
Appendix: Beating SGD Saturation with Tail-Averaging and
Minibatching

A Analysis

This section presents the key components of the proofs of our main results. Recall that the goal of
the analysis is to understand the rate at which the tail-averaged SGD iterates w̄S,T approach the risk
minimizer w∗. The main error decomposition underlying our proofs is borrowed from [21], and based
on introducing two intermediate objects that will be shown to converge towards w∗, yet stay close to
the SGD iterates wt. In Section 3 we have already introduced one of these components: population
GD. We will further need the empirical (batch) GD iteration, defined as

vt+1 = vt − γ
1

n

n∑
j=1

(
〈vt, xj〉H − yj

)
xj =

(
I − γΣ̂

)
vt − γĥ, (12)

where we also introduced the important notations

Σ̂ =
1

n

n∑
j=1

xj ⊗ xj ĥ =
1

n

n∑
j=1

xjyj .

Analogously to the tail-averaged SGD/GD we define the tail-averaged batch GD iterates

v̄S,T =
1

T − S

T∑
t=S+1

vt ,

which will act as our proxy to w̄S,T . With these definitions in place, we can upper bound the excess
risk of w̄S,T as∥∥∥Σ1/2(w∗ − w̄S,T )

∥∥∥2

≤ 2
∥∥∥Σ1/2(w∗ − v̄S,T )

∥∥∥2

+ 2
∥∥∥Σ1/2(v̄S,T − w̄S,T )

∥∥∥2

. (13)

The purpose of this decomposition is to help us separate the inherent statistical errors due to using
an i.i.d. sample of fixed size n (first term) and the errors introduced by the randomized algorithm
(second term). Accordingly, we will refer to this latter term as the computational variance. In the
sections below, we give bounds on both terms separately.

A.1 Learning properties of GD with tail averaging

In this section, we discuss how to bound the first term in the decomposition of Equation (13). In
analogy to the discussion in Section 3, we rewrite the empirical GD using spectral filtering functions,

vt+1 = gt+1

(
Σ̂
)
ĥ, gt+1

(
Σ̂
)

= γ

t∑
j=0

(
I − γΣ̂

)j
(14)

With this notation, the tail-averaged GD iterates can be written as

v̄T,S = GS,T (Σ̂)ĥ , GS,T (σ) =
1

T − S

T∑
t=S+1

gt(σ). (15)

Most of the analysis in this section will rely on the regularization properties of the spectral filter
GS,T (Σ̂), the corresponding residual operators

RS,T (Σ̂) = 1− Σ̂GS,T (Σ̂), (16)

and the analogous population quantities introduced in Section 3. Denoting the tail-length by L =
T − S, we will occasionally use the notations GL = GS,T and RL = RS,T .

Our error bounds are derived by means of a classical error decomposition in bias and variance (see,
e.g., 6, 3, 5 and 22). Recalling the definition of the averaged population GD in Equations (7) and (8),
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we consider the decomposition

v̄L − w∗ = (v̄L − uL) + (uL − w∗) = (v̄L − uL) +RL(Σ)w∗

=
(
GL(Σ̂)ĥ−GL(Σ̂)Σ̂uL

)
+
(
GL(Σ̂)Σ̂uL − uL

)
+RL(Σ)w∗

= GL(Σ̂)
(
ĥ− Σ̂uL

)
+RL(Σ̂)uL +RL(Σ)w∗ . (17)

We refer to
A(L) =

∥∥Σ1/2RL(Σ)w∗
∥∥2

(18)
as the deterministic approximation error, to

Â(L) =
∥∥Σ1/2RL(Σ̂)uL

∥∥2
(19)

as the stochastic approximation error and to

V̂(L) =
∥∥Σ1/2GL(Σ̂)(ĥ− Σ̂uL)

∥∥2
(20)

as the sample variance. Our analysis will crucially rely on the properties of the residual operator
RS,T already discussed in Section 3. Here we show that these arguments made about population
GD also impacts the learning error for empirical GD in the same qualitative way. More precisely,
Propositions 1 and 2 in Appendices C.1 and C.2 show that, under appropriate conditions, the
(expected) approximation errors can be bounded as

A(L) .

{
R2(γL)

−2(r+1/2) if r ≤ 1
2 ,

K2R2(γL)
−2(r+1/2) else, and

E
[
Â(L)

]
.

{
R2(γL)

−2(r+1/2) if r ≤ 1
2 ,

K4(r+1)R2(γL)
−2(r+1/2) else.

Notably, proving this result for r > 1/2 critically relies on setting S as a constant fraction of T that
enables the rapid decay of RS,T in S, highlighting the important role of tail averaging to obtain these
results. The precise condition we require is S ≤ K−1

K+1T and T ≤ (K+1)T to hold for some constant
K > 1 see Corollary 1. Regarding the sample variance, Proposition 4 in Appendix C.3 shows the
bound

E
[
V̂(L)

]
. A(L) +

γL(1 + ‖w∗‖2)

n2
+

N(1/γL)

n
.

Putting these results together, we can conclude that the excess risk of tail-averaged GD satisfies the
bound

E
[∥∥∥Σ1/2(w∗ − v̄S,T )

∥∥∥2
]
. R2(γL)

−2(r+1/2)
+
γL(1 + ‖w∗‖2)

n2
+

N(1/γL)

n

whenever K is set as O(1). The precise bound is stated in Appendix C.4 as Theorem 2. A particularly
important consequence of this result is that, under the additional Assumption 3, the excess-risk bound
can be further rewritten as

E
[ ∥∥∥Σ1/2(v̄L − w∗)

∥∥∥2
]
≤ R2 CK n−

2r
2r+1+ν ,

when choosing γn ' n−a and T ' nã for some a, ã > 0 satisfying a− ã = 1
2r+1+ν . Once again,

these results rely on choosing T ' S in the case r > 1/2, whereas choosing S = 0 is sufficient for
the case r ≤ 1/2. This result is formally stated as Corollary 2 in Appendix C.4.

In the low smoothness regime, i.e. 0 ≤ r ≤ 1/2, the choice 0 < S, Sn � Tn is also possible but
does not affect the rate of convergence, whereas in the high smoothness regime, i.e. 1/2 < r, tail
averaging is necessary to avoid saturation.

A.2 SGD vs. GD

We now move on to analyze the difference between the tail-averaged SGD and GD iterates and
provide a bound on the second term in the decomposition (13). To relate the two iterations, we
introduce the notation

Σ̂t =
1

b

bt∑
i=b(t−1)+1

xji ⊗ xji and ĥt =
1

b

bt∑
i=b(t−1)+1

yjixji ,
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so that the minibatch SGD iteration can be written as wt+1 =
(
I − γΣ̂t

)
wt − γĥt. Thus, the

difference between the two iterate sequences can be written in the recursive form

wt+1 − vt+1 =
(
I − γΣ̂t+1

)
(wt − vt) + γξt+1 , (21)

where ξt+1 = ξ
(1)
t+1 + ξ

(2)
t+1 and

ξ
(1)
t+1 = (Σ̂− Σ̂t+1)vt , ξ

(2)
t+1 = ĥt+1 − ĥ . (22)

It is easy to see that ξt+1 has zero mean when conditioned on the history Ft and the dataset. Notice
that the recursion above is of the form

µt+1 =
(
I − γĤt+1

)
µt + γζt+1

for i.i.d. self-adjoint positive operators operators Ĥt satisfying E
[
Ĥt

∣∣Ft] = H and E[ζt|Ft ] = 0.
Such recursions have been well studied in the stochastic approximation literature, and can be
analyzed by techniques proposed by [1] (and later used by 2, 10, 26, among many others). Our
analysis builds on a recent result by [26] that we generalize to account for minibatching and tail-
averaging. On a high level, this result states that if Ĥt and ζt respectively satisfy E

[
Ĥ2
t

∣∣Ft] ≤ κ2H

and E[ζt ⊗ ζt|Ft] 4 σ2Σ̂ for some κ, σ, then the tail-averaged iterate µ̄S,T = 1
T−S

∑T
t=S+1 µt

satisfies
E
[ ∥∥H u

2 µ̄S,T
∥∥2
]
. σ2 Tr[Hα]γ1−u+α(T − S)α−u

S + 1

T − S
for arbitrary α ∈ (0, 1] and u ∈ [0, 1 + α]. Appendix D is dedicated to formally proving this result,
presented precisely as Proposition 5.

