
Appendices:
Multiagent Evaluation under Incomplete Information

We provide here supplementary material that may be of interest to the reader. Note that section and
figures in the main text that are referenced here are clearly indicated via numerical counters (e.g.,
Fig. 1.1), whereas those in the appendix itself are indicated by alphabetical counters (e.g., Fig. H.2).

A Related Work

Originally, Empirical Game Theory was introduced to reduce and study the complexity of large
economic problems in electronic commerce, e.g., continuous double auctions [51–53], and later it has
been also applied in various other domains and settings [22, 37–39, 48]. Empirical game theoretic
analysis and the effects of uncertainty in payoff tables (in the form of noisy payoff estimates and/or
missing table elements) on the computation of Nash equilibria have been studied for some time [1, 15,
28, 44, 50, 55, 56], with contributions including sample complexity bounds for accurate equilibrium
estimation [50], adaptive sampling algorithms [56], payoff query complexity results of computing
approximate Nash equilibria in various types of games [15], and the formulation of particular
varieties of equilibria robust to noisy payoffs [1]. These earlier methods are mainly based on the
Nash equilibrium concept and use, amongst others, information-theoretic ideas (value of information)
and regression techniques to generalize payoffs of strategy profiles. By contrast, in this paper we
focus on both Elo ratings and an approach inspired by response graphs, evolutionary dynamics
and Markov-Conley Chains, capturing the underlying dynamics of the multiagent interactions and
providing a rating of players on their long-term behavior [36].

The Elo rating system was originally introduced to rate chess players and named after Arpad Elo [12].
It defines a measure to express the relative strength of a player, and as such has also been widely
adopted in machine learning to evaluate the strength of agents or strategies [41, 42, 48]. Unfortunately,
when applying Elo rating in machine learning, and multiagent learning particular, Elo is problematic:
it is restricted to 2-player interactions, it is unable to capture intransitive behaviors and an Elo score
can potentially be artificially inflated [3]. A Bayesian skill rating system called TrueSkill, which
handles player skill uncertainties and generalized Elo rating, was introduced in Herbrich et al. [23].
For an introduction and discussion of extensions to Elo rating see, e.g., Coulom [8]. Other researchers
have also introduced a method based on a fuzzy pair-wise comparison matrix that uses a cosine
similarity measure for ratings, but this approach is also limited to two-player interactions [5].

Another recent work that inherently uses response graphs as its underlying dynamical model is the
PSRO algorithm (Policy-Space Response Oracles) [32]. The Deep Cognitive Hierarchies model
relates PSRO to cognitive hierarchies, and is equivalent to a response graph. The algorithm is essen-
tially a generalization of the Double Oracle algorithm [34] and Fictitious Self-Play [21], iteratively
computing approximate best responses to the meta-strategies of other agents.

B α-Rank: Additional Background

This section provides additional background on the α-Rank ranking algorithm.

Given match outcomes for a K-player game, α-Rank computes rankings as follows:

1. Construct meta-payoff tables Mk for each player k ∈ {1, . . . ,K} (e.g., by using the
win/loss ratios for the different strategy/agent match-ups as payoffs)

2. Compute the transition matrix C, as detailed in Section 2

3. Compute the stationary distribution, π, of C

4. Compute the agent rankings by ordering the masses of π

In the transition structure outlined in Section 2 Eq. (1), the factor (
∑K
l=1(|Sl| − 1))−1 normalizes

across the different strategy profiles that s may transition to, whilst the second factor represents the
relative fitness of the two profiles s and σ In practice, m ∈ N is typically fixed and one considers
the invariant distribution πα as a function of the parameter α. Figure B.1 illustrates the fixation
probabilities in the α-Rank model, for various values of m and α.



Finite-α limit. In general, the invariant distribution tends to converge as α→∞, and we take α to
be sufficiently large such that πα has effectively converged and corresponds to the MCC solution
concept.

Infinite-α limit. An alternative approach is to set α infinitely large, then introduce a small per-
turbation along every edge of the response graph, such that transitions can occur from dominated
strategies to dominant ones. This perturbation enforces irreducibility of the Markov transition matrix
C, yielding a unique stationary distribution and corresponding ranking.

(a) α-Rank population size m = 2. (b) α-Rank population size m = 50.

Figure B.1: Illustrations of fixation probabilities in the α-Rank model.
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Figure B.2: The response graph associated to payoffs shown in (a) is visualized in (b). (c) MCCs
associated with the response graph highlighted in blue.

The response graph of a game is a directed graph where nodes correspond to pure strategy profiles,
and directed edges if the deviating player’s new strategy is a better-response. The response graph for
the game specified in Fig. B.2a is illustrated in Fig. B.2b.

Markov-Conley Chains (MCCs) are defined as the sink strongly connected components of the
response graph. The MCCs associated with the payoffs specified in Fig. B.2a are illustrated in
Fig. B.2c. The stationary distribution computed by α-Rank corresponds to a ranking of strategy
profiles in the MCCs of the game response graph, indicating the average amount of time individuals
in the underlying evolutionary model spend playing each strategy profile.

C Elo Rating System: Overview and Theoretical Results

This section provides an overview of the Elo rating system, along with theoretical guarantees on the
number of samples needed to construct accurate payoff matrices using Elo.

