In the following we present the proof of our result.

A Definitions

For ease of consultation we repeat the relevant definitions here. We denote with G = (D, E) the
directed graph describing the dependency among decisions introduced in Sec. 2, where D indicates
the vertices of the graph, i.e., the decision space of the problem and £ C D x D denotes the edges.

Baseline for safety:

R#e(S)y=Su{xeD\S,|FzeS: q(z) — e — Ld(x,z) > 0},

3)

The ergodicity operator is defined by intersecting the nodes that are reachable from a set S and the

nodes from which we can return to a set S through a path contained in another set S:

Reh(§) =S Uu{xeD\S|Izec S: (z,x) € E},

R;cach(sr) _ chach(R;c_aclh(S)) with Rl{caoh(s) — chach(s)7
preach R T reach

RN(S) = lim R=(S),

R*(5,8)=Su{xe S|3zeS: (x,z) € E}

R7H(S,8) = R™'(S, Rt (S, 5)), with Ri™(S,S) = R™(S, 9),

R™(S,8) = lim R*(S,5),
Rergodic(S’ ?) — Rreach (?) N éret(s7 g)

4)
(&)
(6)
(7
®)
9
(10)

Here, we repeat the definition of the safe and ergodic baseline introduced by Turchetta et al. (2016):

Re(S) = R¥°(S) N RE(RC(S), 5),
R™(S) = R(R™Y(9)) with R! = R.(S),
Re(8) = lim R}(S).

Optimistic and pessimistic constraint satisfaction operators:

0;(S)={xeD, |Fze€ S :w(z)— Ld(x,z) —e >0},
p;(S)={xeD,|Fze S:l(z) — Ld(x,z) — e > 0}

Optimistic expansion operator:

07 (8) = 0§ () N Ree(05(5), 5),

O:,n(s) _ Oi(og,nfl(s)) n RergodiC(Oi(O:,nfl(S))’ S),

0:(S) = lim O°(S)
n—roo
Pessimistic expansion operators:

PEY(S) = pi(S) N Rt (p5(S), S),

Pte,n(S) — p:(PtEm_l(S)) N Rergodic(pg(Pte,n—l(S))’ 5)7

PE(S) = lim P°(S)

n—oo
Pessimistic and optimistic safe and ergodic sets:

Sy = O5(57,)

St =P (ST-),
Points with uncertainty above threshold:

We={xeSl: wi(x)> e}
Set of decisions with equal priority:
Ar(a) = {x €SP\ p/(. S7) : he(x) = a}
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Immediate expanders for nodes with priority «:
Gi(a) ={x e W{, |3z € Ai(a): u(x) — Ld(x,z) > 0}., (26)
Relevant priority:
o = max a, s.t. |G(a)] > 0. (27)

Notice that our definition of S? differs slightly from the one in Turchetta et al. (2016) in that
we alternate the pessimistic expansion step and the restriction to ergodic nodes until convergence,
whereas Turchetta et al. (2016) do it only once at each time step. In particular, we have S? =
lim,, 00 P2 (SP_,), while they use S? = P2"'(SP_,). In practice, this does not make any difference
since it is easy to verify that, by t*, i.e., the time by when both GOOSE and the approach in Turchetta
et al. (2016) are guaranteed to converge in the worst case, the pessimistic ergodic safe sets should
be the same for both methods. However, our new definition allows for a more efficient exploration.
These new definitions would require us to show again some of the properties that were shown by
Turchetta et al. (2016) for SP. However, due to our recursive definition of S?, it is easy to see that it is
possible to show these properties by induction over the index n. In this case, the lemmas introduced
by Turchetta et al. (2016) constitute the base case. At this point, it is sufficient to use the induction
hypothesis and the monotonicity of the confidence interval shown in Lemma 1 together with basic
properties of the R°'°%¢ operator discussed in Lemma 4 to prove the induction step. We show how to
do this explicitly in Lemma 5. However, we do not explicitly repeat this reasoning for every lemma
involving SP and we refer to Turchetta et al. (2016) instead.

B Preliminary lemmas

This section contains some basic lemmas about the sets defined above that will be used in subsequent
sections to prove our main results.

Lemma 1. Vx € D, uzy1(x) < ug(x), ly1(x) > 1(x), wigr(x) < we(x).
Proof. See Lemma 1 in Turchetta et al. (2016). O]
Lemma 2. Given S C R C Dand S C R C D, it holds that R**(S, S) C R™*(R, R).

