Appendix: Beating SGD Saturation with Tail-Averaging and
Minibatching

A Analysis

This section presents the key components of the proofs of our main results. Recall that the goal of
the analysis is to understand the rate at which the tail-averaged SGD iterates wg, 7 approach the risk
minimizer w.. The main error decomposition underlying our proofs is borrowed from [21]], and based
on introducing two intermediate objects that will be shown to converge towards w.., yet stay close to
the SGD iterates w;. In Section [3| we have already introduced one of these components: population
GD. We will further need the empirical (batch) GD iteration, defined as

1 <& ~ .
= v =7 = 3 (0055 — 45)5 = (1= 9% )ve = 1, 12
Vpp1 = U — 7Y n 2 (<Ut Tj) g y])xj ( YU v — (12)
where we also introduced the important notations
N 1 n ) 1 n
E = — h = —
- E T; QX . Ty
Jj=1 Jj=1

Analogously to the tail-averaged SGD/GD we define the tail-averaged batch GD iterates

T
- 1
Vs, 7 = 75 E v
T-S ’
t=S+1

which will act as our proxy to wg, 7. With these definitions in place, we can upper bound the excess
risk of wg 1 as

2 2 ’
HEl/Q(w* B ws,T)H < 2HE1/2(w* _ @S’T)H + 2H21/2(ﬁs,T - wS,T)H . (13)

The purpose of this decomposition is to help us separate the inherent statistical errors due to using
an i.i.d. sample of fixed size n (first term) and the errors introduced by the randomized algorithm
(second term). Accordingly, we will refer to this latter term as the computational variance. In the
sections below, we give bounds on both terms separately.

A.1 Learning properties of GD with tail averaging

In this section, we discuss how to bound the first term in the decomposition of Equation (I3). In

analogy to the discussion in Section 3] we rewrite the empirical GD using spectral filtering functions,
t

Vi1 = g (3)h, 911 (5) =) _(I-1%)’ (14)

Jj=0

With this notation, the tail-averaged GD iterates can be written as

T
ans 1
or,s = Gsr(X)h, Gsr(o) = T-3 Z gt(0). (15)
t=S-+1

Most of the analysis in this section will rely on the regularization properties of the spectral filter
Gs,r(X), the corresponding residual operators
Rsr(S) =1-3Gsr (D), (16)

and the analogous population quantities introduced in Section [3] Denoting the tail-length by L =
T — S, we will occasionally use the notations Gy, = Gs,r and Ry, = Rg 7.

Our error bounds are derived by means of a classical error decomposition in bias and variance (see,
e.g.,16l[3L[5/and[22)). Recalling the definition of the averaged population GD in Equations (7)) and (8},
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we consider the decomposition
Ur, — ws = (0 — ) + (ﬂL - w*) (v —uL) + Ry (X)w.
= (GL(X)h - GL(E)TaL) + (G

i i Uy, — ﬂL) + RL(E)U}*
=Gmixh—zw>+3ai>L+R< Y, . (17
We refer to )
A(L) = |2 R (2)w. || (18)
as the deterministic approximation error, to
~ S ()2
A(L) = |22 Ro(S)yuL|| (19)
as the stochastic approximation error and to
3 NP
V(L) = ||SY2G L () (h — Say) | (20)

as the sample variance. Our analysis will crucially rely on the properties of the residual operator
Rg 7 already discussed in Section 3} Here we show that these arguments made about population
GD also impacts the learning error for empirical GD in the same qualitative way. More precisely,
Propositions [I] and [2] in Appendices and [C.2] show that, under appropriate conditions, the
(expected) approximation errors can be bounded as

A(L) < RQ(’}/L)_2(T+1/2) ifr < %’ [A( )] RQ(’)/L)_2(T+1/2) ifr < %,
K2R (yL) 202 else, and KA R (L) 202 egse,

Notably, proving this result for r > 1/2 critically relies on setting S as a constant fraction of T' that
enables the rapid decay of Rg 7 in S, highlighting the important role of tail averaging to obtain these

results. The precise condition we require is §' < g +} T and T < (K +1)T to hold for some constant

K > 1 see Corollary[I] Regarding the sample variance, Proposition [d]in Appendix [C.3|shows the
bound

, L1 AP NQ/AL
5o g A + LIl | AL
n n
Putting these results together, we can conclude that the excess risk of tail-averaged GD satisfies the
bound

2 _o(r L(1 L2 N(1/~L
E[Hzl/Q(w*_U&T)H } < R(yL) 2012 | 0 (1 + [Jw.|| )Jr (1/7L)

n? n

whenever K is set as O(1). The precise bound is stated in Appendlxas Theoreml 2l A particularly
important consequence of this result is that, under the additional Assumption 3] the excess-risk bound
can be further rewritten as

2 T
JE{ HZW(@L - w)H ] < R? Oy n- 7t |
when choosing v, ~ n~% and T ~ n® for some a, @ > 0 satisfying a — @ = m Once again,
these results rely on choosing T ~ S in the case r > 1/2, whereas choosing .S = 0 is sufficient for
the case r < 1/2. This result is formally stated as Corollary 2]in Appendix

In the low smoothness regime, i.e. 0 < r < 1/2, the choice 0 < S, S,, < T,, is also possible but
does not affect the rate of convergence, whereas in the high smoothness regime, i.e. 1/2 < r, tail
averaging is necessary to avoid saturation.