C.1 Elo Evaluation

Consider games involving two players with shared strategy set S1. Elo computes a vector r ∈ RS1

quantifying the strategy ratings. Let φ(x) = (1 + exp(−x))−1, then the probability of s1 ∈ S1

beating s2 ∈ S1 predicted by Elo is qs1,s2(r) = φ(rs1−rs2). Consider a batch ofN two-player game
outcomes (s1

n, s
2
n, un)Nn=1, where {s1

n, s
2
n} ∈ S1 are the player strategies and un is the observed

(noisy) payoff to player 1 in game n. Let u ∈ RN denote the vector of all observed payoffs, and



denote by BatchElo the algorithm applied to the batch of outcomes. BatchElo fits ability parameters
r by minimizing the following objective with respect to r:

LElo(r;u) =

N∑
n=1

−un log
(
φ(rs1n − rs2n)

)
− (1− un) log

(
1− φ(rs1n − rs2n)

)
. (2)

Ordering the elements of r gives the strategy rankings. Yet despite its widespread use for ranking
[2, 19, 31, 42], Elo has no predictive power in intransitive games (e.g., Rock-Paper-Scissors) [3].

C.2 Theoretical Results

In analogy with the sample complexity results for α-Rank presented in Section 3, we give the
following result on the sample complexity of Elo ranking, building on the work of Balduzzi et al. [3].

Theorem C.1. Consider a symmetric, two-player win-loss game with finite strategy set S1 and payoff
matrix M. Let q be the fitted payoffs obtained from the BatchElo model on the payoff matrix M,
and let q̂ be the fitted payoffs obtained from the BatchElo model on an empirical payoff table M̂,
based on Ns,s′ interactions between each pair of strategies s, s′. If we take, for each pair of strategy
profiles s, s′ ∈ S1, a number of interactions Ns,s′ satisfying

Ns,s′ > 0.5|S1|2ε−2 log(|S1|2/δ) . (3)

Then it follows that with probability at least 1− δ,∣∣∣∣∣∑
s′

(qs,s′ − q̂s,s′)

∣∣∣∣∣ < ε ∀s ∈ S1. (4)

Proof. As in Balduzzi et al. [3, Proposition 1], we have that the row and column sums of q̂,q match
those of p̂,p, respectively. Thus, as a first result we obtain∑

s′

(qs,s′ − q̂s,s′) =
∑
s′

(qs,s′ − ps,s′) +
∑
s′

(ps,s′ − p̂s,s′) +
∑
s′

(p̂s,s′ − q̂s,s′)

=
∑
s′

(ps,s′ − p̂s,s′) ∀s ,

By analogous calculation, we obtain the following result for column sums:∑
s′

(qs,s′ − q̂s,s′) =
∑
s′

(ps,s′ − p̂s,s′) ∀s .

We may now apply Hoeffding’s inequality to each p̂s,s′ with at least Ns,s′ samples as in the statement
of the theorem, and applying a union bound yields the required inequality.

D Proofs of results from Section 3

D.1 Proof of Theorem 3.1

Theorem 3.1 (Finite-α). Suppose payoffs are bounded in the interval [−Mmax,Mmax], and define
L(α,Mmax) = 2α exp(2αMmax) and g(α, η,m,Mmax) = η exp(2αMmax)−1

exp(2αmMmax)−1 . Let ε ∈ (0, 18 ×
2−|S|

∑|S|−1
n=1

(|S|
n

)
n|S|), δ ∈ (0, 1). Let M̂ be an empirical payoff table constructed by taking Ns

i.i.d. interactions of each strategy profile s ∈ S. Then the invariant distribution π̂ derived from the
empirical payoff matrix M̂ satisfies maxs∈

∏
k S

k |π(s)− π̂(s)| ≤ ε with probability at least 1− δ, if

Ns >
648M2

max log(2|S|K/δ)L(α,Mmax)2
(∑|S|−1

n=1

(|S|
n

)
n|S|

)2

ε2g(α, η,m,Mmax)2
∀s ∈ S .

We begin by stating and proving several preliminary results.



Theorem D.1 (Finite-α confidence bounds). Suppose all payoffs are bounded in the interval
[−Mmax,Mmax]. Let 0 < ε < g(α,η,m,Mmax)

2|S|L(α,Mmax)
, and let M̂ be an empirical payoff table, such

that

sup
k∈[K]

s∈
∏

l S
l

|Mk(sk, s−k)− M̂k(sk, s−k)| ≤ ε . (5)

Then, denoting the invariant distribution of the Markov chain associated with M̂ by π̂, we have

max
s∈

∏
k S

k
|π(s)− π̂(s)| ≤ 18ε

L(α,Mmax)

g(α, η,m,Mmax)

|S|−1∑
n=1

(
|S|
n

)
n|S| . (6)

We base our proof of Theorem D.1 on the following corollary of [45, Theorem 1].

Theorem D.2. Let q be an irreducible transition kernel on a finite state space S, with invariant
distribution π. Let β ∈ (0, 1/2|S|), and let q̂ be another transition kernel on S. Suppose that
|q(t|s)− q̂(t|s)| ≤ βq(t|s) for all states s, t ∈ S. If q is irreducible, then q̂ is irreducible, and the
invariant distributions π, π̂ of q, q̂ satisfy

|π(s)− π̂(s)| ≤ 18π(s)β

|S|−1∑
n=1

(
|S|
n

)
n|S| ,

for all s ∈ S.

We next derive several technical bounds on properties of the α-Rank transition matrix C, defined in
(1).

Lemma D.3. Suppose all payoffs are bounded in the interval [−Mmax,Mmax]. Then all non-zero
elements of the transition matrix C are lower-bounded by g(α, η,m,Mmax).