Our analysis crucially relies on applying the above lemma for H = Σ̂ under an appropriately defined
condition E1 on the data, see (68), guaranteeing that Σ̂ is “close enough” to its population counterpart
Σ. A second condition E2 in (69) ensures the boundedness of E[ξt ⊗ ξt|Ft,Gn ], conditioned on the
data Gn. We note that, ensuring the condition about ξt is rather challenging due to the fact that the
size of ξ(2)

t depends on the norm of the GD iterate ‖vt‖, which can be, in principle, unbounded.
Consequently, the resulting error terms can only be controlled in a probabilistic sense. Our analysis
relies on showing that there indeed exists a condition E1 ∩ E2 that holds with high probability and
ensures the desired properties. A formal treatment of these matters is presented in Appendix E. The
final result of these derivations is Proposition 6 that, under appropriate conditions on the algorithm’s
parameters, bounds the deviations between the averaged GD and SGD iterates as

E
[ ∥∥∥Σ

1
2 (w̄S,T − v̄S,T )

∥∥∥2
]
.
γαTr[Σα]

bL1−α .

B Spectral Filtering properties of averaged GD

Consider the function

gt(σ) = γ
t−1∑
k=0

(1− γσ)k = σ−1
(
1− (1− γσ)t

)
. (23)

defined on the spectrum σ(Σ) ⊆ [0, κ2] of Σ and let
rt(σ) = 1− σgt(σ).

Then, for any α ∈ [0, 1] [12]
sup

0<σ≤κ2

|σαgt(σ)| ≤ (γt)1−α . (24)

Moreover, for any 0 ≤ u
sup

0<σ≤κ2

|rt(σ)|σu ≤ Cu(γt)−u , (25)

for some Cu > 0. In particular, C0 = 1.

For 0 ≤ S ≤ T − 1 consider

GS,T (σ) =
1

T − S

T∑
t=S+1

gt(σ)
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and let
RT,S(σ) = 1− σGS,T (σ).

Lemma 1 (Filter).

σGS,T (σ) = 1− 1

(T − S)γσ
(1− γσ)S+1

(
1− (1− γσ)T−S

)
.

Proof of Lemma 1. By (23), we have

σGS,T (σ) =
1

T − S

T∑
t=S+1

1− (1− γσ)t

= 1− 1

T − S

T∑
t=S+1

(1− γσ)t

= 1− 1

T − S

T∑
t=0

(1− γσ)t +
1

T − S

S∑
t=0

(1− γσ)t

= 1−
(
(1− γσ)S+1 − (1− γσ)T+1

)
(T − S)γσ

= 1− (1− γσ)S+1(1− (1− γσ)T−S)

(T − S)γσ
.

Lemma 2 (Properties I). Let u ∈ [0, 1]. For any 1 ≤ T , 0 ≤ S ≤ T − 1 we have

sup
0<σ≤κ2

|σuGS,T (σ)| ≤ Cu γ1−u (T + S)(T − S)−u .

In particular, for 1 ≤ K, choosing S ≤ K−1
K+1 T gives

sup
0<σ≤κ2

|σuGS,T (σ)| ≤ Kγ1−u(T − S)1−u .

Proof. By (16) we have

sup
0<σ≤κ2

|σuGS,T (σ)| ≤ sup
0<σ≤κ2

1

T − S

T∑
t=S+1

|σugt(σ)|

≤ γ1−u

T − S

T∑
t=S+1

t1−u .

From Lemma 14 and Lemma 12, we find

T∑
t=S+1

t1−u ≤
∫ T

S+1

t1−u dt

=
1

2− u
(
T 2−u − (S + 1)2−u)

≤ 1

2− u
(
T 2−u − S2−u)

≤ 1

2− u
(T + S)(T − S)1−u .

This proves the first statement. The second statement follows by observing that T + S ≤ K(T − S)
if S ≤ K−1

K+1 T .
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Remark 1. A more refined bound for the case u = 1 can be obtained by considering (16), which
directly leads to

sup
0<σ≤κ2

|σGS,T (σ)| ≤ sup
0<σ≤κ2

1

T − S

T∑
t=S+1

|σgt(σ)| ≤ 1 .

Lemma 3 (Properties II). Let 1 ≤ T and 0 ≤ S ≤ T − 1.

1. For any u ∈ [0, 1], we have
sup

0<σ≤κ2

|σuRS,T (σ)| ≤ γ−u(T − S)−u .

2. For any u > 1 we have

sup
0<σ≤κ2

|σuRS,T (σ)| ≤ C̃u γ−u
S + 1

T − S

(
1

S + 1

)u
,

for some C̃u <∞. In particular, if 1 ≤ K and S ≤ K−1
K+1 T one has

sup
0<σ≤κ2

|σuRS,T (σ)| ≤ C̃u γ−u K
(

1

S + 1

)u
.

If additionally T ≤ (K + 1)S, one has

sup
0<σ≤κ2

|σuRS,T (σ)| ≤ 2C̃u γ
−u K2

(
1

T − S

)u
.

Proof of Lemma 3. By Lemma 1 we have for any u ∈ [0, 1]

|σuRS,T (σ)| = σu

(T − S)γσ
(1− γσ)S+1(1− (1− γσ)T−S)

≤ σu

(T − S)γσ
(1− γσ)S+1((T − S)γσ)1−u

= (γ(T − S))−u(1− γσ)S+1

≤ γ−u(T − S)−u ,

where we use that
|1− (1− x)t| ≤ (tx)1−u

for any x ∈ [0, 1] and for any u ∈ [0, 1].

For u > 1 we apply (25) and Lemma 14 and obtain

sup
0<σ≤κ2

|σuRS,T (σ)| ≤ Cu
γ−u

T − S

T∑
t=S+1

t−u

≤ Cu
γ−u

T − S

(
(S + 1)−u +

∫ T

S+1

t−udt

)

≤ Cu
γ−u

T − S

(
(S + 1)−u +

1

u− 1

((
1

S + 1

)u−1

−
(

1

T + 1

)u−1
))

≤ C̃u γ−u
S + 1

T − S

(
1

S + 1

)u
. (26)

Note that S ≤ K−1
K+1 T implies

S + 1

T − S
≤ K .

Finally, T ≤ (K + 1)S gives
1

S + 1
≤ K + 1

T − S
≤ 2K

T − S
.
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C Bounds Tail-Averaged Gradient Descent

Our error bounds are derived by means of a classical error decomposition in bias and variance, see
e.g. [6], [3], [5] and [22]. More precisely, recalling the filter expression of the population GD,

uL = GL(Σ)Σw∗ , (27)

we consider

v̄L − w∗ = (v̄L − uL) + (uL − w∗)
= (v̄L − uL) +RL(Σ)w∗

= (GL(Σ̂)ĥ−GL(Σ̂)Σ̂uL) + (GL(Σ̂)Σ̂uL − uL) +RL(Σ)w∗

= GL(Σ̂)(ĥ− Σ̂uL) +RL(Σ̂)uL +RL(Σ)w∗ . (28)

We refer to
A(L) = ||Σ1/2RL(Σ)w∗||2 (29)

as the deterministic Approximation error, to

Â(L) = ||Σ1/2RL(Σ̂)uL||2 (30)

as the stochastic Approximation error and to

V̂(L) = ||Σ1/2GL(Σ̂)(ĥ− Σ̂uL)||2 (31)

as the Sample variance. In what follows we successively bound each error term in Section C.1,
Section C.2 and Section C.3. Finally, the total bound is given in Section C.4.
In the following we let

ΣL = (Σ +
1

γL
), and Σ̂L = (Σ̂ +

1

γL
).

