
Appendix

A Proofs for Section 3

A.1 Proof of Theorem 3.1

The assertion that LK(V) � 0 for all V is immediate from definition. For the second part, we have
LK(V) = 0 () kR⇡V kK,µ = 0

() kR⇡V · µkK = 0

() R⇡V (s)µ(s) = 0, 8s 2 S (since K is an is ISPD kernel)
() R⇡V (s) = 0 8s 2 S

() V = V ⇡ .

A.2 Proof of Theorem 3.2

Define � = V � V ⇡ to be the value function error. Furthermore, let I be the identity operator
(IV = V), and

P⇡V (s) := Ea⇠⇡(·|s),s0⇠P (·|s,a)[�V (s0) | s]

the state-transition part of Bellman operator without the local reward term R(s, a).

Note that R⇡V ⇡ = B⇡V ⇡
� V ⇡ = 0 by the Bellman equation, so

R⇡V = R⇡V �R⇡V
⇡ = (P⇡V � V)� (P⇡V

⇡
� V ⇡) = (P⇡ � I)(V � V ⇡) = (P⇡ � I)� .

Therefore,
LK(V) = Eµ[R⇡V (s) · R⇡V (s̄) ·K(s, s̄)]

= Eµ[(I � P⇡)�(s) · (I � P⇡)�(s̄) ·K(s, s̄)]

= E(s,s0),(s̄,s̄0)⇠d⇡,µ
[(�(s)� ��(s0)) · (�(s̄)� ��(s̄0)) ·K(s, s̄)],

where Ed⇡,µ [·] denotes the expectation under the joint distribution

d⇡,µ(s, s
0) := µ(s)

X

a2A

⇡(a|s)P (s0|s, a).

Expanding the quadratic form above, we have
LK(V)

= Ed⇡,µ [(�(s)K(s, s̄)�(s̄)� ��(s0)�(s̄)K(s, s̄)� ��(s̄0)�(s)K(s, s̄) + �2�(s0)�(s̄0)K(s, s̄)]

= Eµ[�(s
0)K⇤(s0, s̄0)�(s̄0)],

where K⇤(s0, s̄0) is as defined in the theorem statement:
K⇤(s0, s̄0) = Ed⇤

⇡,µ

⇥
K(s0, s̄0)� �(K(s0, s̄) +K(s, s̄0)) + �2K(s, s̄) | (s0, s̄0)

⇤

with the expectation w.r.t. the following “backward” conditional probability

d⇤⇡,µ(s | s
0) :=

P
a2A

⇡(a|s)P (s0|s, a)µ(s)

µ(s0)
,

which can be heuristically viewed as the distribution of state s conditioning on observing its next
state s0 when following d⇡,µ(s, s0).

A.3 Proof of Proposition 3.3

Using the eigen-decomposition (5), we have
LK(V) = Eµ[R⇡V (s)K(s, s̄)R⇡V (s̄)]

= Eµ[R⇡V (s)
1X

i=1

�iei(s)ei(s̄)R⇡V (s̄)]

=
1X

i=1

�i (Eµ[R⇡V (s)ei(s)])
2 .

The decomposition of L2(V) follows directly from Parseval’s identity.

13

A.4 Proof of Proposition 3.4

The reproducing property of RKHS implies f(s) = hf, K(s, ·)iHK for any f 2 HK . Therefore,
Eµ[R⇡V (s)f(s)] = Eµ[R⇡V (s)hf, K(s, ·)iHK]

= hf, Eµ[R⇡V (s)K(s, ·)]iHK

= hf, f⇤
iHK .

where we have defined f⇤(·) := Eµ[R⇡V (s)K(s, ·)]. Maximizing hf, f⇤
i subject to kfk

HK
:=p

hf, fiHK 1 yields that f = f⇤/ kf⇤
k
HK

. Therefore,

max
f2HK : kfk

HK
1

(Es [R⇡V (s)f(s)])2 = (h
f⇤

kf⇤k
HK

, f⇤
iHK)2 = kf⇤

k
2
HK

.

Further, we can show that
kf⇤

k
2
HK

= hf⇤, f⇤
iHK

= hEµ[R⇡V (s)K(s, ·)], Eµ[R⇡V (s̄)K(s̄, ·)]iHK

= Eµ[R⇡V (s)K(s, s̄)R⇡V (s̄)],

where the last step follows from the reproducing property, K(s, s̄) = hK(s, ·),K(s̄, ·)iHK . This
completes the proof, by definition of LK(V).

A.5 Proof of Corollary 3.5

Under the conditions of the corollary, the kernel loss becomes the Norm of the Expected TD Update
(NEU), whose minimizer coincides with the TD solution (Dann et al., 2014). For completeness, we
provide a self-contained proof.