Proof. Consider first an off-diagonal, non-zero element of the matrix. The transition probability is
given by

η

(
1− exp(−αx)

1− exp(−αmx)

)
,

for some x ∈ [−2Mmax, 2Mmax], by assumption of boundedness of payoffs. This quantity
is minimal for x = −2Mmax, and we hence obtain the required lower-bound. We note also
that these transition probabilities are upper-bounded by taking x = 2Mmax, yielding an upper
bound of η 1−exp(−2αMmax)

1−exp(−2αmMmax) . The transition probability of a diagonal element Cii takes the form
1 −

∑
j 6=iCij . There are η−1 non-zero terms in the sum, each of which is upper-bounded by

η 1−exp(−2αMmax)
1−exp(−2αmMmax) . Hence, we obtain the following lower bound on the diagonal entries:

1− η−1η
1− exp(−2αMmax)

1− exp(−2αmMmax)
=1− 1− exp(−2αMmax)

1− exp(−2αmMmax)

=
1− exp(−2αmMmax)− 1 + exp(−2αMmax)

1− exp(−2αmMmax)

=
exp(2α(m− 1)Mmax)− 1

exp(2αmMmax)− 1

≥η exp(2αMmax)− 1

exp(2αmMmax)− 1
,

as required.

Lemma D.4. Suppose all payoffs are bounded in the interval [−Mmax,Mmax]. All transition
probabilities are Lipschitz continuous as a function of the collection of payoffs (M̂k(sk, s−k)|k ∈
[K], s ∈

∏
l S

l) under the infinity norm, with Lipschitz constant upper-bounded by L(α,Mmax).



Proof. We begin by considering off-diagonal, non-zero elements. The transition probability takes the
form η

(
1−exp(−αx)

1−exp(−αmx)

)
, for some x ∈ [−2Mmax, 2Mmax], representing the payoff difference for the

pair of strategy profiles concerned. First, the Lipschitz constant of x 7→ exp(−αx) on the domain
x ∈ [−2Mmax, 2Mmax] is α exp(2αMmax). Composing this function with the function x 7→ η 1−x

1−xm

yields the transition probability, and this latter function has Lipschitz constant η on (0,∞). Therefore,
the function x 7→ η

(
1−exp(−αx)

1−exp(−αmx)

)
is Lipschitz continuous on [−2Mmax, 2Mmax], with Lipschitz

constant upper-bounded by ηα exp(2αMmax). Hence, the Lipschitz constant of the off-diagonal
transition probabilities as a function of the payoffs under the infinity norm is upper-bounded by
2η exp(2αMmax). Turning our attention to the diagonal elements, we may immediately read off their
Lipschitz constant as being upper-bounded by η−1 × 2ηα exp(2αMmax) = 2α exp(2αMmax), and
hence the statement of the lemma follows.

We can now give the full proof of Theorem D.1.

Proof of Theorem D.1. By Lemma D.4, we have that all elements of the transition matrix C are
Lipschitz with constant L(α,Mmax) with respect to the payoffs (Mk(sk, s−k)|k ∈ [K], s ∈

∏
l S

l)
under the infinity norm. Thus, denoting the transition matrix constructed from the empirical payoff
table M̂ by Ĉ, we have the following bound for all i, j:

|Cij − Ĉij | ≤ εL(α,Mmax) .

Next, we have that all non-zero elements of Cij are lower-bounded by g(α, η,m,Mmax) by
Lemma D.3, and hence we have

|Cij − Ĉij | ≤ εL(α,Mmax) ≤ ε L(α,Mmax)

g(α, η,m,Mmax)
Cij .

By assumption, the coefficient of Cij on the right-hand side is less than 1/2|S|. We may now appeal
to Theorem D.2, to obtain

|π(s)− π̂(s)| ≤ 18π(s)ε
L(α,Mmax)

g(α, η,m,Mmax)

|S|−1∑
n=1

(
|S|
n

)
n|S| ,

for all s ∈
∏
k S

k. Using the trivial bound π(s) ≤ 1 for each s ∈
∏
k S

k yields the result.

With Theorem D.1 established, we can now prove Theorem 3.1.

Proof of Theorem 3.1. By Theorem D.1, we have that maxs∈S |π(s)− π̂(s)| < ε is guaranteed if

max
k∈[K]
s∈S

|Mk(sk, s−k)− M̂k(sk, s−k)| < εg(α, η,m,Mmax)

18L(α,Mmax)
∑|S|−1
n=1

(|S|
n

)
n|S|

<
g(α, η,m,Mmax)

2|S|L(α,Mmax)
.

We separate this into two conditions. Firstly, from the second inequality above, we require

ε <
18
∑|S|−1
n=1

(|S|
n

)
n|S|

2|S|
,

which is satisfied by assumption. Secondly, we have the condition

max
k∈[K]
s∈S

|Mk(sk, s−k)− M̂k(sk, s−k)| < εg(α, η,m,Mmax)

18L(α,Mmax)
∑|S|−1
n=1

(|S|
n

)
n|S|

.

Now, write Ns for the number of trials with the strategy profile s ∈ S. We will next use
the following form of Hoeffding’s inequality: Let X1, . . . , XN be i.i.d. random variables sup-
ported on [a, b]. Let ε > 0 and δ > 0. Then for N > (b − a)2 log(2/δ)/(2ε2), we have



P
(∣∣∣ 1
N

∑N
n=1Xn − E [X1]

∣∣∣ > ε
)
< δ. Applying this form of Hoeffding’s inequality to the ran-

dom variable M̂k(sk, s−k), if we take

Ns >
4M2

max log(2K|S|/δ)

2

(
εg(α,η,m,Mmax)

L(α,Mmax)18
∑|S|−1

n=1 (|S|n )n|S|

)2 =
648M2

max log(2K|S|/δ)L(α,Mmax)2
(∑|S|−1

n=1

(|S|
n

)
n|S|

)2

ε2g(α, η,m,Mmax)2
,

then

|Mk(sk, s−k)− M̂k(sk, s−k)| < εg(α, η,m,Mmax)

18L(α,Mmax)
∑|S|−1
n=1

(|S|
n

)
n|S|

holds with probability at least 1− δ/(|S|K). Applying a union bound over all k ∈ [K] and s ∈ S
then gives

max
k∈[K]
s∈S

|Mk(sk, s−k)− M̂k(sk, s−k)| < εg(α, η,m,Mmax)

18L(α,Mmax)
∑|S|−1
n=1

(|S|
n

)
n|S|

with probability at least 1− δ, as required.