C.1 Bounding the deterministic Approximation Error

Proposition 1 (Deterministic Approximation Error). Let 1 ≤ T , 0 ≤ S ≤ T − 1, γκ2 < 1 and
Assumption 2 hold.

1. If 0 ≤ r ≤ 1/2, we have

A(L) ≤ R2 (γL)−2(r+1/2) .

2. If 1/2 < r we have

A(L) ≤ Cr R2 γ−2(r+1/2)

(
S + 1

L

)2 (
1

S + 1

)2(r+1/2)

.

for some Cr <∞. In particular, if 1 ≤ K, S ≤ K−1
K+1 T and T ≤ (K + 1)S, one has

A(L) ≤ Cr K2 R2 (γL)−2(r+1/2) .

Proof of Proposition 1. By Assumption 2 we have

A(L) = ||Σ1/2RL(Σ)w∗||2 ≤ R2 ||Σr+1/2RL(Σ)||2 .

Since
||Σr+1/2RL(Σ)|| ≤ sup

0<σ≤κ2

|σr+1/2RL(σ)| ,

the result follows immediately by applying Lemma 3.
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C.2 Bounding the stochastic Approximation Error

Proposition 2 (Stochastic Approximation Error). Let 1 ≤ T , 0 ≤ S ≤ T − 1, γκ2 < 1 and
Assumption 2 hold. Further assume

n ≥ 16κ2 γL max{1,N(1/(γL))} .

1. If 0 ≤ r ≤ 1/2, we have

E
[
Â(L)

]
≤ CrR2

(
T + S

L

)2

(γL)−2(r+1/2) ,

for some Cr <∞.

2. If 1/2 < r we have

E
[
Â(L)

]
≤ Cr,κR2

(
T + S

L

)2 (
(γL)

(S + 1)2

L2
Ψ2
r(S, T ) +

1

n

)
,

for some Cr,κ <∞ and where Ψr is defined in (37). In particular, if 1 ≤ K, S ≤ K−1
K+1 T

and T ≤ (K + 1)S, one has

E
[
Â(L)

]
≤ C̃r,κ K4(r+1)(γL)−2(r+1/2) ,

for some C̃r,κ <∞.

Proof of Proposition 2. We start with deriving bounds holding with high probability, bounds in
expectation follow then by integration. From Lemma 10 we derive with probability at least 1− δ/2

Â(L) = ||Σ1/2RL(Σ̂)uL||2

≤ 16 log2(4δ−1)||Σ̂1/2
L RL(Σ̂)uL||2 . (32)

We separate the analysis by considering two cases.

Case 1 (0 ≤ r ≤ 1/2): Recalling the definition of uL in (27) gives

||Σ̂1/2
L RL(Σ̂)uL|| ≤ R ||Σ̂LRL(Σ̂)|| · ||Σ̂−1/2

L Σ
1/2
L || · ||Σ

r+1/2GL(Σ)|| .
Bounding the first term is done by using Lemma 1 and Lemma 3, leading to

||Σ̂LRL(Σ̂)|| ≤ sup
0<σ≤κ2

|(σ + 1/(γL))RL(σ)|

≤ sup
0<σ≤κ2

|σRL(σ)|+ 1/(γL) sup
0<σ≤κ2

|RL(σ)|

≤ 2(γL)−1 .

From Lemma 2 we obtain

||Σr+1/2GL(Σ)|| ≤ Cr γ1/2−r (T + S)L−(r+1/2) .

Thus, applying Corollary 3, gives with probability at least 1− δ/2

Â(L) ≤ 64 · 16C2
rR

2 log4(4δ−1) (γL)−2 γ1−2r (T + S)2L−2(r+1/2) , (33)

for some Cr <∞.

Case 2 (1/2 < r): In this case we split (32) differently. Using Assumption 2 and Defini-
tion (27), we obtain

||Σ̂1/2
L RL(Σ̂)uL|| = ||Σ̂1/2

L RL(Σ̂)GL(Σ)Σw∗||

≤ R|| Σ̂1/2
L RL(Σ̂)(Σr+1/2 − Σ̂r+1/2)GL(Σ)Σ1/2︸ ︷︷ ︸

A1

||

+ R|| Σ̂1/2
L RL(Σ̂)Σ̂r+1/2GL(Σ)Σ1/2︸ ︷︷ ︸

A2

|| . (34)
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Bounding A1: For bounding A1 we apply [5], Proposition 5.5. and Proposition 5.6., to obtain with
probability at least 1− δ/2

||Σr+1/2 − Σ̂r+1/2|| ≤ Cr||Σ− Σ̂||

≤ 6Cr
κ2

√
n

log(4δ−1) .

Furthermore, Lemma 2 gives

||GL(Σ)Σ1/2|| ≤ C γ1/2 (T + S)L−1/2 , (35)

for some numerical constant C <∞. Moreover, using Lemma 3 leads to

||Σ̂1/2
L RL(Σ̂)|| ≤ sup

0<σ≤κ2

|(σ + (1/(γL)))1/2RL(σ)|

≤ sup
0<σ≤κ2

|σ1/2RL(σ)|+ (1/(γL))1/2 sup
0<σ≤κ2

|RL(σ)|

≤ 2(γL)−1/2 .

Collecting the previous steps we arrive at

||A1|| ≤ C ′r
(
T + S

L

)
κ2

√
n

log(4δ−1) , (36)

with probability at least 1− δ/2, for some numerical constant C ′r <∞.

Bounding A2: For bounding A2 we apply Lemma 3 once more, giving

||Σ̂1/2
L RL(Σ̂)Σ̂r+1/2||
≤ sup

0<σ≤κ2

|(σ + (1/(γL)))1/2RL(σ)σr+1/2|

≤ sup
0<σ≤κ2

|σr+1RL(σ)|+ (γL)−1/2 sup
0<σ≤κ2

|σr+1/2RL(σ)|

≤ C ′r γ−(r+1) S + 1

L

(
1

S + 1

)r+1

+ C ′′r γ
−(r+1/2) S + 1

L

(
1

S + 1

)r+1/2

(γL)−1/2

≤ C ′′′r
S + 1

L
Ψr(S, T ) .

where we set

Ψr(S, T ) := γ−(r+1)

[(
1

S + 1

)r+1

+ L−1/2

(
1

S + 1

)r+1/2
]
. (37)

Thus, combining with (35), we find

||A2|| ≤ C̃r (γL)1/2 T + S

L

S + 1

L
Ψr(S, T ) . (38)

Finally, note that S ≤ K−1
K+1 T implies

T + S

L
≤ K ,

S + 1

L
≤ K

and T ≤ (K + 1)S gives
1

S + 1
≤ K + 1

L
≤ 2K

L
.

Hence,
Ψr(S, T ) ≤ (4K)r+1(γL)−(r+1) . (39)

Thus,

||A2|| ≤ C̃r (4K)2(r+1)(γL)−(r+1/2) . (40)

The result in this case then follows by combining (39), (34) with (36), (38) and (40) and by integration,
Lemma 11 .
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C.3 Bounding the Sample Variance

For proving the bound for the sample variance we need a concentration result which we slightly
generalize from [22].