Proof. See Lemma 7 in Turchetta et al. (2016) O
Lemma 3. Forany S, R C D, for any n > 1 we have R'**"(S) C Rrea<h(R),

We proceed by induction. For n = 1, we have R™*?(S) C R™2h( R) by Lemma 8 by Turchetta et al.
(2016). For the inductive step, assume R'**$%(S) C R'*2$"(R). Consider x € R:¢2h(S). We know
I € R (S) € Ry (R), a € A(X') such that x = f(x', a), which implies x € Ri?*"(R).

Corollary 2. Forany S, R C D, we have R***"(S) C R (R).
Lemma 4. Forany S, R C D and S, R C D, we have R*"¢°%(S, S) C Resdic(R R).

Proof. This follows from Lemma 2 and Corollary 2. O

Lemma 5. Foranyt >1, 5] C S} C SV, .

Proof. Lemma 9 in Turchetta et al. (2016) allows us to say P"' (57 ) C Pt(ill(gf). Thus, we can
assume P,"""'(SP_) € P27 (SP) as induction hypothesis. Let us consider x € P> (SP_)).
We know there exists z € P,"" ' (S?_,) C Pt~ (S?) such that [;(z) — Ld(x,z) > 0, which ,by
Lemma 1, implies l¢11(z) — Ld(x,z) > 0. This means that p? (P~ (S?_,)) C p,1 (P71 (SP)).
Applying Lemma 4, we complete the induction step and show P (S¥_,) C Pt (SP). O

Lemma 6. (Chowdhury and Gopalan, 2017, Thm. 2) Assume ||q||i < By, and o-sub-Gaussian

noise. Ifﬂtl/2 = By +4o+\/v + 1 +1n(1/0), then, for allt > 0 and allx € D, |q(x) — pp—1(x)| <
ﬁtl/Qat_l (x) holds with probability at least 1 — .
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Proof. See Theorem 2 in Chowdhury and Gopalan (2017). O

Lemma 7. Let 6,51/2 = B, +40\/v + 1+ 1n(1/5) and assume ||q||; < By, and o-sub-Gaussian
noise. Then, for all t > 0 and all x € D, it holds with probability at least 1 — ¢ that q(x) € Cy(x).

Proof. See Corollary 1 in Sui et al. (2015). O

C Safety

The safety of our algorithm depends on the confidence intervals and on the safe and ergodic set S?.
Since these are defined as in Turchetta et al. (2016), their safety guarantees carry over to our case.

Theorem 2. For any node x along any trajectory induced by Alg. 1 on the graph G we have, with
probability at least 1 — §, that q(x) > 0.

Proof. See Theorem 2 in Turchetta et al. (2016). O]

D Completeness

In this section, we develop the core of our theoretical contribution. The analysis in Turchetta et al.
(2016) bounds the uncertainty of the expanders when the safe set does not change in an interval
[to, t1] without considering the measurements collected prior to . By considering this information,
we extend their worst case sample complexity bound to our more general formulation of the safe
exploration problem.

The following lemmas refer to the exploration steps, i.e., when the goal suggested by the oracle O
lies outside of the pessimistic safe and ergodic set (Line 5, Alg. 1). Notice that ¢ denotes the number
of constraint evaluations and it differs from the iteration index of the algorithm .

The core idea is the following: We bound the number constraint evaluations required at point in the
domain to guarantee that its uncertainty is below €. We show that, as a consequence, if the safe and
ergodic set does not change for long enough all the expanders have uncertainty below €. At this
point we can either guarantee that the safe set expands or that the whole R. (So) has been explored.
Since the analysis relies on the number of constraint evaluations at each point in the domain, we can
evaluate them in any order as long as we exclude those that have an uncertainty below e. Therefore,
our exploration guarantees hold for any priority function.

In the following, let us denote with 7,* = {7,--- ,7;} the set of steps where the constraint ¢ is
evaluated at x by step t. Moreover, we assume, without loss of generality, k(x,x) < 1, i.e., we
assume bounded variance.

Lemma 8. For any t > 1 and for any x € D, it holds that w;(x) < 1/Cll%i‘ﬁt, with C, =
8/log(1 —o2).