D.2 Proof of Theorem 3.2

Theorem 3.2 (Infinite-α). Suppose all payoffs are bounded in [−Mmax,Mmax], and that ∀k ∈ [K]
and ∀s−k ∈ S−k, we have |Mk(σ, s−k) −Mk(τ, s−k)| ≥ ∆ for all distinct σ, τ ∈ Sk, for some
∆ > 0. Let δ > 0. Suppose we construct an empirical payoff table (M̂k(s) | k ∈ [K], s ∈ S)

through Ns i.i.d games for each strategy profile s ∈ S. Then the transition matrix Ĉ computed from
payoff table M̂ is exact (and hence all MCCs are exactly recovered) with probability at least 1− δ, if

Ns > 8∆−2M2
max log(2|S|K/δ) ∀s ∈ S .

We begin by stating and proving a preliminary result.

Theorem D.5 (Infinite-α confidence bounds). Suppose all payoffs are bounded in [−Mmax,Mmax].
Suppose that for all k ∈ [K] and for all s−k ∈ S−k, we have |Mk(σ, s−k)−Mk(τ, s−k)| ≥ ∆ for
all distinct σ, τ ∈ Sk, for some ∆ > 0. Then if |M̂k(s)−Mk(s)| < ∆/2 for all s ∈

∏
l S

l and all
k ∈ [K], then we have that Ĉ = C.

Proof. From the inequality |M̂k(s)−Mk(s)| < ∆/2 for all s ∈ S, we have by the triangle inequality
that |(M̂k(σ, s−k)− M̂(τ, s−k))− (Mk(σ, s−k)−Mk(τ, s−k))| < ∆ for all k ∈ [K], s−k ∈ S−k,
and all distinct σ, τ ∈ Sk. Thus, by the assumption of the theorem, M̂k(σ, s−k)− M̂(τ, s−k) has
the same sign as Mk(σ, s−k)−Mk(τ, s−k) for all k ∈ [K], s−k ∈ S−k, and all distinct σ, τ ∈ Sk.
It therefore follows from the expression for fixation probabilities (assuming the Fermi revision
protocol), in the limit as α → ∞, the estimated transition probabilites Ĉ exactly match the true
transition probabilities C, and hence the invariant distribution computed from the empirical payoff
table matches that computed from the true payoff table.

With this result in hand, we may now prove Theorem 3.2.

Proof of Theorem 3.2. We use the following form of Hoeffding’s inequality. LetX1, . . . , XN be i.i.d.
random variables supported on [a, b], and let ε > 0, δ > 0. Then if N > (b− a)2 log(2/δ)/(2ε2),
we have P(| 1

N

∑N
n=1Xi − E[X1]| > ε) < δ. Applying this form of Hoeffding’s inequality to an

empirical payoff M̂k(s), and writing |S| = Πk|Sk|, we obtain the result that for

Ns >
(2Mmax)2 log(2|S|K/δ)

2(∆/2)2
=

8M2
max log(2|S|K/δ)

∆2
,



we have

|M̂k(s)−Mk(s)| < ∆/2 ,

with probability at least 1− δ/(|S|K). Applying a union bound over all k ∈ [K] and all s ∈
∏
l S

l,
we obtain that if

Ns >
8M2

max log(2|S|K/δ)
∆2

∀s ∈
∏
k

Sk ,

then by Theorem D.5, we have that the transition matrix Ĉ computed from the empirical payoff table
M̂ matches the transition matrix C corresponding to the true payoff table M with probability at least
1− δ.

E Proofs of results from Section 4

Theorem 4.1. The ResponseGraphUCB algorithm is correct with high probability: Given δ ∈ (0, 1),
for any particular sampling scheme there is a choice of confidence levels such that ResponseGra-
phUCB outputs the correct response graph with probability at least 1− δ.

Proof. We begin by introducing some notation. For a general strategy profile s ∈ S, denote
the empirical estimator of Mk(s) after u interactions by M̂k

u(s) and let nt(s) be the number of
interactions of s by time t, and finally let L(M̂k

u(s), δ, u, t) (respectively U(M̂k
u(s), δ, u, t)) denote

the lower (respectively upper) confidence bound for Mk(s) at some time index t after u interactions
of s, empirical estimator M̂k

u(s), and confidence parameter δ. We remark that in typical pure
exploration problems, t counts the total number of interactions; in our scenario, since we have a
collection of best-arm identification problems, we take a separate time index t for each problem,
counting the number of interactions for strategy profiles concerned with each specific problem. Thus,
for the best-arm identification problem concerning two strategy profiles s, s′, with interaction counts
ns, ns′ , we take t = ns + ns′ .

We first apply a union bound over each best-arm identification problem:

P(Incorrect output) ≤
∑

(σ,s−k),(τ,s−k)

P(Incorrect comparison for strategy profiles (σ, s−k) and (τ, s−k)) .

A standard analysis can now be applied to each best-arm identification problem, following the
approach of e.g., Gabillon et al. [17], Kalyanakrishnan et al. [29], Karnin et al. [30]. To reduce
notational clutter, we let s , (σ, s−k) and s′ , (τ, s−k). Further, without loss of generality taking
Mk(s) >Mk(s′), we have

P(Incorrect ordering of s, s′)

≤ P(∃t, u ≤ t s.t. Mk(s) < L(M̂k
u(s), δ, u, t) or Mk(s′) > U(M̂k

u(s′), δ, u, t))

≤
∞∑
t=1

t∑
u=1

[
P(Mk(s) < L(M̂k

u(s), δ, u, t)) + P(Mk(s′) > U(M̂k
u(s′), δ, u, t))

]
.