Proposition 3. Let uL be defined by (27), A(L) by (18) and δ ∈ (0, 1]. Under Assumption 1, one
has with probability at least 1− δ∥∥∥∥(Σ +

1

γL
)−1/2

(
(Σ̂uL − ĥ)− (ΣuL − h)

)∥∥∥∥
≤ c log(2δ−1)

√γL(κM + κ2||uL||)
n

+

√
κ2γLA(L) + N( 1

γL )

n

 ,

for some numerical constant c <∞.

Proposition 4 (Sample Variance). Set L = T − S and assume γκ2 < 1 as well as

n ≥ 16κ2 γL max{1,N(1/(γL))} .

Under Assumption 1 one has

E
[
V̂(L)

]
≤ Cσ̃,M,κ

(
1 +

∆(S, T )

L2

)2

(
A(L) +

γL(1 + ||w∗||2)

n2
+

N(1/γL)

n

)
for some Cσ̃,M,κ <∞ and where

∆(S, T ) = T (T + 1)− S(S + 1) .

In particular, if 1 ≤ K and S ≤ K−1
K+1 T one has

1 +
∆(S, T )

L2
≤ 1 + 2K .

Proof of Proposition 4. According to Lemma 10, we have with probability at least 1− δ/2

V̂(L) = ||Σ1/2GL(Σ̂)(ĥ− Σ̂uL)||2

≤ 16 log2(4δ−1) ||Σ̂1/2
L GL(Σ̂)(ĥ− Σ̂uL)||2 . (41)

We proceed by decomposing as follows:

Σ̂
1
2

LGL(Σ̂)(ĥ− Σ̂uL) = Σ̂LGL(Σ̂) · Σ̂−1/2
L Σ

1/2
L · ĥL ,

with

ĥL = Σ
1/2
L

(
ĥ− Σ̂uL

)
.

Using the filter function properties in Lemma 1 and Lemma 2 gives

||Σ̂LGL(Σ̂)|| ≤ sup
0<σ≤κ2

|(σ + 1/(γL))GL(σ)|

≤ 1 +
1

L2
(T (T + 1)− S(S + 1))

= 1 +
∆(S, T )

L2
, (42)

with ∆(S, T ) = T (T + 1)− S(S + 1). Furthermore, Corollary 3 gives

||Σ̂−1/2
L Σ

1/2
L || ≤ 4 log(8δ−1) (43)
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with probability at least 1− δ/4.

For bounding ĥL we need to decompose once more: Since Σw∗ = h, we find

ĥL = Σ
1/2
L

(
(ĥ− Σ̂uL)− (h− ΣuL)

)
+ Σ

1/2
L (h− ΣuL)

= Σ
1/2
L

(
(ĥ− Σ̂uL)− (h− ΣuL)

)
+ Σ

1/2
L ΣRL(Σ)w∗ ,

satisfying
||ĥL|| ≤ ||Σ1/2

L

(
(ĥ− Σ̂uL)− (h− ΣuL)

)
||+

√
A(L) .

Applying Proposition 3 gives

||ĥL|| ≤
√
A(L) + 12 log(8δ−1)

√γL(κM + κ2||uL||)
n

+

√
κ2γLA(L) + σ̃2N( 1

γL )

n

 , (44)

with probability at least 1− δ/4. Collecting (42), (43) and (44) yields

V̂(L) ≤ Cσ̃,M,κ log2(8δ−1)

(
1 +

∆(S, T )

L2

)2

(
A(L) +

γL(1 + ||uL||2)

n2
+

N(1/γL)

n

)
, (45)

with probability at least 1− δ/4, for some Cσ̃,M,κ <∞. Finally, Lemma 1 ensures that

||uL|| = ||ΣGL(Σ)w∗|| ≤ ||w∗|| .
The bound in expectation follows from Lemma 11 by integration.

For the last part we refer to the proof of Lemma 2, from which we deduce that

1 +
∆(S, T )

L2
≤ 1 + 2K ,

provided that 1 ≤ K and S ≤ K−1
K+1 T .

C.4 Main result on GD convergence

Proposition 1, Proposition 2 and Proposition 4 together lead our main result regarding the convergence
of batch gradient descent, stated as the following theorem.
Theorem 2. Let 1 ≤ T , 0 ≤ S ≤ T −1, Assumptions 1, 2 hold. Set L = T −S and assume γκ2 < 1
as well as

n ≥ 16κ2 γL max{1,N(1/(γL))} . (46)

1. If 0 ≤ r ≤ 1/2 and 1 ≤ K, 0 ≤ S ≤ K−1
K+1 T , we have

E
[
||Σ1/2(v̄L − w∗)||2

]
≤ CrR2 K2 (γL)−2(r+1/2)

+ Cκ,M,σ,νK
2

(
A(L) +

γL(1 + ||w∗||)2

n2
+

γL A(L)

n
+

N( 1
γL )

n

)
,

for some Cr <∞ and Cκ,M,σ,ν <∞.

2. If 1/2 < r, 1 < K, 0 < S ≤ K−1
K+1 T and T ≤ (K + 1)S, we have

E
[
||Σ1/2(v̄L − w∗)||2

]
≤ Cr CKR2

[
(γL)−2(r+1/2) +

1

n

]
+ Cκ,M,σ,νC

′
K

(
A(L) +

γL(1 + ||w∗||)2

n2
+

γL A(L)

n
+

N( 1
γL )

n

)
,

for some Cκ,r <∞ and Cκ,M,σ,τ̃ <∞.
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From Theorem 2 we can immediately derive the Proof of Corollary 2.
Corollary 2 (Rates of Convergence). Let any assumption of Theorem 2 hold and assume additionally
Assumption 3. One has for any n sufficiently large

E
[
||Σ1/2(v̄L − w∗)||2

]
≤ C n−

2(r+1/2)
2r+ν ,

under each of the following choices:

1. If 0 ≤ r ≤ 1/2: S = 0, α, β ≥ 0 and

γn ' n−α Tn ' nβ such that α− β =
1

2r + 1 + ν
. (47)

2. If 1/2 < r: 0 < S, Sn � Tn, with Tn, γn as in (47).

Proof of Corollary 2. Let γn ' n−a, Ln ' nã, with a, ã > 0 satisfying a− ã = 1
2r+1+ν . Plugging

in Assumptions 2 and 3 gives in either case

E
[
||Σ1/2(v̄Ln − w∗)||2

]
≤ C

(
(γnLn)−2(r+1/2) +

γnLn
n2

+
(γnLn)−2r

n
+

(γnLn)ν

n
+

1

n

)
,

for some constant C < ∞, depending on all model parameters κ,M, ν, r,R and ||w∗||. A short
calculation shows that

n−1 = o
(

(γnLn)−2(r+1/2)
)
,

γnLn
n2

= o
(

(γnLn)−2(r+1/2)
)

and
(γnLn)−2r

n
= o
(

(γnLn)−2(r+1/2)
)
,

so we can disregard the terms n−1, γnLnn2 , (γnLn)−2r

n for n large enough. The choice

γnLn ' n
1

2r+1+ν

precisely balances the two remaining terms (γnLn)−2(r+1/2) and (γnLn)ν

n . This choice also implies
Assumption (46) if n is sufficiently large.