A2 SGDvs.GD

We now move on to analyze the difference between the tail-averaged SGD and GD iterates and
provide a bound on the second term in the decomposition (I3). To relate the two iterations, we
introduce the notation

bt bt

o« 1 g1
Et — g Z zj, ®x], and ht = g Z Y3: %35,

i=b(t—1)+1 i=b(t—1)+1
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so that the minibatch SGD iteration can be written as w; 1, = (I — vit)wt — ~hy. Thus, the
difference between the two iterate sequences can be written in the recursive form

Wiyl — Vg1 = (I - ’Yit-&-l) (wg —ve) +¥E41 s 21
where {41 = fﬁrﬁ + @@1 and

féi)l = (-1, fﬁ)l =hip1—h. (22)
It is easy to see that &1 has zero mean when conditioned on the history F; and the dataset. Notice
that the recursion above is of the form

pesr = (I — ’Yﬁt+1)ut + 7Ct1

for i.i.d. self-adjoint positive operators operators H, satisfying IE[I?JS‘}] = H and E[(;|F;] = 0.
Such recursions have been well studied in the stochastic approximation literature, and can be
analyzed by techniques proposed by [1]] (and later used by (2} [10} 26, among many others). Our
analysis builds on a recent result by [26]] that we generalize to account for minibatching and tail-

averaging. On a high level, this result states that if ﬁt and (; respectively satisfy E [ﬁf‘fﬂ] < Kk’H

and E[( @ (|F] < 023 for some Kk, 0, then the tail-averaged iterate fig = T%S ZZ;SH Lt

satisfies
S+1

T-S5
for arbitrary « € (0, 1] and v € [0, 1 4 «]. Appendix is dedicated to formally proving this result,
presented precisely as Proposition 5]

B[ |[HY s’ | S o® Ty~ (T = 8)e

Our analysis crucially relies on applying the above lemma for H = ¥ under an appropriately defined

condition &; on the data, see (68)), guaranteeing that S is “close enough” to its population counterpart
Y. A second condition €2 in (69) ensures the boundedness of E[¢; ® &|F:, G, ], conditioned on the
data G,,. We note that, ensuring the condition about &; is rather challenging due to the fact that the

size of ft@) depends on the norm of the GD iterate ||v;||, which can be, in principle, unbounded.
Consequently, the resulting error terms can only be controlled in a probabilistic sense. Our analysis
relies on showing that there indeed exists a condition €; N €4 that holds with high probability and
ensures the desired properties. A formal treatment of these matters is presented in Appendix |[E} The
final result of these derivations is Proposition [6] that, under appropriate conditions on the algorithm’s
parameters, bounds the deviations between the averaged GD and SGD iterates as
1 2 *Tr[ X
£ [phsse -] 5 ]

B Spectral Filtering properties of averaged GD

Consider the function

t—1
Y (1 —ro)k = o' (1-(1- vo)') . (23)

gi(o)

=
N O

defined on the spectrum ¢ (%) C [0, k2] of ¥ and let

ri(o) =1—og(o).
Then, for any « € [0, 1] [12]

sup [o%gi(0)| < (v1)' 7. (24)
0<o<kK2
Moreover, for any 0 < u
sup |r¢(o)]o" < Cyu(yt) ™", (25)
0<o<k?

for some C,, > 0. In particular, Cy = 1.

For0 < S < T — 1 consider



and let
Rrg(0) =1—0Ggsr(0).
Lemma 1 (Filter).
1

=1— (1 —70)% (1 = (1 —yo)T79).
oGsr(0) T S)W( 70)" (1 = (1 = 70)' %)
Proof of Lemmal[l] By (23)), we have
1 T
_ t
t=S+1

I s
=l-7 SZlf’ya Zlf'yo
t=0

t=0
_,_(@=ro*t -1 - WU)T“)
(T = S)yo
_ . (1=70) (1 - (1 —70)T%)
(T — S)yo

Lemma 2 (Properties I). Letu € [0,1]. Forany 1 <T,0< S5 <T — 1 we have
swp 0" Gs1(0)] < Cu 71 (T + §)(T - §)~"

0<o<K2
In particular, for 1 < K, choosing S < £ K L T gives

sup |0“Ggr(o)| < K'yl*“(T — 5)17

0<o<K2

Proof. By (16) we have

sup |0“Ggr(o)] < sup S g |o“g:(o
0<o<k? O<o§n2 - t—=5+1
1—u T
v 1—u
< t
<r 5 D
t=S+1

From Lemma[I4]and Lemma([I2} we find

T T
dot< / = dt
t=S+1 S+1
1
— T2—u S 1 2—u
7 (5+1)*7")
1
< T2—u S2—u
-2 u( )
1
< T+8)(T—-S)"
< 5 (T+8)(T-S$)
This proves the first statement. The second statement follows by observing that T+ S < K (T — S)
if § < ﬁ_& T. O



Remark 1. A more refined bound for the case u = 1 can be obtained by considering (16), which
directly leads to

1
sup |0Ggsr(o)] < sup T—% Z logi(o)| < 1.
0<o<k? 0<o<k2 TP s

Lemma 3 (Properties I). Let1 <Tand0 < S <T —1.

1. Forany u € [0,1], we have

sup |0“Rsr(0)] <y *“(T'—5)™"
0<o<k?

2. For any u > 1 we have

~ S+1 1 “
sup |0“Rgr(o)| < Cuy™™ i () )

0<o<K2 T-5\S+1
for some C,, < co. In particular, if1 < K and S < g_‘_} T one has

N 1 u
up |0 R <Gy K () .
b o Rsr(o)l < Cury (S+1)

If additionally T < (K 4 1)S, one has

~ 1 “
U R < 2Cu —u K2 - )
S l0“Rs,r(0)] < 2C, v (T — S)

Proof of Lemma[3| By Lemrnawe have for any u € [0, 1]

(0" R 7(0)] = e (1 = 70)S (1 = (1 — 70)7—5)

(T = S)yo
( )
= (v ( §)7“(1 = 7o) T
<yT(T -8

g

(1= 70) (T — S)yo)t

where we use that
1—(1—2)'| < (tz)'~
for any z € [0, 1] and for any u € [0, 1].