Note that the above holds for any sampling strategy S . We may now apply an individual concentration
inequality to each of the terms appearing in the sum above, to obtain

P(Incorrect ordering of s, s′) ≤ 2

∞∑
t=1

t∑
u=1

f(u, δ, (|Sk|)k, t) ,

where f(u, δ, (|Sk|)k, t) is an upper bound on the probability of a true mean lying outside a confidence
interval based on u interactions at time t. Thus, overall we have

P(Incorrect output) ≤
|S|
∑K
k=1(|Sk| − 1)

2

∞∑
t=1

t∑
u=1

2f(u, δ, (|Sk|)k, t) .



If f is chosen such that |S|
∑K

k=1(|Sk|−1)

2

∑∞
t=1

∑t
u=1 2f(u, δ, (|Sk|)k, t) ≤ δ, then the proof of

correctness is complete. It is thus sufficient to choose

f(u, δ, (|Sk|)k, t) =
6δ

π2|S|
∑K
k=1(|Sk| − 1)t3

.

Note that this analysis has followed without prescribing the particular form of confidence interval
used, as long as its coverage matches the required bounds above.

Theorem 4.2. The ResponseGraphUCB algorithm, using confidence parameter δ and Hoeffding
confidence bounds, run on an evaluation instance with ∆ = min(sk,s−k),(σk,s−k) |Mk(sk, s−k)−
Mk(σk, s−k)| requires at most O(∆−2 log(1/(δ∆))) samples with probability at least 1− 2δ.

Proof. We adapt the approach of Even-Dar et al. [13], and use the notation introduced in the proof of
Theorem 4.1 First, let Ū(δ, u, t) = supx [U(x, δ, u, t)− x], and L̄(δ, u, t) = supx [x− L(x, δ, u, t)].
Note that if we have counts ns = u and ns′ = v such that

Mk(s)−Mk(s′) > 2Ū(δ, u, t) + 2L̄(δ, v, t) , (7)

then we have

L(M̂k
u(s), δ, u, t)− U(M̂k

v(s′), δ, v, t) > M̂k
u(s)− L̄(δ, u, t)− (M̂k

v(s′) + Ū(δ, v, t))

(a)
> Mk(s)− 2L̄(δ, u, t)−Mk(s′)− 2Ū(δ, v, t)

> 0 ,

where (a) holds with probability at least 1 − 2f(u, δ, (|Sk|)k, t). Hence, with probability at least
1− 2f(u, δ, (|Sk|)k, t) the algorithm must have terminated by this point. Thus, if u, v and t are such
that (7) holds, then we have that the algorithm will have terminated with high probability. Writing
∆ = Mk(s)−Mk(s′), with all observed outcomes bounded in [−Mmax,Mmax], we have

Ū(δ, u, t) = L̄(δ, u, t) =

√
4M2

max log(2/f(u, δ, (|Sk|)k, t))
u

.

We thus require

∆ > 2

√
4M2

max log(2/f(u, δ, (|Sk|)k, t))
u

+ 2

√
4M2

max log(2/f(v, δ, (|Sk|)k, t))
v

.

Taking u = v, and using f(u, δ, (|Sk|)k, t) = 6δ
π2|S|

∑K
k=1(|Sk|−1)t3

as above, we obtain the condition

∆ > 4

√√√√4M2
max

u
log

(
8u3π2|S|

∑K
k=1(|Sk| − 1)

3δ

)
.

A sufficient condition for this to hold is u = O(∆−2 log( 2
δ∆ )). Thus, if all strategy profiles s have

been sampled at least O(∆−2 log( 2
δ∆ )) times, the algorithm will have terminated with probability

at least 1 − 2δ. Up to a log(1/∆) factor, this matches the instance-aware bounds obtained in the
previous section.

F Additional material on ResponseGraphUCB

In this section, we give precise details of the form of the confidence intervals considered in the
ResponseGraphUCB algorithm, described in the main paper.

Hoeffding bounds (UCB). In cases where the noise distribution on strategy payoffs is known
to be bounded on an interval [a, b], we can use confidence bounds based on the standard Ho-
effding inequality. For a confidence level δ and count index n, and mean estimate x, this in-
terval takes the form (x −

√
(b− a)2 log(2/δ)/2n, x +

√
(b− a)2 log(2/δ)/2n). Optionally,

an additional exploration bonus based on a time index t, measuring the total number of sam-
ples for all strategy profiles concerned in the comparison, can be added, yielding an interval
of the form (x −

√
(b− a)2 log(2/δ)f(t)/n, x +

√
(b− a)2 log(2/δ)f(t)/n), for some function

f : N→ (0,∞).



Clopper-Pearson bounds (CP-UCB). In cases where the noise distribution is known to be
Bernoulli, it is possible to tighten the Hoeffding confidence interval described above, which is valid
for any distribution supported on a fixed finite interval. The result is the asymmetric Clopper-Pearson
confidence interval: for an empirical estimate x formed from n samples, at a confidence level δ, the
Clopper-Pearson interval [6, 18] takes the form (B(δ/2;nx, n−nx+1), B(1−δ/2;nx+1, n−nx),
where B(p; v, w) is the pth quantile of a Beta(v, w) distribution.

Relaxed variants. As an alternative to waiting for confidence intervals to become fully disjoint
before declaring an edge comparison to be resolved, we may instead stipulate that confidence intervals
need only ε-disjoint (that is, the length of their intersection is < ε). This has the effect of reducing
the number of samples required by the algorithm, and may be practically advantageous in instances
where the noise distributions do not attain the worst case under the confidence bound (for example,
low-variance noise under the Hoeffding bounds); clearly however, such an adjustment breaks any
theoretical guarantees of high-probability correct comparisons.