D A general Result

Consider the recursion

µt+1 = Q̂t+1 µt + γξt+1 , Q̂t = (I − γĤt) , (48)

with µ0 = 0, with Ĥt linear i.i.d. random operators acting on H and with ξt ∈ H i.i.d. random
variables, satisfying E[ξt] = 0. For 0 ≤ S ≤ T − 1 we let

µ̄ := µ̄S,T :=
1

T − S

T∑
t=S+1

µt . (49)

Denote H = E
[
Ĥt

]
. We assume that Tr[Hα] <∞ for some α ∈ (0, 1] and

E[ξt ⊗ ξt] � σ2H , E
[
Ĥ2
t

]
� κ2H . (50)

The last condition holds in particular when the Ĥt are bounded a.s. by κ2. We generalize Proposition 1
given in [26] (see also [10]) to more general recursions and to tail-averaging, including full averaging
and mini-batching as special cases.
Proposition 5. Let α ∈ (0, 1], γκ2 ≤ 1/4 and u ∈ [0, 1 + α]. Under Assumption (50), one has

E
[
||H u

2 µ̄S,T ||2
]
≤ 16σ2 Tr[Hα]γ1−u+α(T − S)α−u Υ(S, T ) ,

with Υ(S, T ) = 1 + S+1
T−S . If additionally 1 ≤ K and 1 ≤ T , 0 ≤ S ≤ T − 1 satisfy S ≤ K−1

K+1 T ,
we have

Υ(S, T ) ≤ 1 +K .
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The proof of this result is carried out in Section D.2. The basic idea is to derive a similar bound for
the related semi-stochastic recursion (51), where Ĥt is replaced by it’s expectation H , leaving the
randomness in the noise variables ξt. This is done in Section D.1. In a second step one needs to
control the difference between the full-stochastic recursion and the semi-stochastic iterates. This
relies on a perturbation argument, summarized in Section D.2.

D.1 Semi-Stochastic Recursion (SSR)

Let H be a positive, self-adjoint operator on some Hilbert space H, satisfying H � κ2I . Consider
the general recursion in H

µt+1 = (1− γH)µt + γξt+1 , (51)
with µ0 = 0 and γκ2 < 1. We further assume that

E[ξt] = 0 , E[ξt ⊗ ξt] � σ2H .

For 1 ≤ T and 0 ≤ S ≤ T − 1, we consider

µ̄ := µ̄S,T :=
1

T − S

T∑
t=S+1

µt .

Lemma 4 (SSR). Let α ∈ (0, 1] and assume that Tr(Hα) <∞. Let 1 ≤ T . For any u ∈ [0, 1 + α]
we have

E
[
|| Hu/2µ̄ ||2

]
≤ 4σ2 Tr[Hα]γ1−u+α(T − S)α−u Υ(S, T ) ,

with Υ(S, T ) = 1 + S+1
T−S . In particular, given 1 ≤ K and if 0 ≤ S ≤ K−1

K+1 T one has

Υ(S, T ) ≤ 1 +K .

Proof of Lemma 4. Setting Q = 1− γH , a standard calculation combined with the fact
T∑

t=S+1

qt =
qS+1(1− qT−S)

1− q
(52)

shows that the averaged iterates are given by

µ̄ =
γ

T − S

T∑
t=S+1

t−1∑
k=0

Qt+1−kξk

=
γ

T − S

S∑
t=0

T−(t+1)∑
k=S−t

Qk

ξt +
γ

T − S

T−1∑
t=S+1

T−(t+1)∑
k=0

Qk

ξt
=

S∑
t=0

Atξt +

T−1∑
t=S+1

Ãtξt ,

where we set

At :=
γ

T − S

T−(t+1)∑
k=S−t

Qk

 , Ãt :=
γ

T − S

T−(t+1)∑
k=0

Qk

 .

Thus, since E[ξt ⊗ ξt] � σ2H , we find

E
[
|| Hu/2µ̄ ||2

]
≤ 2

S∑
t=0

E
[
Tr
[
HuA2

t ξt ⊗ ξt
]]

+ 2

T−1∑
t=S+1

E
[
Tr
[
HuÃ2

t ξt ⊗ ξt
]]

= 2

S∑
t=0

Tr
[
HuA2

t E[ξt ⊗ ξt]
]

+ 2

T−1∑
t=S+1

Tr
[
HuÃ2

t E[ξt ⊗ ξt]
]

≤ 2σ2
S∑
t=0

Tr
[
Hu+1A2

t

]
︸ ︷︷ ︸

T1

+ 2σ2
T−1∑
t=S+1

Tr
[
Hu+1Ã2

t

]
︸ ︷︷ ︸

T2

. (53)
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We proceed bounding the individual terms by applying (52). This gives

At =
H−1

T − S
QS−t (1−QT−S) � H−1

T − S
(1−QT−S) .

Furthermore,

Tr
[
Hu−1(1−QT−S)2

]
=
∑
j∈N

σu−1
j (1− (1− γσj)T−S)2

≤
∑
j∈N

σu−1
j ((T − S)γσj)

1−u+α

= γ1−u+α Tr[Hα] (T − S)1−u+α ,

where in the inequality we use that for any x ∈ [0, 1], u ∈ [0, 1 + α] one has

(1− (1− x)t)2 ≤ 1− (1− x)t ≤ (tx)1−u+α .

As a result,

T1 ≤ 2σ2 S + 1

(T − S)2
Tr
[
Hu−1(1−QT−S)2

]
≤ 2σ2γ1−u+α Tr[Hα] (S + 1) (T − S)α−1−u . (54)

Similarly,

Ãt =
H−1

T − S
(1−QT−t)

and

Tr
[
Hu−1(1−QT−t)2

]
=
∑
j∈N

σu−1
j (1− (1− γσj)T−t)2

≤ γ1−u+α Tr[Hα] (T − t)1−u+α .

Hence, since 1− u+ α > 0 we find

T2 ≤ γ1−u+α 2σ2

(T − S)2
Tr[Hα]

T−1∑
t=S+1

(T − t)1−u+α

= γ1−u+α 2σ2

(T − S)2
Tr[Hα]

T−S−1∑
t=1

t1−u+α

≤ γ1−u+α 2σ2

(T − S)2
Tr[Hα](T − S − 1)2−u+α

≤ 2σ2 γ1−u+α Tr[Hα] (T − S)α−u . (55)

The result follows by combining (55), (54) and (53).

D.2 Proof of Proposition 5

Perturbation Argument. Relating the semi-stochastic recursion (51) to the fully stochastic
recursion in (48) is based on the perturbation idea from [1], which has been also applied in [10] and
in [26] in a similar context. For sake of completeness we give a brief summary.

For r ≥ 0 we introduce the sequence (µrt )t

µrt+1 = (I −H)µrt + γΞrt+1 ,

where Ξ0
t = ξt and for r ≥ 0

Ξr+1
t+1 = (H − Ĥt)µ

r
t .

We further let ηrt = µt −
∑r
j=0 µ

j
t which follows the recursion

ηrt+1 = (I − Ĥt)η
r
t + γΞr+1

t+1 .
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From Lemma 2 in [26]3 we have for any r ≥ 0

E[µrt ⊗ µrt ] � γr+1κ2rσ2I . (56)
and

E[Ξrt ⊗ Ξrt ] � γrκ2rσ2H . (57)

Bounding (ηrt )t is then done by applying the next Lemma, being an easy extension of Lemma 3 in
[26] to tail-averaging.
Lemma 5 (Rough Bound SGD Recursion). Consider the SGD recursion given in (48), satisfying
(50). Assume further γκ2 < 1. For any 1 ≤ T , 0 ≤ S ≤ T − 1 we have

E
[
||H u

2 µ̄S,T ||2
]
≤ σ2 γ2κu

Tr[H]

2(T − S)
∆(S, T ) .

where ∆(S, T ) = T (T + 1)−S(S+ 1). In particular, given 1 ≤ K and if 0 ≤ S ≤ K−1
K+1 T one has

∆(S, T ) = T (T + 1)− S(S + 1) ≤ K(T − S)2 .

Proof of Lemma 5. Following the arguments given in the proof of Lemma 3 in [26] we get

E
[
||H u

2 µt||2
]
≤ σ2 γ2κuTr[H] t .