For v > 1 we apply (23)) and Lemma [T4]and obtain

T
—u
sup (0" Rsr(0)| < Cu F—s D 7"
0<o<kK? - t=S+1

T
S+1 —u+/ t~vdt
T5<( ) 541 )

< (1) g Ly Ly
- Y'T-8 u—1\\S+1 T+1
. S+1 1 \"
< e 2T ()
<Cuv TS(S+1) (20)
Note that S < %=1 T implies
S+1
TfS_K

Finally, T < (K + 1)S gives
1 K+1 2K

< < .
S+1 - T-S-T-S5
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C Bounds Tail-Averaged Gradient Descent

Our error bounds are derived by means of a classical error decomposition in bias and variance, see
e.g. [6], [3], [3] and [22]]. More precisely, recalling the filter expression of the population GD,

ur = GL(Z)EU}* 5 (27)
we consider

Up —wyx = (0 —up) + (ur, — wy)
= (0p —ur) + R (X)w.

(GL(X)h = Gr(E)Sur) + (GL(D)Sur — ur) + Ry (S)w.
= G(3)(h—Su) + Re(S)ur + Rp(S)w, . (28)
We refer to
A(L) = [|=Y2 R (S)w,||? (29)

as the deterministic Approximation error, to
AL) = |I=Y? R (S)ur | (30)

as the stochastic Approximation error and to
V(L) = I82GL(E)(h - Sup) | 3D
as the Sample variance. In what follows we successively bound each error term in Section [C.T}

Section[C.2]and Section Finally, the total bound is given in Section
In the following we let

1 ~
ZL:(Z+E), and ZL:<Z+7)

C.1 Bounding the deterministic Approximation Error

Proposition 1 (Deterministic Approximation Error). Let1 < T,0 < S < T —1, 752 < 1 and
Assumption[2| hold.

1. If0 <r <1/2, we have
.A(L) < RZ (,_YL)72(7‘+1/2) )

2. If1/2 < r we have

2 2(r+1/2)
( )<C R2 2(r+1/2) <S+1> < 1 ) )
L S+1

for some C,. < oo. In particular;, if 1 < K, S < Iéﬁ TandT < (K +1)S, one has

A(L) < C, K% R? (yL)~20+1/2)

Proof of Proposition[l] By Assumption[2]we have
A(L) = |=Y2 R (S)w.||* < R? ||E 2R (8)]17 .

Since
HZT—H/ZRL(E)H < i Sui) 2 |UT+1/ZRL(O')‘ ’
<o<k
the result follows immediately by applying Lemma 3] O
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C.2 Bounding the stochastic Approximation Error

Proposition 2 (Stochastic Approximation Error). Letr 1 < T, 0 < S < T —1, 7/{2 < 1 and
Assumption 2| hold. Further assume

n > 16x% yvL max{1,N(1/(yL))} .

1. If 0 < r < 1/2, we have

- T+5\* .,
E[A(L)} SCTRQ <L> (,YL) 2( +1/2)’

for some C. < oc.

2. If1/2 < r we have

sliw] <t (TE9) (an CEY wxsm 4 ).

for some C,. . < 0o and where U,. is defined in (37). In particular, if 1 < K, S < ﬁ—ﬁ T
and T < (K +1)S, one has

B[A(D)] < G KO Ly 02,
for some C’T’,@u < 0.

Proof of Proposition|2] We start with deriving bounds holding with high probability, bounds in
expectation follow then by integration. From Lemma we derive with probability at least 1 — 6/2

A(L) = [[SY2 R (S)ur |
< 1610g® (46~ H)|[ST2 R (S)ug || . (32)
We separate the analysis by considering two cases.
Case 1 (0 < r < 1/2): Recalling the definition of u, in (Z7) gives
121 *Re(S)url| < RISLR(E)| - 1S - 1272 GL @) -
Bounding the first term is done by using Lemma[T]and Lemma 3] leading to
IELRL(E)] < sup |(0+1/(7L))Ri(0)|

0<o<k?2
< sup |oRp(0)|+1/(vL) sup |Rp(o)|
0<o<kK? 0<o<kK?
<2(yL)7h.

From Lemmal[2] we obtain
=26 (D) < Cp A>T (T + S) L=+
Thus, applying Corollary gives with probability at least 1 — 6/2
A(L) < 64-16C2R? log*(46™") (vL) ™2 41727 (T + §)?L 20 +1/2) | (33)
for some C,. < oco.

Case 2 (1/2 < r): In this case we split (32) differently. Using Assumption [2] and Defini-
tion (27), we obtain

1S 2R (S)url] = |57 RL(5)GL(3)Sw. |
<R 22/2RL(2)(ET+1/2 _ 2r+1/2)GL(2)21/2 I
Ay
+ R||S)PRL (DS 126 (2)8?| . (34)

Az

17



Bounding A;: For bounding A; we apply [5], Proposition 5.5. and Proposition 5.6., to obtain with
probability at least 1 — 6/2

|72 - ST < G |E - B
2

k -1
< .
<6C, T log(46™7)

Furthermore, Lemma 2] gives
IGL(E)S?| < CAV2 (T + S)L7V2, (35)
for some numerical constant C' < co. Moreover, using Lemma@leads to

IZ/2RL(2)[| < sup [(o0+ (1/(vL))/* Ry (o)

0<o<k?
< sup |o'2Ri(0)| + (1/(7L))"* sup |Ri(o)|
0<o<K2 0<o<kK?
<2(yL)"V2 .
Collecting the previous steps we arrive at
T+8\ k2
Al <O —— ) —=log(46" 36
A= (52 Sotontas ). 66)

with probability at least 1 — §/2, for some numerical constant C|. < co.