G Additional material on uncertainty propagation

In this section, we provide details for the high-level approach outlined in Section 5, in particular
giving more details regarding the reduction to response graph selection (in particular, selecting
directions of particular edges within the response graph), and then using the PageRank-style reduction
to obtain a CSSP policy optimization problem.

Reduction to edge direction selection. The infinite-α α-Rank output is a function of the payoff
table M only through the infinite-α limit of the corresponding transition matrix C defined in (1); this
limit is determined by binary payoff comparisons for pairs of strategy profiles differing in a single
strategy. We can therefore summarize the set of possible transition matrices C which are compatible
with the payoff bounds L and U by compiling a list E of response graph edges for which payoff
comparisons (i.e., response graph edge directions) are uncertain under L and U. Note that it may be
possible to obtain even tighter confidence intervals on π(s) by keeping track of which combinations
of directed edges in E are compatible with an underlying payoff table M itself, but by not doing
so we only broaden the space of possible response graphs, and hence still obtain valid confidence
bounds. The confidence interval for π(s) could thus be obtained by computing the output of infinite-α
α-Rank for each transition matrix C that arises from all choices of edge directions for the uncertain
edges in E. However, this set is generally exponentially large in the number of strategy profiles, and
thus intractable to compute. The next step is to reduce this problem to one which is solvable using
standard dynamic programming techniques to avoid this intractability.

Reduction to CSSP policy optimization. We now use a reduction similar to that used in the
PageRank literature for optimizing stationary distribution mass [10], encoding the problem above
as an SSP optimization problem. For a transition matrix C, let (Xt)

∞
t=0 denote the corresponding

Markov chain over the space of strategy profiles S, and define the mean return times λ ∈ [0,∞]S by
λ(u) = E [inf{t > 0|Xt = u}|X0 = u], for each u ∈ S. By basic Markov chain theory, when C is
such that s is recurrent, the mass attributed to s under the stationary distribution supported on the MCC
containing s is equal to 1/λ(s); thus, maximizing (respectively, minimizing) π(s) over a set of transi-
tion matrices is equivalent to minimizing (respectively, maximizing) λ(s). Define the mean hitting
time of s starting at u for all u ∈ S by ϕ ∈ [0,∞]S , where ϕ(u) = E [inf{t > 0|Xt = s}|X0 = u],
whereby ϕ(s) = λ(s); then ϕ = C̃ϕ+ 1, where C̃ is the substochastic matrix given by setting the
column of C corresponding to state s to the zero vector, and 1 ∈ RS is the vector of ones.

Note that ϕ has the interpretation of a value function in an SSP problem, wherein the absorbing
state is s and all transitions before absorption incur a cost of 1. The original problem of maximizing
(respectively, minimizing) π(s) is now expressed as minimizing (respectively, maximizing) this value
at state s over the set of compatible transition matrices C̃. We turn this into a standard control
problem by specifying the action set at each state u ∈ S as P({e ∈ E|u ∈ e}), the powerset of the
set of uncertain edges in E incident to u; the interpretation of selecting a subset U of these edges
is that precisely the edges in U will be selected to flow out of u; this then fully specifies the row of
C̃ corresponding to u. Crucially, the action choices cannot be made independently at each state; if
at state u, the uncertain edge between u and u′ is chosen to flow in a particular direction, then at
state u′ a consistent action must be chosen, so that the actions at both states agree on the direction



of the edge, thus leading to a constrained SSP optimization problem. We refer to this problem
as CSSP(S,L,U, s). While general solution of CSSPs is intractable, we recall the statement of
Theorem 5.1 that it is sufficient to consider the unconstrained version of CSSP(S,L,U, s) to recover
the same optimal policy.

Theorem 5.1. The unconstrained SSP problem given by removing the action consistency constraints
of CSSP(S,L,U, s) has the same optimal value as CSSP(S,L,U, s).

We conclude by restating the final statements of Section 5. In summary, the general approach for
finding worst-case upper and lower bounds on infinite-α α-Rank ranking weights π(s) for a given
strategy profile s ∈ S is to formulate the unconstrained SSP described above, find the optimal policy
(using, e.g., linear programming, policy or value iteration), and then use the inverse relationship
between mean return times and stationary distribution probabilities in recurrent Markov chains to
obtain the bound on the ranking weight π(s) as required. In the single-population case, the SSP
problem can be run with the infinite-α α-Rank transition matrices; in the multi-population case, a
sweep over perturbation levels in the infinite-α α-Rank model can be performed, as with standard
α-Rank, to deal with the possibility of several sink strongly-connected components in the response
graph.

G.1 MCC detection

Here, we outline a straightforward algorithm for determining whether infL≤M̂≤U πM̂(s) = 0,
without recourse to the full CSSP reduction described in Section 5. First, we use L and U to split
the edges of the response graph into two disjoint sets EU , edges for which the direction is uncertain
under L and U, and EC , the edges with certain direction. We then construct the set FA ⊆ S of forced
ancestors of s; that is, the set of strategy profiles that can reach s using a path of edges contained
in EC , including s itself. We also define the set FD ⊆ S of forced descendents of s; that is, the set
of strategy profiles that can be reached from s using a path of edges in EC , including s itself. If
FD 6⊆ FA, then s can clearly be made to lie outside an MCC by setting all edges in EU incident to
FD \FA to be directed into FD. Then there are no edges directed out of FD \FA, so this set contains
at least one MCC. There also exists a path from s to FD \ FA, and hence s cannot lie in an MCC, so
infL≤M̂≤U πM̂(s) = 0. If, on the other hand, FD ⊆ FA, we may set all uncertain edges between
FA and its complement to be directed away from FA. We then iteratively compute two sets: FA,out,
the set of profiles in FA for which there exists a path out of FA, and its complement FA \ FA,out.
Any uncertain edges between these two sets are then set to be directed towards FA,out, and the sets
are then recomputed. This procedure terminates when either FA,out = FA, or there are no uncertain
edges left between FA and FA,out. If at this point there is no path from s out of FA, we conclude that
s must lie in an MCC, and so infL≤M̂≤U πM̂(s) > 0, whilst if such a path does exist, then s does
not lie in an MCC, so infL≤M̂≤U πM̂(s) = 0.