Proof.
T wi(x) < D wi(x) (28)
TETY
< ) 402 (x), (29)
TETH
<Y 4B.07_(x), (30)
T<t
< CivifBe, (31)
with C; = 8/1og(1 — o ~2). Here, (28) holds because of Lemma 1, and (31) holds because of Lemma
5.4 by Srinivas et al. (2010). O
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For the remainder of the paper, let us denote with 7; the smallest positive integer such that

Cr i _ o e O
m > &}, with C; = 8/log(1 — ¢~2) and with t* the smallest positive integer such

that t* > |R0(So)|Tt*.
Lemma 9. For any t < t*, for any x € D such that |T;*| > Ti«, it holds that w:(x) < e.

Proof. Since T; is an increasing function of ¢ (Sui et al., 2015), we have |T;¥| > Ty« > T;. Therefore,
using Lemma 8 and the definition of 7}, we have

C C 2
wy(x) < [C1vi Bt < 17e8ee < VB c<e (32)
T; C1Y4 T, Ve4 T, Ve+Ty Ve+T;

where the last inequality comes from the fact that both 3; and , are increasing functions of ¢. [

Lemma 10. For anyt < t*, |T*| < Ty, for any x € SY.

Proof. According to Line 6 of Alg. 2, we only evaluate the constraint at points x € D if w(X) > .
From Lemma 9 we know that |7*| = T3> = wy(x) < e. Thus, if | 7,*| = T}~, X is not evaluated
anymore, which means that | 7,*| cannot grow any further. O

Lemma 11. V¢ > 0, S¥ C Ry(So) with probability at least 1 — 4.
Proof. See Lemma 22 in Turchetta et al. (2016). ]

The following lemma bounds the uncertainty of the points sampled by GOOSE when the set of safe
and ergodic points does not increase.

Lemma 12. Foranyt < t*, let 7, = |S¥|T}, if SY = SP, then w-, (x) < € for all x € U, G, ().

Proof. First, we notice that
YT =7 = |8|T = || Ty, (33)
xeSft

where the first equality comes from the fact that the sum of the number of constraint observations in
7 time steps is equal to 7, the second comes from the definition of 7; and the third comes from the
assumption that S = SP . This allows us to say that, for all x € S?,

Mo ITE =188 Te [T (34)
2€5%,\{x}

Moreover, we have 7; = |S?|Ty < |Ro(So)|Ti- < t* by definition of ¢* and 7; and Lemma 11.
Therefore, by Lemma 10 we know that T}~ > | 7| for all x € S? . Now we show by contradiction

that Ty = |T7X| forallx € SP . Assume this is not the case, i.c., there is X € S? such that Ty~ > [TX|.
We have

(121 =D)T > Y T2 =188 |The = |TX| > |58 |The = The = (IS2| = VT3, (39)
2€ S, \{x}

which is a contradiction and proves our claim that 73« = |’TT’§ | forallx € 5‘%. Therefore, by Lemma 9,
wr, (x) < € forall x € S? . This proves our claim since U G<, (o) € SP. O

Lemma 13. Foranyt > 1, R.(So) \ S¥ # 0, then, R.(SV)\ S¥ # 0.
Proof. See Lemma 20 in Turchetta et al. (2016). O

Lemma 14. Foranyt < t*, if R.(So) \ S¥ # 0, then S¥ C S"I’S T with probability at least 1 — 6.
t{de*

Proof. This proof is analogous to Lemma 21 in Turchetta et al. (2016) where we use our Lemma 12
rather than their Lemma 19 to bound the uncertainty of the expanders. O
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Lemma 15. There exists t < t* such that R.(So) C S? with probability at least 1 — 8.

Proof. For the sake of contradiction, assume this is not the case and that V¢ < t* holds that

R(S0) \ S? # 0. For all i > 1 define 7-1 \ SP _ |Ty with 7o = 0. We know that 7; < ¢* for all i
because of Lemma 11 and that 19 < 7 < because of Lemma 5. Therefore, Lemma 14 implies
that Sy € S? C S, C ---. In general, th1s means that |S? | > |SF| + i for all ¢ > 1. In particular if

we set ¢ = |RU(S())\SU|+1 we get that ‘S£1| > |Sp‘+|RU(So)\SU|+1 = ‘Ro(So)H-l > |R0(S())|
This is a contradiction because of Lemma 11 O

Lemma 16. There is t < t* such that R.(So) € S¥ C Ro(So) with probability at least 1 — 4.
Proof. The lemma follows directly from Lemmas 11 and 15. O

Lemma 17. S C SP..