Bounding A,: For bounding A, we apply Lemma [3|once more, giving

1572 R ()57 172
< sup (o + (1/(vL)))/*Re(o)o" /2|
0<o<k?
< swp o™ Ry(o)|+ (D) V2 sup [o"T 2Ry (o)
0<o<kK? 0<o<kK?
S+1/ 1\ S+1/ 1 \"T/?
< C/ —(T-‘rl) - - C// —(T‘+1/2) 2= - L —1/2
=5 L \S+1 T L \S+1 (vL)
1
<oty s,
L
where we set
1 r+1 1 r+1/2
U,.(8,T) =~ 0t | [ — L2 — . 7
(S, T) ==~ S11 + S+1 37
Thus, combining with (33)), we find
~ T+S S+1
42| < Cp (YL)/? == == W(S,T) . (38)
Finally, note that S < Ié—;} T implies
T+ S S+1
<K — <K
L — ’ L —

and T < (K + 1)S gives
1 K+1 2K
— < < —.
+1~- L ~— L

S
Hence,
U,.(S,T) < (AK) (L)~ (39)
Thus,

||A2|| < Cp (4K)?U D (yL)=(r+1/2) (40)

The result in this case then follows by combining (39), (34) with (36)), (38) and (40) and by integration,
Lemmal[TT]. O



C.3 Bounding the Sample Variance

For proving the bound for the sample variance we need a concentration result which we slightly
generalize from [22].

Proposition 3. Let uy, be defined by 27), A(L) by (I8) and § € (0,1]. Under Assumption[l] one
has with probability at least 1 — §

|+ 2772 (G = by - (2 - )|

< clog(2071)

VAT(EM £ R ul) \/mLA(L) +N()

n n

for some numerical constant ¢ < o0.
Proposition 4 (Sample Variance). Set L = T — S and assume vk < 1 as well as
n > 16k vL max{1,N(1/(yL))} .
Under Assumption[I|one has
. A(S,T)\?
E[ V(L) } S C&,M,/{ (1 + <LQ)>

L flesl?) N(l/vL)>

(4w +

Sfor some Cs yp . < 0o and where
AS,T)=T(T+1)-S(S+1).

. . K—1
In particular, if 1 < K and S < %71 I one has

A(S,T)
L2

1+ <14+2K.

Proof of Proposition[d] According to Lemma we have with probability at least 1 — 6/2
V(L) = [[SY2GL(E) (h — Sur)|]?
< 1610g?(467Y) |1 2GL(E) (h — Sup)| . (A1)
We proceed by decomposing as follows:
£1GLE)(h - Sur) = $1G1(8) - $178) b
with
by =5y (b= Su)
Using the filter function properties in Lemma T]and Lemma 2] gives

IZGL(E)| < sup [(0+1/(vL))G ()]

0<o<kK?

<1+%(T(T+1)—S(S+1))

=1+ (42)

L2
with A(S,T) = T(T + 1) — S(S + 1). Furthermore, Corollary [3] gives

1S71221/2|| < 4log(8571) 43)
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with probability at least 1 — 6 /4.
For bounding hy, we need to decompose once more: Since Xw, = h, we find
b =27 ((h = Sup) = (h = Sug)) + 5% (h - Sur)
_ 21/2((h Sur) — (h — zuL)) +9Y25 R (S)w, |

satisfying
el < 1=y ((h — Sus) = (b = Sur) )|+ VAL)
Applying Proposition 3] gives

|hi]| < VA(L) + 121log(86~1)

n

with probability at least 1 — §/4. Collecting (@2)), @3) and {4) yields

2
DL < Core o807 (14 250

0l | MO/L)Y

A(L

( (L) + n2 n

with probability at least 1 — §/4, for some C5 ar,, < 0o. Finally, Lemmaensures that
lurl] = [[EGLE)w.] < [fw.]] -

The bound in expectation follows from Lemma TT]by integration.

For the last part we refer to the proof of Lemma 2] from which we deduce that
A(S,T)

1+ 72

<1+42K,

. K-1
provided that 1 < K and S < K1 T.

C.4 Main result on GD convergence

VAL(M + 2|Jug|]) N \/F»%LA(L) +6N(5p)
n

(45)

Proposition|[T] Proposition2]and Proposition]together lead our main result regarding the convergence

of batch gradient descent, stated as the following theorem.

Theorem 2. Let1 <T,0<S<T-1, Assumptions @hold. Set L =T — S and assume 7&2 <1

as well as
n > 16x% vL max{1,N(1/(yL))} .

1 If0<r<1/2and1 < K,0<S< g_&T we have

B |52, — w)| | < €% K2 (L) 2041/

L+ |lwd))® | AL AWL)  NGE

n? n n

+ Cﬁ,IL{,a’,VK2 (A(L) + 7 + +
for some C,. < 00 and Cy; 0, < 00.

2.If1/2<r 1<K, 0<S< ﬁﬁ TandT < (K +1)S, we have

1
E[ 15200 —w.)|? | < € Ok R [(WL)_Q(”“/Q) + n}

L+ flwdl)? | AL A@L) | N

n? n n

L
+ CrortonCle (A(L) vE( T +

for some Cy; , < 00 and Cy; y,o7 < 0.

20
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From Theorem [2] we can immediately derive the Proof of Corollary [2]

Corollary 2 (Rates of Convergence). Let any assumption of Theorem|Z|hold and assume additionally
Assumption[3} One has for any n sufficiently large

E[ 5"/, - w.)|? | < €~ 550
under each of the following choices:
1. If0<r<1/2:85=0a,8>0and

1
Yo =n~® T, ~n" suchthat o—p= rrits 47)

2. If1/2<r: 0< S, S, < T, with T,,, vy, as in @).

Proof of Corollary2] Let~, ~n~% L, ~ n®, with a, @ > 0 satisfying a — @ =
in Assumptions[2]and 3] gives in either case

’I’LLTL ’ﬂLTL - nLn v 1
E[||21/2(17Ln —w*)||2] <C<(%Ln)‘2(r+1/2>+7 g (nLe) ™7 | (nLn) +> ,

m. Plugging

n? n n n

for some constant C' < oo, depending on all model parameters x, M, v, r, R and [|w.||. A short
calculation shows that