G.2 Proof of Theorem 5.1

Theorem 5.1. The unconstrained SSP problem given by removing the action consistency constraints
of CSSP(S,L,U, s) has the same optimal value as CSSP(S,L,U, s).

Proof. Let C̃ be the substochastic matrix associated with the optimal unconstrained policy, and
suppose there are two action choices that are inconsistent; that is, there exist strategy profiles u and v
differing only in index k, such that either (i) at state u, the edge direction is chosen to be u→ v, and
at state v, the edge direction is chosen to be v → u; or (ii) at state u, the edge direction is chosen to
be v → u, and at state v, the edge direction is chosen to be u→ v. We show that in either case, there
is a policy without this inconsistency that achieves at least as good a value of the objective as the
inconsistent policy.

We consider first case (i). Let ϕ be the associated expected costs under the inconsistent optimal
policy, and suppose without loss of generality that ϕ(v) ≥ ϕ(u). Let D̃ be the substochastic matrix
obtained by adjusting the action at state u so that the edge direction between u and v is v → u,
consistent with the action choice at v. Denote the expected costs under this new transition matrix D̃



by µ. We can compare ϕ and µ via the following calculation. By definition, we have ϕ = C̃ϕ+ 1

and µ = D̃µ+ 1. Thus, we compute

ϕ− µ = (C̃ϕ+ 1)− (D̃µ+ 1)

= C̃ϕ− D̃µ

= C̃ϕ− D̃ϕ+ D̃ϕ− D̃µ

= (C̃− D̃)ϕ+ C̃(ϕ− µ)

=⇒ ϕ− µ = (I− D̃)−1(C̃− D̃)ϕ .

In this final line, we assume that I− D̃ is invertible. If it is not, then it follows that D̃ is a strictly
stochastic matrix, thus corresponding to a policy in which no edges flow into s. From this we
immediately deduce that the minimal value of ϕ(s) is∞; hence, we may assume I− D̃ is invertible
in what follows. Assume for now that s 6∈ {u, v}. Now note that C̃ and D̃ differ only in two elements:
(u, u), and (u, v), and thus the vector (C̃ − D̃)ϕ has a particularly simple form; all coordinates
are 0, except coordinate u, which is equal to η(ϕ(v)−ϕ(u)) ≥ 0. Finally, observe that all entries
of (I − D̃)−1 =

∑∞
k=0 D̃

k are non-negative, and hence we obtain the element-wise inequality
ϕ − µ ≥ 0, proving that the policy associated with D̃ is at least as good as C̃, as required. The
argument is entirely analogous in case (ii), and when one of the strategies concerned is s itself. Thus,
the proof is complete.

H Additional empirical details and results

H.1 Experimental procedures and reproducibility

We detail the experimental procedures here.

The results shown in Fig. 1.1b are generated by computing the upper and lower payoff bounds given
a mean payoff matrix and confidence interval size for each entry, then running the procedure outlined
in Section 5.

As Fig. 4.1 shows an intuition-building example of the ResponseGraphUCB outputs, it was computed
by first constructing the payoff table specified in the figure, then running ResponseGraphUCB with
the parameters specified in the caption. The algorithm was then run until termination, with the
strategy-wise sample counts in Fig. 4.1 computed using running averages.

The finite-α α-Rank results in Fig. 6.1 for every combination of α and ε are computed using 20, 5,
and 5 independent trials, respectively, for the Bernoulli, soccer, and poker meta-games. The same
number of trials applies for every combination of δ and ResponseGraphUCB in Fig. 6.3.

The ranking results shown in Fig. 6.3 are computed for 10 independent trials for each game and each
δ.

The parameters swept in our plots are the error tolerance, δ, and desired error ε. The range of
values used for sweeps is indicated in the respective plots in Section 6, with end points chosen such
that sweeps capture both the high-accuracy/high-sample complexity and low-accuracy/low-sample
complexity regimes.

The sample mean is used as the central tendency estimator in plots, with variation indicated as the
95% confidence interval that is the default setting used in the Seaborn visualization library that
generates our plots. No data was excluded and no other preprocessing was conducted to generate
these plots.

No special computing infrastructure is necessary for running ResponseGraphUCB, nor for reproduc-
ing our plots; we used local workstations for our experiments.



H.2 Full comparison plots

As noted in Section 4, sample complexity and ranking error under adaptive sampling are of particular
interest. To evaluate this, we consider all variants of ResponseGraphUCB in Fig. H.1.
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(a) Bernoulli games.
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(b) Soccer meta-game.
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(c) Poker meta-game.

S: UE, C(δ): UCB

S: UE, C(δ): R-UCB

S: UE, C(δ): CP-UCB

S: UE, C(δ): R-CP-UCB

S: U, C(δ): UCB

S: U, C(δ): R-UCB

S: U, C(δ): CP-UCB

S: U, C(δ): R-CP-UCB

S: VW, C(δ): UCB

S: VW, C(δ): R-UCB

S: VW, C(δ): CP-UCB

S: VW, C(δ): R-CP-UCB

S: CW, C(δ): UCB

S: CW, C(δ): R-UCB

S: CW, C(δ): CP-UCB

S: CW, C(δ): R-CP-UCB

Figure H.1: ResponseGraphUCB performance metrics versus error tolerance δ for all games. First
and second rows, respectively, show the # of interactions required and response graph edge errors.