Proof. Since the optimistic and ergodic and safe set is defined recursively, we will prove this claim
by induction. Similarly to Lemma 12, we start by noticing that, for every x € SL., we have:

ST TE =t > |Ro(S0)| T, (36)
Xegf*
= > Ro(S0)| Ty — |TX| > |S2 | T — | T 37)

zégf*\x

Lemma 10 allows us to say [73%| < T3 for all x € Sf.. We show by contradiction that | 77X | = T;-

for all x € S7.. Assume this is not the case and that we have x € S}. such that | 7X| < T}»:
(ISE.] = DT > > |TE = |SE|Te — T3] > |SE|Te = T = (ISE.| = DT, (38)

2657\ {x}

which is a contradiction and proves that |7X| = T} for all x € S?.. Therefore, by Lemma 9,
we know that wy« (x) < € for any x € SP.. Now consider x € 0§.(S}._;). We know that there
isz € SL._, C S.. such that u(z) — Ld(x,z) — e > 0. Since w;+(z) < ¢, we know that
l;-(z)—Ld(x,z) > 0,ie.,x € p% (5%, ). Using Lemma 4, we can say 05" (SE ) € P2 (S% ).
Now, we can make the following induction hypothesis: 052"~ (S2. ) € P2 *(SP._,). Consider
x € OL(SP._,), we know there is z € 02"~ (S%._|) € P2""'(SP._|) C SP. (where the first

inclusion comes from the induction hypothesis and the second by definition of the safe set), such
that w«(z) — Ld(x,z) — e > 0. Since wy-(z) < €, we know that Iy« (z) — Ld(x,z) > 0, i.e.,

x € pO (P21 (SE._,)). We can apply Lemma 4 again to complete the induction step and show
0" (SP. ) € PY"™(SP._,) and, therefore, S C SP.. O

Lemma 18. For everyt > 0, we have R.(Sy) C S/,

Proof. We will show this claim with a proof by induction. Let us consider x € R.(S;p). We
know there is a z € Sy such that ¢(z) — Ld(x,z) — ¢ > 0. By Lemma 7, we know this means
uy(z) — Ld(x,z) — € > 0 forall t > 0. Therefore, R$*(Sy) C 0f(Sp) C 0§(SP_,) since Sy €SP,
for all t > 1 by Lemma 5. Lemma 4 allows us to say that R.(Sp) C O§(S? ;). As induction
hypothesis, we can assume R"~1(Sp) € OF" (SP_,). Consider x € R™(Sy). We know there is
z € R"1(Sy) C OF™ ' (SP_ ) such that ¢(z) — Ld(x, z) — e > 0 which, by Lemma 7, means that
u(2z) — Ld(x,z) — e > 0 for all t > 0. Therefore, R (R"~1(Sy)) C 0§(OF™(SP_,)). Using
Lemma 4, we can say R"(Sp) C O;™(S?_,), which completes the induction step and concludes the
proof. O
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E Main result

Theorem 1. Assume that q(-) is L-Lipschitz continuous w.r.t. d(-,-) with ||q||x < Bg, o-sub-Gaussian
noise, Sy # 0, q(x) > 0 for all x € Sy, and that, for any two decisions x,x' € Sy, there is a path

in the graph G connecting them within Sy. Let 6,51/2 = By + 40+/v + 1+ 1In(1/9), then, for any
h¢ : D — R, with probability at least 1 — §, we have q~(x) > 0 for any x visited by GOOSE. Moreover,
let t* be the smallest integer such that Bf*t*wf > ¢ IR;B(SO)‘ , with C' = 8/1og(1 + 0~2), then there

exists at < t* such that, with probability at least 1 — 6, R.(So) € SO C S C Ro(Sp).

Proof. The safety is a direct consequence of Theorem 2. The convergence of the pessimistic and
optimistic approximation of the safe sets is a direct consequence of Lemmas 16—18. O

The following corollary gives a simpler interpretation of our main result: in presence of an unknown
constraint, the IML oracle augmented with GOOSE behaves as the IML oracle would behave if it had
knowledge of a better-than-e-accurate approximation of the safe reachable set from the beginning
(except for a finite number of constraint evaluations).

Corollary 1. Under the assumptions of Theorem 1, let the IML oracle be deterministic given the
observations. Then there exists a set S with R.(So) C S C Ro(So) so that x; = O(S) forall k > 1.

Proof. This is a direct consequence of Theorem 1, since it guarantees that, if necessary, we can
expand the set of points where we can evaluate the objective (i.e. the pessimistic safe set) and we can
contract the decision space of the IML oracle (i.e. the optimistic safe set) to a point where the first
contains the second, in a finite number of constraint evaluations. O
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