" TLLn _ -
0l 0((%Ln)—2(7+1/2)) 7 ’7n2 _ 0((%Ln) 2(,+1/2))
and (L)
(L) 0((%Ln)—2(r+1/2)> ’

n

_ N .
1 Ynln Lnln) " forp large enough. The choice
n n

so we can disregard the terms n
1
’YnLn ~ n2rfitv

precisely balances the two remaining terms (7, L,,) ~2("*1/2) and w This choice also implies
Assumption (6 if n is sufficiently large. O

D A general Result

Consider the recursion
fer1 = Qe e + Y€yt Qi = (I —~H,), (48)

with py = 0, with H, linear i.i.d. random operators acting on H and with &; € H i.i.d. random
variables, satisfying E[¢;] = 0. For0 < S < T — 1 we let

1
fi = fisT = > o (49)

Denote H = E [ﬁt] . We assume that T'r[H*] < oo for some o € (0, 1] and
El¢, ® &) < o”H E[Hﬂ < K?H . (50)

The last condition holds in particular when the H, are bounded a.s. by x2. We generalize Proposition 1
given in [26]] (see also [10]) to more general recursions and to tail-averaging, including full averaging
and mini-batching as special cases.

Proposition 5. Let o € (0,1], vx? < 1/4 and u € [0, 1 + «]. Under Assumption (50), one has
BB fisrlP ] < 160 TrlHo}y (T — )"~ 1(8,T) |

with Y (S, T) = 1+ £2%&. If additionally 1 < K and 1 <T,0 < S <T — 1 satisfy S < £75 T,
we have
T(S,T)<1+K.
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The proof of this result is carried out in Section[D.2} The basic idea is to derive a similar bound for

the related semi-stochastic recursion (1)), where H, is replaced by it’s expectation H, leaving the
randomness in the noise variables &;. This is done in Section In a second step one needs to
control the difference between the full-stochastic recursion and the semi-stochastic iterates. This
relies on a perturbation argument, summarized in Section[D.2]

D.1 Semi-Stochastic Recursion (SSR)

Let H be a positive, self-adjoint operator on some Hilbert space 3, satisfying H < x2I. Consider
the general recursion in H
prer = (1= vH)pe + v&es1 (51D
with 110 = 0 and vx2 < 1. We further assume that
E[&] =0, E[& © &) <o H .
For1 <Tand0 < S <T — 1, we consider

1 T
ﬂizﬂstT:Ti_S Z e -

t=S+1
Lemma 4 (SSR). Let « € (0, 1] and assume that Tr(H*) < co. Let 1 < T. Forany u € 0,1 + ¢
we have
E || H*20 |[2] < 402 Tr[H]y'=+(T — )~ 1(S,T) ,
with Y(S,T) =1+ ﬁ—fé In particular, given 1 < K and if 0 < S < Iéﬁ T one has
T(S,T)<1+K.

Proof of Lemmald} Setting Q = 1 — yvH, a standard calculation combined with the fact
S+1 (1 _ qT—S)

T
Z qt:q

1 (52)
t=S5+1 -4
shows that the averaged iterates are given by
Z ZQt+1 ké-
t S+1 k=0
~ s [T—(t+1) N T-1 [T—(t+1)
=7 >, Qe+t > @
T_Stzo k=S—t T- St S+1 k=0
s -1
=Y AL+ > A,
t=0 t=S+1
where we set
y T—(t+1) y T—(t+1)
A= [ Y @), A= Q"
T-s k=S—t r-5 k=0
Thus, since E[¢; ® &] < 02 H, we find
s T-1
B[l B2 ] <2 B[Tr[H a? g @] +2 > E[Tr[H A & 04|
t=0 t=S+1
S T-1 }
=2 ZTT [H“Af E[¢ ® ft]] +2 Z Tr [HuA? El¢ ® ft]]
t=0 t=S+1
T-1
< 252 ZTT [H A2 4202 Y Ty [H“+1A2] . (53)
t=S+1
Tl {Iz
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We proceed bounding the individual terms by applying (52). This gives
H-1 H-1

A== QT (1-QT%) 2 ——(1-Q"7%).

Furthermore,
Tr[H* (1 - Q75 = Yot (1 - (1 - 70,)T )
JEN
<Y o TH(T = S)yay)t e
JEN
—_ ,ylfu+a TT‘[HQ] (T . S)lfqua ,
where in the inequality we use that for any x € [0, 1], u € [0,1 4 o] one has

1-1-2))?<1—(1—2) < (to) 7.

As a result,
S+1
2 u—1 T—8)\2
< 20 U T [H) (S 4+ 1) (T — S) 1, (54)

Similarly,

i H! T—t

A=z (1-Q™
and

Tr[H T (1= QTP =) of T (1= (1—90)"")?
jEN
< ,ylfqua TT[H(X] (T o t)lfqua )
Hence, since 1 — u + « > 0 we find

20_2 T-1

T < ,ylfujta TT[HQ] (T _ t)lfqua
: (T -5) t:zs;',-l
952 T—-5-1
_ Jd-uta a 1—u4o
=7 — T’I“[H ] t
(T -9y 2
20
< l—u+ta T Ha T _ -1 2—u+a
< 20° AU TR [HY) (T — ). (55)
The result follows by combining (33), (54) and (53). O

D.2  Proof of Proposition 5]

Perturbation Argument. Relating the semi-stochastic recursion (31) to the fully stochastic
recursion in @) is based on the perturbation idea from [[1], which has been also applied in [[10] and
in [26] in a similar context. For sake of completeness we give a brief summary.

For r > 0 we introduce the sequence (u )¢
i = (I — H)pg +vE¢
where Y = & and for 7 > 0
Eiii = (H = Houy -
We further let ] = i — Z;zo u{ which follows the recursion

my = (I —Hy)ny +9EH .
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From Lemma 2 in [26E| we have for any r > 0

E[uf @ pui] <~ 16201 (56)
and

E[E} ® Z}] 2 v"k*0H . (57)
Bounding (7] ), is then done by applying the next Lemma, being an easy extension of Lemma 3 in
[26] to tail-averaging.