By convexity, this leads to

E
[
||H u

2 µ̄S,T ||2
]
≤ 1

T − S

T∑
t=S+1

E
[
||H u

2 µt||2
]

≤ σ2 γ2κu
Tr[H]

T − S

T∑
t=S+1

t

= σ2 γ2κu
Tr[H]

2(T − S)
(T (T + 1)− S(S + 1)) .

Proof of Proposition 5. With these preparations we prove Proposition 5, applying the above
described perturbation method. More precisely, we decompose

µ̄S,T =

r∑
j=0

µ̄jS,T + η̄rS,T

and have

E
[
||H u

2 µ̄S,T ||2
]1/2 ≤ r∑

j=0

E
[
||H u

2 µ̄jS,T ||
2
]1/2

+ E
[
||H u

2 η̄rS,T ||2
]1/2

. (58)

The first term in (58) we apply Lemma 4 and (57). Denoting

Λ(S, T ) = 4σ2 Tr[Hα]γ1−u+α(T − S)α−u
(

1 +
S + 1

T − S

)
we get with γκ2 ≤ 1/4

r∑
j=0

E
[
||H u

2 µ̄jS,T ||
2
]1/2

≤
r∑
j=0

(
γjκ2jΛ(S, T )

)1/2
=
√

Λ(S, T )

r∑
j=0

(
γκ2

)j/2
≤
√

Λ(S, T )

1−
√
γκ2

≤ 2
√

Λ(S, T ) . (59)

3Lemma 2 in [26] is shown in the special case where Ĥt = zt ⊗ zt for i.i.d. observations zt ∈ H, but the
proof of (56) and (57) is literally the same.
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For bounding the second term in (58) we apply the rough SGD recursion bound from Lemma 5 and
(57). Since γκ2 < 1, we find as r →∞

E
[
||H u

2 η̄rS,T ||2
]1/2 ≤ (γ2+rκu+2rσ2 Tr[H]

2(T − S)
∆(S, T )

)1/2

−→ 0 . (60)

The final result follows by combining (60) and (59) with (58).

E SGD Variance Term

Given b ∈ [n] the mini-batch SGD recursion is given by

wt+1 = wt + γ
1

b

bt∑
i=b(t−1)+1

(〈wt, xji〉H − yji)xji , t = 1, ..., T ,

with w0 = 0, γ > 0 a constant step-size4 and where j1, ..., jbT are i.i.d. random variables, distributed
according to the uniform distribution on [n].

We analyze tail-averaged mini-batch SGD. More precisely, for 0 ≤ S ≤ T − 1 the algo-
rithm under consideration is

w̄S,T :=
1

T − S

T∑
t=S+1

wt .

For ease of notation we suppress dependence on b.

Recall the GD recursion

vt+1 = vt − γ
1

n

n∑
j=1

(
〈vt, xj〉H − yj

)
xj .

Denoting

Σ̂t =
1

b

bt∑
i=b(t−1)+1

xji ⊗ xji , ĥt =
1

b

bt∑
i=b(t−1)+1

yjixji

for any t ≥ 1, we have

wt+1 − vt+1 =
(
I − γΣ̂t+1

)
(wt − vt) + γξt+1 ,

where we define ξt+1 = ξ
(1)
t+1 + ξ

(2)
t+1 and

ξ
(1)
t+1 = (Σ̂− Σ̂t+1)vt , ξ

(2)
t+1 = ĥt+1 − ĥ . (61)

Denoting by Gn the σ- field generated by the data, we have for any t ≥ 1

E
[
ξ

(1)
t+1 | Ft,Gn

]
= E

[
ξ

(2)
t+1 | Ft,Gn

]
= 0

almost surely. Thus, the difference (µt)t = (wt − vt)t follows a recursion as in (48), with Q̂t =

I − γΣ̂t+1.
Proposition 6. Let α ∈ (0, 1], γκ2 ≤ 1/4 and n be sufficiently large. Set L = T − S.

E
[
||Σ 1

2 (w̄S,T − v̄S,T )||2
]
≤ 32C∗

γαTr[Σα]

bL1−α Υ(S, T ) + 32γ2κ4M2 ∆̃(S, T )2

L
δn ,

with C∗ = κ4(2||w∗||+ 1)2 +M2,

Υ(S, T ) = 1 +
S + 1

L
,

4constant means independent of the iteration t, but possibly depending on n
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∆̃(S, T ) =
1

6
(T (T + 1)(2T + 1)− S(S + 1)(2S + 1))

and

δn = 2 exp

(
−a
√

n

γT N(1/γT )

)
,

for some a > 0. If additionally 1 ≤ K and 1 ≤ T , 0 ≤ S ≤ T − 1 satisfy S ≤ K−1
K+1 T , we have

E
[
||Σ 1

2 (w̄S,T − v̄S,T )||2
]
≤ 64C∗K

γαTr[Σα]

bL1−α + 128γ2κ4M2 K4L5 δn .

E.1 Proof of Proposition 6

For proving Proposition 6 we aim at applying Proposition 5 and show that all assumptions are satisfied
by stating a series of Lemmata. The first one provides an upper bound for the covariance of the noise
process.

Lemma 6. Assume |Y | ≤M a.s. . For any t = S, ..., T we have almost surely

E
[
ξ

(1)
t+1 ⊗ ξ

(1)
t+1 | Gn

]
� κ4

b
||vt||2 Σ̂

and

E
[
ξ

(2)
t+1 ⊗ ξ

(2)
t+1 | Gn

]
� M2

b
Σ̂ .

Here, expectation is taken with respect to the b- fold uniform distribution on [n] in step t+ 1.

Proof of Lemma 6. Recall that

ξ
(1)
t+1 = (Σ̂− Σ̂t+1)vt =

1

b

b(t+1)∑
i=bt+1

ξ̃i ,

with
ξ̃i := Σ̂vt − 〈vt, xji〉xji .

By independence, we have

E
[
ξ

(1)
t+1 ⊗ ξ

(1)
t+1 | Gn

]
=

1

b2

∑
i,i′

E
[
ξ̃i ⊗ ξ̃i′ | Gn

]
=

1

b2

∑
i

E
[
ξ̃i ⊗ ξ̃i | Gn

]
.

The first part follows then by

E
[
ξ̃i ⊗ ξ̃i | Gn

]
� E

[
〈vt, xji〉

2
H
xji ⊗ xji | Gn

]
� κ4 ||vt||2 Σ̂ .

The second part of the Lemma follows by writing

ξ
(2)
t+1 = ĥt+1 − ĥ =

1

b

bt∑
i=b(t−1)+1

ξ′ji ,

with ξ′ji = yjixji − ĥ and observing that

E
[
ξ′ji ⊗ ξ

′
ji | Gn

]
� E

[
|yji |2 xji ⊗ xji | Gn

]
�M2 Σ̂ . (62)

The next Lemma provides a uniform for the GD updates, leading to a uniform bound for the noise
process.
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Lemma 7 (Uniform Bound Gradient Descent updates). Assume |Y | ≤ M a.s. and let M̃ =

max(M,κ||w∗||) and σ̄ := 2M̃ . For any δ ∈ (0, 1] and for any S + 1 ≤ t ≤ T , with probability at
least 1− δ one has

||vt|| ≤ 2 ||w∗||+ 1 ,

provided
n ≥ 64 max{σ̄2, κM̃} log2(2δ−1)γT max{1,N(1/γT )} .