H.3 Exploiting knowledge of symmetry in games
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Figure H.2: ResponseGraphUCB (δ = 0.1, S =UE, C =UCB) evaluated on the game with payoff
tables shown in Fig. 4.1a, with knowledge of game symmetry exploited to reduce the total number of
samples needed from 244 to 20 and sampling conducted for only a single strategy profile, (0, 1).

Symmetric games. Let SymK denote the symmetric group of degree K over all players. A game
is said to be symmetric if for any permutation ρ ∈ SymK , strategy profile (s1, . . . , sK) ∈ S and
index k ∈ [K], we have Mk(s1, . . . , sK) = Mρ(k)(sρ(1), . . . , sρ(K)).

Exploiting symmetry in ResponseGraphUCB. Knowledge of the symmetric constant-sum nature
of a game (e.g., Fig. 4.1a) can significantly reduce sample complexity in ResponseGraphUCB: this
knowledge implies that payoffs for all symmetric strategy profiles are known a priori (e.g., payoffs
for (0, 0) and (1, 1) are 0.5 in this example); moreover, each observed outcome for a strategy profile
(s1, . . . , sK) yields a ‘free’ observation of Mρ(k)(sρ(1), . . . , sρ(K)) for all permutations ρ ∈ SymK ,
strategy profiles (s1, . . . , sK) ∈ S, and players k ∈ [K]. For the example in Fig. 4.1a, the symmetry-
exploiting variant of the algorithm is able to reconstruct the true underlying response graph using
only 20 samples of a single strategy profile (0, 1).

In Fig. H.2, we evaluate ResponseGraphUCB on the game shown in Fig. 4.1a, this time exploiting the
knowledge of game symmetry as discussed in Section 4.1. Note that Figs. H.2a and H.2b should be
compared, respectively, with Figs. 4.1b and 4.1c in the main paper. Confidence bounds corresponding
to the symmetry-exploiting sampler (Fig. H.2a) are guaranteed to be tighter than the non-exploiting
sampler (Fig. 4.1b), and so typically we can expect the former to require fewer interactions to arrive
at a ranking conclusion with the same confidence as the latter (under the condition that the payoffs
really are symmetric, as is the case in win/loss two-player games). This is observed in this particular
example, where Fig. 4.1b took 244 interactions to solve, while Fig. H.2a took only 20 samples of a
single strategy profile (0, 1) to correctly reconstruct the response graph.

H.4 Kendall’s distance for partial rankings

We use Kendall’s distance for partial rankings [14] when comparing two rankings, r and r̂ (e.g., as
done in Fig. 6.3)

Consider a pair of partial strategy rankings r and r̂ (i.e., wherein tied rankings are allowed). Define a
fixed parameter p. The Kendall distance with penalty parameter p is defined,

K(r, r̂; p) =
∑

{i,j}∈[|S|]

K̄i,j(r, r̂; p),

where K̄i,j(r, r̂; p) is:

• 0 when i, j are in distinct buckets in both r, r̂, but in the same order (e.g., ri > rj and r̂i > r̂j)

• 1 when i, j are in distinct buckets in both r, r̂, but in the reverse order (e.g., ri > rj and r̂i < r̂j)



• 0 when i, j are in the same bucket in both r and r̂

• p when i, j are in the same bucket in one of r or r̂, but different buckets in the other.

It can be shown that Kendall’s distance is a metric when p ∈ [0.5, 1]. We use p = 0.5 in our
experiments.

H.5 Preliminary experiments on collaborative filtering-based approaches

The pairing of bandit algorithms and α-Rank seems a natural means of computing rankings in
settings where, e.g., one has a limited budget for adaptively sampling match outcomes. Our use of
bandit algorithms also leads to analysis which is flexible enough to be able to deal with K-player
general-sum games. However, approaches such as collaborative filtering may also fare well in their
own right. We conduct a preliminary analysis of this in here, specifically for the case of two-player
win-loss games.

For such games, the meta-payoff table is given by a matrix M with all entries lying in (0, 1) (encoding
loss as payoff 0 and win as payoff 1). Taking a matrix completion approach, we might attempt to
reconstruct a low-rank approximation of the payoff table from an incomplete list of (possible noisy)
payoffs, and then run α-Rank on the reconstructed payoffs. Possible candidates for the low-rank
structure include: (i) the payoff matrix itself; (ii) the logit matrix Lij = log(Mij/(1−Mij)); and
(iii) the odds matrix Oij = exp(Lij). In particular, Balduzzi et al. [3] make an argument for the
(approximate) low-rank structure of the logit matrix in many applications of interest.

Figure H.3: Ranking errors (Kendall’s distance w.r.t. ground truth) from completion of, respectively,
the sparse payoffs, logits, and odds matrices for Soccer dataset. 20 trials per combo of assumed
matrix ranks and observation rates/density.

We conduct preliminary experiments on this in Fig. H.3, implementing matrix completion calculations
via Alternating Minimization [27]. We compare here the resulting α-Rank errors for the three
reconstruction approaches for the Soccer meta-game. We sweep across the observation rates of payoff
matrix entries and the matrix rank assumed in the reconstruction. Interestingly, conducting low-rank
approximation on the logits (as opposed to the odds) matrix generally yields the lowest ranking error.
Overall, the bandit-based approach may be more suitable when one can afford to play all strategy
profiles at least once, whereas matrix completion is perhaps more so when this is not feasible. These
results, we believe, warrant additional study of the performance of related alternative approaches in
future work.
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