Lemma 5 (Rough Bound SGD Recursion). Consider the SGD recursion given in @3), satisfying
(B0). Assume further yk? < 1. Forany1 <T,0< S <T — 1 we have

Tr[H]
2(T - 8)
where A(S,T) =T(T +1) — S(S+1). Inparticular, given 1 < K and if0 < S < % T one has

AS,T)=T(T+1)—-S(S+1) < K(T - S)?.

E[[|H? asr|*] < o v*k" A(S,T) .

Proof of Lemma[3] Following the arguments given in the proof of Lemma 3 in [26] we get
E[||H? ]]* ] < 0® ¥*k"“Tr[H] t.
By convexity, this leads to

T
u 1 u
E[[|H? psrl]?] < T-3 Z E[||H 2 pe]]?]
t=S+1

=0? YK m(T(T—i—l)—S(S—&—l)).

O

Proof of Proposition [5} With these preparations we prove Proposition [5] applying the above
described perturbation method. More precisely, we decompose

.
s = Z ﬁ]s,:r + s

=0
and have
w 1/2 " u g 1/2 u o 1/2
E[IE¥ asrll? ] < SB[ I1HE @l? ] +ELIEE 35002]7° . 9)
=0
The first term in (58) we apply Lemmaf]and (57). Denoting
1
A(S,T) = 40 Tr[H*|y*~4+(T — §)*— (1 + fﬁg)
we get with yx? < 1/4
- . 2 I,
STE[IEE p ] <> (RS T)
=0 =0
— VAS,T) S (?)"?
=0
_ VAET)
T 1— /K2
<2 /AT . (59)

3Lemma 2 in [26] is shown in the special case where flt = 2t ® 2z for i.i.d. observations z; € JH, but the
proof of (56) and (57) is literally the same.
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For bounding the second term in (38) we apply the rough SGD recursion bound from Lemma 5| and
(57). Since vx?% < 1, we find as r — oo

= 2(T — 5)
The final result follows by combining (60) and (39) with (58).

w 1/2 ) X Tr|H 1/2
]E[ ||H= ﬁS,THQ } / < (724”5“”’02[] A(S, T)) — 0. (60)

E SGD Variance Term

Given b € [n] the mini-batch SGD recursion is given by

bt

1
Wit :wt+'}/g Z (<wt’xji>}f_yji)xji , t=1,...T,
i=b(t—1)+1

with wy = 0, v > 0 a constant step-sizeﬂ and where 71, ..., jpr are i.i.d. random variables, distributed
according to the uniform distribution on [n].

We analyze tail-averaged mini-batch SGD. More precisely, for 0 < S < T — 1 the algo-
rithm under consideration is

WS T = —— E wi .
' T-S
t=S5+1
For ease of notation we suppress dependence on b.

Recall the GD recursion

1 n
Vpp1 = Vg — Y — § vt,x] s yﬂ)

3

Denoting
bt bt

f}t = % Z Tj, Ly, , }Alt = % Z YjiLjs

i=b(t—1)+1 i=b(t—1)+1
for any £ > 1, we have

W41 — Vi1 = (I - 72t+1> (wt - Ut) + ’th+1 s

where we define &1 = ft(i)l + ff& and

ft+1 = (2= S1)vr f,gi)l = hyp1—h . 1)
Denoting by G,, the o- field generated by the data, we have for any ¢ > 1

E[ & 1909, | =E[ &) 19,5 | =0

almost surely. Thus, the difference (p;); = (w; — v¢); follows a recursion as in (@8], with Qr =
I— '-th—o—l-
Proposition 6. Let o € (0,1], yx% < 1/4 and n be sufficiently large. Set L =T — S.

! aTr[xe] A(S,T)?

2, 47072
o T(S.T) + 329°w1M% =2

E[HE%(’lDS,T—@S,T)Hz <32 5, .

S+1
T)=1+"—7,
(5, T) 3

4constant means independent of the iteration ¢, but possibly depending on n
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A(S,T) = %(T(T +1)(2T + 1) — S(S + 1)(25 + 1))

and

5, = 2exp(_a TN(nl/vT)> 7

for some a > 0. If additionally 1 < K and 1 <T,0< S < T — 1 satisfy S < & KI1 LT, we have

aTp[se]

E[ 2% (@g.7 — Ts.7)| |2 } < 64C K va 112872 k1M KALP 5,

E.1 Proof of Proposition [6]

For proving Proposition [| we aim at applying Proposition[5]and show that all assumptions are satisfied
by stating a series of Lemmata. The first one provides an upper bound for the covariance of the noise
process.

Lemma 6. Assume |Y| < M a.s.. Foranyt =S, ...,T we have almost surely

4
1) k 2§
Bl ¢t oedh 10 ] 25 Il $

and )
B[ @6, ] x5

Here, expectation is taken with respect to the b- fold uniform distribution on [n] in step t + 1.

Proof of Lemmal6] Recall that

b(t+1)

§t+1 (Z Et+1 Ut = Z gl ,

i=bt+1
with ~ .
i = X — <Ut7xji>xji :
By independence, we have

kE gtgi)l@gt \9n} =%ZE[§]®&«|9”]

IRz
1 - -
= 5 E[&®& 18],
The first part follows then by
E[&®& |9 | SE[ (on )5 o ® a5 | Gn | <6l S

The second part of the Lemma follows by writing

bt

. -1
551)1 =hty1 —h= 3 Z &,
i=b(t—1)+1
with £& =y, x5, — h and observing that
E[&, @&, |90 ] SE[ |yl S, = M*3. (62)
[