Moreover, with probability at least 1− (T − S)δ one has

sup
S+1≤t≤T

||vt|| ≤ 2 ||w∗||+ 1 . (63)

Proof of Lemma 7. We decompose

||vt|| ≤ ||vt − w∗||+ ||w∗|| .
For bounding the first term we apply the results in [5], decomposition (5.9) with eq. (5.17) and
(5.22) for λ = 1

γt
5. For that we need to ensure a moment condition

E
[
|Y − 〈w∗, X〉|l|X

]
≤ 1

2
l!σ̄2M̃ l−2 a.s. , (64)

for some σ̄2 > 0, M̃ <∞ and for any l ≥ 2. Indeed, since |Y | ≤M a.s. and |〈w∗, X〉| ≤ κ||w∗||,
we easily derive

E
[
|Y − 〈w∗, X〉|l|X

]
≤ 2l−1

(
E
[
|Y |l|X

]
+ |〈w∗, X〉|l

)
≤ 2l−1

(
M l + (κ||w∗||)l

)
≤ 1

2
l!σ̄2M̃ l−2 a.s. ,

with M̃ = max(M,κ||w∗||) and σ̄ := 2M̃ . Thus, with probability at least 1− δ

||vt − w∗|| ≤ ||w∗||+ 2 log(2δ−1)

(
κM̃γt

n
+ σ̄

√
γt N(1/γt)

n

)

≤ ||w∗||+ 2 log(2δ−1)

(
κM̃γT

n
+ σ̄

√
γT N(1/γT )

n

)
.

Assuming
n ≥ 64 max{σ̄2, κM̃} log2(2δ−1)γT max{1,N(1/γT )} (65)

we find

2 log(2δ−1)σ̄

√
γT N(1/γT )

n
≤ 1

4
.

Moreover, the same condition also implies

n ≥ 64κM̃ log(2δ−1)γT

owing to the fact that 2 log(2δ−1) > 1 and thus

2 log(2δ−1)
κM̃γT

n
≤ 1

32
.

Hence,

||vt|| ≤ 2||w∗||+
1

32
+

1

4
≤ 2||w∗||+ 1 ,

with probability at least 1− δ.The uniform bound in (63) follows from taking a union bound, i.e.{
sup

S+1≤t≤T
||vt|| ≥ 2||w∗||+ 1

}
⊆

T⋃
t=S+1

{||vt|| ≥ 2||w∗||+ 1} .

5The constant in eq. (5.17) equals one in case of GD.
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Lemma 8 ([6], eq. (47)). For any δ ∈ (0, 1] and λ > 0 satisfying

nλ ≥ 64κ2 log2(2δ−1) max{1,N(λ)} (66)
one has ∥∥∥∥(Σ̂ + λ

)−1

(Σ + λ)

∥∥∥∥ ≤ 2

with probability at least 1− δ.

The following Lemma provides a rough bound for the tail-averaged updates, generalized from [26] to
tail-averaging.
Lemma 9 (Rough bound for averaged SGD variance). Assume |Y | ≤M a.s. and γκ2 < 1. One has
almost surely

||w̄S,T − v̄S,T || ≤ 4γκM
∆̃(S, T )

T − S
,

where

∆̃(S, T ) =

T∑
t=S+1

t2 =
1

6
(T (T + 1)(2T + 1)− S(S + 1)(2S + 1)) .

Moreover, if 1 ≤ K, 1 ≤ T , 0 ≤ S ≤ T − 1 satisfy S ≤ K−1
K+1 T , one has

∆̃(S, T ) ≤ 2K2(T − S)3

and
||w̄S,T − v̄S,T || ≤ 8γκM K2 (T − S)2 ,

almost surely.

Proof of Lemma 9. Recall that the gradient updates are given by v0 = 0 and

vt+1 = vt − γ(Σ̂vt − ĥ) = Q̂vt + γĥ ,

with Q̂ = (1− γΣ̂), ||Q̂|| < 1 and ||ĥ|| ≤ κM . Thus,
||vt+1|| ≤ ||vt||+ γκM

and inductively one obtains
||vt|| ≤ γκM t . (67)

Let µt = wt − vt. Starting with µ0 = 0, then (µt)t follows the recursion

µt+1 = Q̂t+1µt + γξt+1, Q̂t+1 = (I − γΣ̂t+1) ,

where ξt+1 = ξ
(1)
t+1 + ξ

(2)
t+1 is defined in (22). By (67) and since γκ2 < 1 we have

||ξ(1)
t+1|| ≤ ||(Σ̂− Σ̂t+1)|| ||vt|| ≤ 2γκ3M t < 2κM t .

Furthermore,
||ξ(2)
t+1|| = ||ĥt+1 − ĥ|| ≤ 2κM .

Using ||Q̂t+1|| < 1, one easily calculates

||µt|| ≤ γ
t∑

j=1

||ξj || ≤ 4γκM t2 .

Thus,

||µ̄S,T || ≤
4γκM

T − S

T∑
t=S+1

t2 = 4γκM
∆̃(S, T )

T − S
,

with

∆̃(S, T ) =

T∑
t=S+1

t2 =
1

6
(T (T + 1)(2T + 1)− S(S + 1)(2S + 1)) .

Finally,
∆̃(S, T ) ≤ 2K2(T − S)3 ,

implied by S ≤ T − 1 and S ≤ K−1
K+1 T .
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Proof of Proposition 6. We define the events

E1 =

{
x ∈ Xn :

∥∥∥∥(Σ̂ + λ
)−1/2

(Σ + λ)
1/2

∥∥∥∥2

≤ 2

}
, (68)

where we set λ = 1
γL and

E2 =

{
(x,y) ∈ Xn × Yn : ∀t = S + 1, ..., T : E[ ξt+1 ⊗ ξt+1 | Gn ] � C∗

b
Σ̂

}
, (69)

with C∗ = κ4(2||w∗||+ 1)2 +M2.
Denoting N̄(λ) = max{1,N(λ)}, Lemma 8 gives P[Ec1] ≤ δ1, provided

n ≥ 64κ2 log2(2δ−1
1 )γLN̄(1/γL)

or, equivalently,

δ1 ≥ 2 exp

(
−a1

√
n

γLN̄(1/γL)

)
, (70)

with a1 = 1
8κ . Similarly, applying Lemma 7 and Lemma 6 gives P[Ec2] ≤ Lδ2 if

n ≥ Cκ,M̃,σ̄ log2(2δ−1
2 )γT N̄(1/γT ) , Cκ,M̃,σ̄ = 64 max{σ̄2, κM̃}

or equivalently

δ2 ≥ 2 exp

(
−a2

√
n

γT N̄(1/γT )

)
. (71)

with a2 = 1√
Cκ,M̃,σ̄

.

Setting µ̄S,T = w̄S,T − v̄S,T , we decompose

E
[
||Σ 1

2 µ̄S,T ||2
]
≤ E

[
||Σ 1

2 µ̄S,T ||2 1E1∩E2

]
+ E

[
||Σ 1

2 µ̄S,T ||2 1Ec1

]
+ E

[
||Σ 1

2 µ̄S,T ||2 1Ec2

]
. (72)

For bounding the first term note that

Σ
1
2 = Σ

1
2 (Σ + λ)−

1
2 (Σ + λ)

1
2 (Σ̂ + λ)−

1
2 (Σ̂ + λ)

1
2 ,

where
||Σ 1

2 (Σ + λ)−
1
2 || ≤ 1 .

Thus, by definition of E1 and E2, using ||(Σ̂+λ)
1
2u||2 = ||Σ̂ 1

2u||2+λ||u||2, we find with λ = 1
γ(T−S)

and Proposition 5 with σ2 = C∗/b

E
[
||Σ 1

2 µ̄S,T ||2 1E1∩E2

]
≤ 2E

[
||Σ̂ 1

2 µ̄S,T ||2
]

+
2

γ(T − S)
E
[
||µ̄S,T ||2

]
≤ 32C∗

γαΥ(S, T )

bL1−α E
[
Tr
[
Σ̂α
]]

≤ 32C∗
γαΥ(S, T )

bL1−α Tr[Σα] . (73)

In the last step we apply Jensen’s inequality, giving E
[
Tr
[
Σ̂α
]]
≤ Tr[Σα].

