors of [12] showed that given δ ∈ (0, 1], provided mS satisfies

mS & δ−2k log

(
k

η

)
,

then, with probability at least 1− η,

‖P⊥S A>‖2 6 ν
1
2

k + δ2

ρ∑
j=k+1

ν
1
2
j .

Using the combination of the latter concentration bound with our deterministic regret bound (4) on
the relative error, it follows that, under the latter condition on mS , with probability at least 1− η,

‖x̃− x∗‖2
‖x∗‖2

6 λ−
1
2

ν 1
2

k + δ2

ρ∑
j=k+1

ν
1
2
j

 .

For a matrix A with rank ρ� min(n, d), if the sketching size mS is greater than (ρ+ 1) log
(
ρ+1
η

)
,

then the relative error satisfies an (ε = 0, η)-guarantee.

For a κ-exponential decay, we have

ν
1
2

k + δ2

ρ∑
j=k+1

ν
1
2
j ∼

(
1 +

2δ2

κ

)
e−κ(k+1)/2.

Taking δ = 1/2, it follows that the sketching size mS must be greater than κ−1 log
(

1
λε

)
log
(

1
η

)
to

satisfy
‖x̃− x∗‖2
‖x∗‖2

. ε

with probability at least 1− η.

For a β-polynomial decay (with β > 1), we have

νk+1 + δ2

ρ∑
j=k+1

νj ∼ k−β + δ2β−1k1−β ,

and, provided mS & δ2k log
(
k
η

)
,

‖x̃− x∗‖2
‖x∗‖2

6 λ−
1
2

(
k−β + δ2β−1k1−β) .

To achieve a precision ε, it is sufficient to have

ε > λ−
1
2

(
k−β + δ2β−1k1−β)

Suppose first that we choose δ . k−
1
2 . Then, the latter sufficient condition becomes ε & λ−

1
2 k−β .

Hence, we need k to be at least λ−
1
2β ε−

1
β , which implies mS & δ−2k log

(
k
η

)
. Since δ . k−

1
2 , we

get that mS must be greater than k2 log(1/η), which further implies

mS & λ−
1
β ε−

2
β log

(
1

η

)
.
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Now, suppose that we choose δ & k−
1
2 . Write δ2 = k−1+γ , where γ > 0. Since δ < 1, we must

have γ ∈ (0, 1). Further, we need βε > λ−
1
2 δ2k1−β = λ−

1
2 kγ−β . By assumption, β > 1, hence,

γ − β < 0. Hence, the smallest value of k that satisfies the latter inequality is given by

k =
(
ε−

1
β λ−

1
2β

) 1
1− γ

β .

On the other hand, the smallest sketching size mS to achieve an (ε, η) satisfies

mS & k2−γ log

(
1

η

)
.

Plugging-in the value of k, we must have

mS &
(
ε−

1
β λ−

1
2β

) 2−γ
1− γ

β log

(
1

η

)
.

Optimizing over γ ∈ (0, 1), we finally obtain that the best sufficient sketching size must satisfy

mS &
(
ε−

1
β λ−

1
2β

)min(2, β
β−1 )

log

(
1

η

)
.

E Extension to the non-smooth case

Here, we present some results to the case where the function f : Rn → R is proper, convex, but
not necessarily smooth. We make the assumption that the function is L-Lipschitz, that is, for any
x, y ∈ Rn,

‖f(x)− f(y)‖2 6 L‖x− y‖2.
In particular, this implies that the domain of the function f∗ is bounded, i.e., for any z ∈ domf∗, it
holds that ‖z‖2 6 L.

Let x∗ be the solution of the primal program (1), which exists and is unique by strong convexity of
the primal objective.

For a sketching matrix S ∈ Rd×m, the sketched primal program (2) admits a solution α∗. Indeed,
using arguments similar to the proof of Proposition 2, the sketched program is strongly convex over
Ker(S)⊥, and admits a unique solution α∗ over that subspace. Further, for any α ∈ Rm, we can
decompose α = α⊥ + α‖, with α⊥ ∈ Ker(S)⊥ and α‖ ∈ Ker(S). Then,

f(ASα) +
λ

2
‖Sα‖22 = f(ASα⊥) +

λ

2
‖Sα⊥‖22

> f(ASα∗) +
λ

2
‖Sα∗‖22.

As for the smooth case, using convex analysis arguments, we obtain that the dual program (14) has a
solution z∗ which satisfies z∗ = ∇f(Ax∗). Similarly, the sketched dual program (15) has a solution
y∗ which satisfies y∗ = ∇f(ASα∗). Further, by first-order optimality conditions of x∗, we have
x∗ = −λ−1A>∇f(Ax∗), i.e., x∗ = −λ−1A>z∗.

As for the smooth case, we introduce the candidate approximate solution x̃, defined as

x̃ = −λ−1A>∇f(ASα∗),

where α∗ is any minimizer of (15).

Theorem 4. For any λ > 0, it holds that

‖x̃− x∗‖2 6
6L

λ

√
σ1Zf . (28)

where σ1 is the top singular value of A.
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Proof. Let α∗ be any minimizer of the sketched primal program. Following similar lines as in the
proof of Theorem 1 (see Appendix B.1), it holds that

‖A>∆‖22 ≤ Z2
f‖∆‖22 + z∗>AP⊥S A

>∆, (29)

where ∆ = y∗ − z∗. After applying Cauchy-Schwarz and using the definition of Zf , inequality (29)
becomes

‖A>∆‖22 ≤ Z2
f‖∆‖22 + Zf‖z∗‖2‖A>∆‖2.

Using the fact that
√
w + w′ ≤ √w +

√
w′ with w = Z2

f‖∆‖22 and w′ = Zf‖z∗‖2‖A>∆‖2, along
with the inequality ‖A>∆‖2 ≤ σ1‖∆‖2, we obtain

‖A>∆‖2 ≤
√
Zf

(√
Zf‖∆‖2 +

√
‖z∗‖2‖∆‖2σ1

)
.

Using the inequality 2ww′ ≤ w2 + w′
2 and the fact that Zf ≤ σ1, it follows that

‖A>∆‖2 6 2
√
Zfσ1 (‖∆‖2 + ‖z∗‖2)

Dividing by λ and using the fact that x̃− x∗ = −λ−1A>∆, we get

‖x̃− x∗‖2 ≤
2

λ

√
Zfσ1 (‖y∗ − z∗‖2 + ‖z∗‖2) .

Using the fact that ‖y∗‖2, ‖z∗‖2 6 L, we obtain the desired inequality (28).

As for the smooth-case, high-probability bounds follow from the previous deterministic bound on the
relative error.
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