Zj, O xj,

The next Lemma provides a uniform for the GD updates, leading to a uniform bound for the noise
process.
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Lemma 7 (Uniform Bound Gradient Descent updates). Assume |Y| < M a.s. and let M =
max(M, k||w.,||) and & := 2M. For any 6 € (0,1] and for any S + 1 < t < T, with probability at
least 1 — 0 one has

vel| < 2 [|wsl[ + 1,

provided R
n > 64max{a?, kM }log® (26~ )T max{1,N(1/7T)} .
Moreover, with probability at least 1 — (T — S)d one has

sup  |ve|| < 2 ||wal] + 1. (63)
SH+1<t<T

Proof of Lemma[7] We decompose
ve]] < [lve — wal | + [Jws]] -

For bounding the first term we apply the results in [3], decomposition (5.9) with eq. (5.17) and
(5.22) for A = %ﬂ For that we need to ensure a moment condition
1 -
E[lY — (w., X)|'|X] < 51!&2Ml*2 as. (64)

for some 52 > 0, M < oo and for any [ > 2. Indeed, since |Y'| < M a.s. and |(w,, X)| < &||w,]|],
we easily derive

E[|Y — (w., X)'|X] < 2" HE[YX] + | (ws, X))
< 27N (M (k] lw.]))

1 -
< 51!(‘72Ml*2 a.s. ,

with M = max(M, k||w,||) and & := 2]M. Thus, with probability at least 1 — &

M 1
e = wa] | < [|wal| +210g(26~1) (“ QL L\ /w))
n n
< ||wa|| 4 21og(2671) (“M7T+J WTN(l/vT)> .
n n

Assuming }
n > 64max{a%, kM } log* (26~ 1)yT max{1,N(1/7T)} (65)
we find
21og(26Y)a M < i .

Moreover, the same condition also implies
n > 64kM log(26 1)y T
owing to the fact that 2log(26~1) > 1 and thus

M~T
21og(25_1)u

IN

1
327
Hence,

1+1<2|| [|+1
3p g4 = Al ‘

with probability at least 1 — §.The uniform bound in (63) follows from taking a union bound, i.e.

(o] < 2[fw. ] +

T
{ sup [oy] Z2I|w*|+1} c U ol = 2ffwi]| +1} .
S+1<t<T =541

>The constant in eq. (5.17) equals one in case of GD.
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Lemma 8 ([6]], eq. (47)). Forany ¢ € (0,1] and A > 0 satisfying
n\ > 64x2log?(26 1) max{1,N(\)} (66)
one has .
H@H) (E—s—)\)H <2
with probability at least 1 — 4.

The following Lemma provides a rough bound for the tail-averaged updates, generalized from [26] to
tail-averaging.
Lemma 9 (Rough bound for averaged SGD variance). Assume |Y'| < M a.s. and vx* < 1. One has
almost surely
(5 T)

S )

[|wsr — Vs,7|| < dyeM
where
d 1
Y = (T +1)ET+1) = S(S+1)(25+1)) -
t=5+1
Moreover, if 1 < K,1<T,0< 8 <T — 1satisfy S < £ K1 LT, one has
A(S,T) < 2K*(T - S)?

and
\|ws. 1 — vsr|| < 8yM K* (T — S)?
almost surely.

Proof of Lemma[9] Recall that the gradient updates are given by vy = 0 and
Ves1 = vy — y(Svp — h) = Quy + ~h,
with Q = (1 —~%), ||Q]] < 1 and ||k|| < M. Thus,
e l] < [lvel] + v M
and inductively one obtains
[log|] < yxM ¢ . (67)

Let puy = wy — vy. Starting with po = 0, then (¢ ); follows the recursion

fres1 = Quarpre + Y€t Qi1 = (I =7i41)
where £;11 = §§i)1 + ft(i)l is defined in (22)). By (67) and since yx? < 1 we have

HEDL < 11 = Sl llonll < 29680 £ < 200 ¢

Furthermore,
2 ~ N
€ = Nlhesr — Bl < 26M .

Using ||Qy41]| < 1, one easily calculates

t
el <7 D 11E1] < 4y £

j=1
Thus,
T
B 4’yf€M 9 A(S T)
= 4dyxM
lisrll < > 2
t S+1
with
Z 2= (T(T+1)2T +1) — S(S + 1)(25 + 1)) .
t=S+1
Finally, R
A(S,T) < 2K*(T — S)*
impliedby S <T —1and § < _T_% T. O
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Proof of Proposition[6] We define the events

R —1/2
alz{xex" : H<E+)\) (2 + A2

2
<2}, (68)

where we set \ = 7% and

Ci
82:{(x,y)€xnx’z}” : Vt:S—l—l,...,T : E[§t+1®§t+1|9n]jb§3}, (69)

with C, = k*(2||w.|| + 1)? + M2.
Denoting N(A\) = max{1,N(\)}, Lemmagives P[ES] < 63, provided

n > 64x2log? (267 1)y LN(1/vL)

n
o220t w

with a; = g-. Similarly, applying Lemmaand Lemma|§|gives P[ES] < Loy if

or, equivalently,

n>C, 55 log?(265 1 )YTN(1/4T) , C, 1.0 = 64 max {2, kM }

n
6222€Xp<_a21/7TN(1/7T)> . (71)

Setting fig 7 = Ws,T — Us,T, we decompose

or equivalently

with ag = ———.
C»e,M,a

B[54 s rl?] < E[I54 sl 1eane.] + B[ asrll® 1es | + B[S sl 165 - (72)

For bounding the first term note that

N

SE=EE N (ENE S0 TES ),

where . .
[Zz(2+A)7z[|<1.

Thus, by definition of &; and &5, using ||(S+X)2u||? = ||L2 w2+ A||u||2, we find with A = ﬁ
and Propositionwith o2 =0C,/b
N 2
B[St szl Leure. | < 2B (IS sr ] + — == Ells.r |1
IZ2 asrl|® Lesnes | < 2E||[X2asr|”| + ST =9 [lzs,r|?]
’YQT(Sa T) Sre
~*Y(S,T)

In the last step we apply Jensen’s inequality, giving E [Tr {fjaﬂ < Tr[xe].