For bounding the second and third term recall that ||Σ 1
2 ||2 ≤ κ2. We have by Lemma

9

||Σ 1
2 µ̄S,T ||2 ≤ 16γ2κ4M2 ∆̃(S, T )2

L2
.

Hence,

E
[
||Σ 1

2 µ̄S,T ||2 1Ec1

]
≤ 16γ2κ4M2 ∆̃(S, T )2

L2
δ1 (74)

and

E
[
||Σ 1

2 µ̄S,T ||2 1Ec2

]
≤ 16γ2κ4M2 ∆̃(S, T )2

L2
L δ2 . (75)

29



The result follows from collecting (75), (74), (73) and (72) and by choosing

δn := max{δ1, δ2} = 2 exp

(
−a
√

n

γT N̄(1/γT )

)
, (76)

with a = min{a1, a2}. Note that we also use the fact that γtN̄(1/γt) is increasing in t and L ≤ T .

If additionally 1 ≤ K and 1 ≤ T , 0 ≤ S ≤ T − 1 satisfy S ≤ K−1
K+1 T , we have

Υ(S, T ) ≤ 1 +K ≤ 2K , ∆̃(S, T ) ≤ 2K2L3 .

this gives

E
[
||Σ 1

2 µ̄S,T ||2
]
≤ 64C∗K

γαTr[Σα]

bL1−α + 128γ2κ4M2 K4L5 δn .

F Main Results Tail-Averaging SGD

From Theorem 2 and Proposition 6 combined with decomposition (28) we obtain
Theorem 3. Let α ∈ (0, 1], 1 ≤ T , 0 ≤ S ≤ T − 1 and Assumptions 1, 2 hold. Assume γκ2 < 1/4.
Set L = T − S and

δn = 2 exp

(
−a
√

n

γT N(1/γT )

)
,

with a > 0 given in (76). Then

E
[
||Σ 1

2 (w̄S,T − w∗)||2
]
.

γα

bL1−α Tr[Σα] + (γL)−2(r+1/2) +
N( 1

γL )

n

+
γL

n2
+

(γL)−2r

n
+

1

n
+ γ2L5 δn ,

under each of the following assumptions:

1. 0 ≤ r ≤ 1/2 and 1 ≤ K, 0 ≤ S ≤ K−1
K+1 T ,

2. 1/2 < r, 1 < K, 0 < S ≤ K−1
K+1 T and T ≤ (K + 1)S.

The constant hidden in . in the above bound depends on the model parameters κ,M, r,R,K given
in the assumptions.

Proof of Corollary 1. Plugging in Assumptions 2 and 3 gives in either case

E
[
||Σ1/2(w̄Ln − w∗)||2

]
.

γαn
bnL

1−α
n

+ (γnLn)−2(r+1/2) +
(γnLn)ν

n

+
γnLn
n2

+
(γnLn)−2r

n
+

1

n
+ γ2

nL
5
n δn ,

As in the proof of Corollary 2 we have as n→∞

n−1 = o
(

(γnLn)−2(r+1/2)
)
,

γnLn
n2

= o
(

(γnLn)−2(r+1/2)
)

and
(γnLn)−2r

n
= o
(

(γnLn)−2(r+1/2)
)
,

so we can disregard the terms n−1, γnLnn2 , (γnLn)−2r

n for n large enough. Furthermore, δn satisfies

δn . exp

(
−a
√

n

(γnTn)ν+1

)
= exp

(
−a n

1
2 (1− ν+1

2r+1+ν )
)
,
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showing
γ2
nL

5
n δn = o

(
(γnLn)−2(r+1/2)

)
as n→∞ since 1− ν+1

2r+1+ν > 0 and δn decreases exponentially fast (note that we require Sn to be
of the same order as Tn). Furthermore, the choice

γnLn ' n
1

2r+1+ν

precisely balances the two terms (γnLn)−2(r+1/2) and (γnLn)ν

n , so the remaining leading order terms
are

E
[
||Σ1/2(w̄Ln − w∗)||2

]
.

γαn
bnL

1−α
n

+ (γnLn)−2(r+1/2) .

Finally, choosing α = ν, a calculation shows that all choices of bn, (γnLn) are balancing the two
remaining terms.

G Auxiliary Technical Lemmata

G.1 Probabilistic Ones

Proposition 7 ([14], Proposition 1). Define

Bn(λ) :=

1 + 4κ2

(
κ

nλ
+

√
N(λ)

nλ

)2
. (77)

For any λ > 0, δ ∈ (0, 1], with probability at least 1− δ one has∥∥∥(Σ̂ + λ)−1(Σ + λ)
∥∥∥ ≤ 8 log2(2δ−1)Bn(λ) . (78)

Corollary 3. Let δ ∈ (0, 1] and assume that

nλ ≥ 16κ2 max{1,N(λ)} . (79)

Then
Bn(λ) ≤ 2 .

In particular, ∥∥∥∥(Σ̂ + λ
)−1

(Σ + λ)

∥∥∥∥ ≤ 16 log2(2δ−1)

holds with probability at least 1− δ.

Proof of Corollary 3. Assumption (79) immediately gives√
N(λ)

nλ
≤ 1

4κ

as well as
κ

λn
≤ 1

4κ
.

The result then follows by plugging these bounds into (77).

Lemma 10. Let λ > 0 and assume that

nλ ≥ 16κ2 max{1,N(λ)}. (80)

For any w ∈ H and δ ∈ (0, 1], one has with probability at least 1− δ

||Σ 1
2w|| ≤ 4 log(2δ−1) ||(Σ̂ + λ)

1
2w|| .
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Proof of Lemma 10. Applying Corollary 3, we find

||Σ 1
2w|| ≤ ||Σ 1

2 (Σ + λ)−
1
2 || ||(Σ̂ + λ)−

1
2 (Σ + λ)

1
2 || ||(Σ̂ + λ)

1
2w||

≤ 4 log(2δ−1) ||(Σ̂ + λ)
1
2w|| .

Lemma 11. Let X be a nonnegative random variable with P[X > C logu(kδ−1)] < δ for any
δ ∈ (0, 1]. Then E[X] ≤ C

k uΓ(u), where Γ denotes the Gamma-function.

Proof. Apply E[X] =
∫∞

0
P[X > t]dt.

G.2 Miscellaneous

Lemma 12. For any 0 ≤ S ≤ T and for any a ∈ [0, 1] one has

T a+1 − Sa+1 ≤ (T + S)(T − S)a . (81)

Proof of Lemma 12. Rewriting (81) to

1−
(
S

T

)a+1

≤
(

1 +
S

T

)(
1− S

T

)a
shows that it is sufficient to show that

ha(u) := (1 + u)(1− u)a + ua+1 − 1 ≥ 0

for any u ∈ [0, 1]. This follows by observing that h0(u) ≡ 0, h1(u) = 2u. Moreover, ha is concave
if a ∈ (0, 1), satisfying ha(0) = ha(1) = 0.

Lemma 13. Let (ak)k and (ξk)k be two sequences, then

T∑
t=S+1

t−1∑
k=0

at−1−k ξk =

S∑
t=0

T−(t+1)∑
k=S−t

ak

ξt +

T−1∑
t=S+1

T−(t+1)∑
k=0

ak

ξt .

Lemma 14. 1. Let ϕ : R+ −→ R+ monotonically non-decreasing. Then

T∑
t=S

ϕ(t) ≤
∫ T+1

S

ϕ(t) dt ≤
T∑
t=S

ϕ(t+ 1) .

2. Let ϕ : R+ −→ R+ monotonically non-increasing. Then

T∑
t=S

ϕ(t+ 1) ≤
∫ T+1

S

ϕ(t) dt ≤
T∑
t=S

ϕ(t) .
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