For bounding the second and third term recall that ||[2z|]2 < k2. We have by Lemma

9

1% fis, 7| < 1692 M2 A(ii’fy .
Hence, B
]E[HE%[LS,THQ 155} < 1672k M2 A(ii’g)z 5 (74)
and -
E[IIE%ﬂS,THQ 18;] < 169k M? A(i—lsz da - (75)
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The result follows from collecting (73)), (74), (73) and (72) and by choosing

n
dp = max{d1, 02} = 2exp (—a1 /’YTN(l/’YT)> , (76)

with @ = min{a, as }. Note that we also use the fact that vtN(1/~t) is increasing in ¢ and L < T.

If additionally 1 < K and 1 < T,0 < S < T — 1 satisfy § < %= T, we have

T(S,T)<1+K<2K, A(ST)<2K2L?.
this gives

*Tr[Xe

E[HE%,&S,THQ] < 64C, K ”W?a + 12892k M2 KALP 6, .

F Main Results Tail-Averaging SGD

From Theorem 2] and Proposition [6| combined with decomposition (28) we obtain
Theorem 3. Leta € (0,1, 1 <T,0< S<T —1and Assumptions hold. Assume yk? < 1/4.

Set L =T — S and
n
Op = 2eXp(—a ) ,
VAT N(1/T)

with a > 0 given in (76). Then

a N( 1 )
3 (W gl « —2(r L
E[ HEZ('wS,T —w*)||2] S bl e TT‘[E ]+ (’VL) 2(r+1/2) + T”/

L (L) 1
o ODT L L s,
n n n

under each of the following assumptions:

1 0<r<1/2and1 < K,0<S< £ T,

2.1/2<r, 1<K, 0<S< %4 TandT < (K +1)5.

The constant hidden in < in the above bound depends on the model parameters k, M,r, R, K given
in the assumptions.

Proof of Corollary[l} Plugging in Assumptions [2]and [3 gives in either case

(03 nLn v
E[ HZl/?(wL” . w*)HZ } S ; zqia + (’YnLn)_Q(T-H/Q) + %
L L)% 1
+'77;L2n+(7n n) +E+772LL§L57L

As in the proof of Corollary 2] we have as n — oo
- - YnLin -
0l 0((%Ln) 2(r+1/2)) ;Lo 0((%Ln) 2(r+1/2))
and

—2r
(L) O((%Ln)ﬂ(m/z)) ,
n

—2r
-1 Jnln (7”%’”) for n large enough. Furthermore, §,, satisfies

so we can disregard the terms n™ ", 32

On S exp(—a (Tn)H) = exp(—a n%(l_%)) ,
Yndn v
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showing
2L}, b = o (L) 2 H1/)

asmn — oo since 1 — 27,’f1£ry > 0 and §,, decreases exponentially fast (note that we require S,, to be

of the same order as 7T},). Furthermore, the choice

1
’YnLn ~ n2rfitv

('YnLn)V
n

precisely balances the two terms (7, Ly, ) ~2("*1/2) and , so the remaining leading order terms

are

E ||El/2(’J/Ln o w*)||2 } 5 ; ’ijll—a + (,YnLn)f2(r+1/2) .
Finally, choosing « = v, a calculation shows that all choices of b,,, (v, L,,) are balancing the two
remaining terms. O

G Auxiliary Technical Lemmata

G.1 Probabilistic Ones
Proposition 7 ([14]], Proposition 1). Define
2
N
B = 1442 & .
n(N) + 4K (n)\+ .Y > X))
Forany \ > 0, § € (0, 1], with probability at least 1 — 6 one has
H(2+/\)*1(2+/\)H < 81og?(26 1) By (M) - (78)

Corollary 3. Let § € (0, 1] and assume that
nA > 16k* max{1,N(\)} . (79)

Then
B.(N) <2.

In particular,

(i; + >\>_1(E + )\)H < 1610g?(2671)

holds with probability at least 1 — 0.

Proof of Corollary[3] Assumption (79) immediately gives

N() 1
TNV e
nA T 4k
as well as
K 1
<.
An T 4k
The result then follows by plugging these bounds into (77). O

Lemma 10. Let A > 0 and assume that
nA > 16k? max{1,N(\)}. (80)
Forany w € H and § € (0, 1], one has with probability at least 1 — §

1= w]| < 4log(2671) [|(E + A Fwl| -
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Proof of Lemma[I0} Applying Corollary 3} we find
122 w]| < [[SE(E+X)7F [[(E+X)"2(E+NE] (S + M) Fw]]
< 410g(2671) [|(3+ ) 2wl -

Lemma 11. Let X be a nonnegative random variable with P[X > Clog"(kd~1)] < & for any
§ € (0,1). Then E[X] < Cul'(u), where T' denotes the Gamma-function.

Proof. Apply E[X] = [;° P[X > t]dt. O

G.2 Miscellaneous
Lemma 12. For any 0 < S < T and for any a € [0, 1] one has

Tt - S < (T + 8)(T — S)* . (81)
Proof of Lemma[I2] Rewriting (8T) to

(7)< ()07

shows that it is sufficient to show that
ha(u) := (1 +u)(1 —u)* +u™ —1>0

for any u € [0, 1]. This follows by observing that ho(u) = 0, hi(u) = 2u. Moreover, h, is concave
if a € (0,1), satisfying h,(0) = ho(1) = 0. O

Lemma 13. Ler (ay)i, and (&) be two sequences, then

T t—1 S [T—(t+1) T—1 [T—(t+1)
DD wk &= | DL anf&t > | D a &
t=S+1 k=0 t=0 k=S—t t=S+1 k=0
Lemma 14. 1. Let ¢ : Ry — R monotonically non-decreasing. Then

T T+1 T
D e(t) < / p(t)dt < > p(t+1).
t=5 s t=8

2. Let ¢ : Ry — R, monotonically non-increasing. Then

T T+1 T
S < [ pnd < Y.
t=S t=S

S
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