Since we are estimating the value function of a fixed policy, we ignore the actions, and the set of
transitions is D = {(si, ri, s0i)}1in. Define the following vector/matrices:

r = [r1; r2, · · · ; rn] 2 Rn⇥1 ,

X = [�(s1); �(s2); . . . ; �(sn)] 2 Rn⇥d ,

X 0 = [�(s01); �(s
0

2); . . . ; �(s0n)] 2 Rn⇥d ,

and Z = X � �X 0, where d is the feature dimension. Then, the TD solution is given by
✓̂TD = (XTZ)�1XTr .

Note that the above includes both the on-policy case as well as the off-policy case as in many previous
algorithms with linear value function approximation (Dann et al., 2014), where the difference is in
whether si is sampled from the state occupation distribution of the target policy or not.

Define � 2 Rn⇥1 to be the TD error vector; that is, � = r�Z✓, where �i = ri + �V (s0i)� V (si) =
ri + ✓T(��(s0i)� �(si)) . With a linear kernel, our objective function becomes:

`(✓) =
1

n2

X

i,j

�iK(si, sj)�j =
1

n2
�TXXT� =

1

n2
(r � Z✓)TXXT(r � Z✓) .

Its gradient is given by

r` =
2

n2
(ZTXXTZ✓ � ZTXXTr) .

Letting r` = 0 gives the solution obtained by minimizing our kernel loss:2

✓̂KBE = (ZTXXTZ)�1ZTXXTr .

Therefore,
✓̂KBE � ✓̂TD =

�
(ZTXXTZ)�1ZTX � (XTZ)�1

�
XTr

=
�
(ZTXXTZ)�1ZTX(XTZ)� I

�
(XTZ)�1XTr

= (I � I) (XTZ)�1XTr = 0 .
2For simplicity, we assume all involved matrices of size d⇥ d are non-singular, as is typical in analyzing TD

algorithms. Without this assumption, we may either add L2-regularization to XXT (Farahmand et al., 2008),
for which the same equivalence between TD and ours can be proved, or show that the solutions lie in an affine
space in Rd but the corresponding value functions are identical.

14

B Experiment Details

B.1 Kernel Loss Estimation with Batch Samples

Given a set of empirical data D = {(si, ai, ri, s0i)}1in, where n is large such that we need to use
a subset samples B = {(Si, Ai, Ri, S0

i)}1im drawn from D to estimate the empirical kernel loss.
One way to estimate LK using the subset B is U-statistics,

L̂KU (V✓) :=
1

m(m� 1)

X

1i 6=jm

K(Si, Sj) · R̂⇡V✓(Si) · R̂⇡V✓(Sj) .

Similarly, we can use the V-statistics to estimate LK given the subset B:

L̂KV (V✓) :=
1

mn

 ✓ X

1im

K(Si, Si) · R̂⇡V✓(Si) · R̂⇡V✓(Si)

◆

+
n� 1

m� 1

✓ X

1i 6=jm

K(Si, Sj) · R̂⇡V✓(Si) · R̂⇡V✓(Sj)

◆!
.

In our experiments, we observe that V-statistics works slightly better than U-statistics, and we use
an mixed combination of these two to achieve better performance: ↵L̂KV (V✓) + (1� ↵)L̂KU (V✓),
where ↵ is a coefficient which can be tunned.

B.2 Policy Evaluation

We compare our method with representative policy evaluation methods including TD(0), FVI, RG,
nonlinear GTD2 (Maei et al., 2009) and SBEED (Dai et al., 2017, 2018b) on three different stochastic
environments: Puddle World, CartPole and Mountain Car. Followings are the detail of the policy
evaluation experiments.

Network Structure We parameterize the value function V✓(s) using a fully connected neural
network with one hidden layer of 80 units, using relu as activation function. For test function f(s)
in SBEED, we use a small neural network with 10 hidden units and relu as activation function.

Data Collection For each environment, we randomly collect 5000 independent transition tuples
with states uniformly drawn from state space using a policy ⇡ learned by policy optimization, for
which we want to learn the value function V ⇡(s).

Estimating the true value function V ⇡(s) To evaluate and compare all methods, we approximate
the true value function by finely discretizing the state space and then applying tabular value iteration
on the discretized MDP. Specifically, we discretize the state space into 25⇥ 25 grid for Puddle World,
20⇥ 25 discrete states for CartPole, and 30⇥ 25 discrete states for Mountain Car.

Training Details For each environment and each policy evaluation method, we train the value
function V✓(s) on the collected 5000 transition tuples for 2000 epochs (3000 for Mountain Car),
with a batch size n = 150 in each epoch using Adam optimizer. We search the learning
rate in {0.003, 0.001, 0.0003} for all methods and report the best result averaging over 10 tri-
als using different random seeds. For our method, we use a Gaussian RBF kernel K(si, sj) =

exp (�ksi � sjk
2
2 /h

2) and take the bandwidth to be h = 0.5. For FVI, we update the target network
at the end of each epoch training. For SBEED, we perform 10 times gradient ascent updates on the
test function f(s) and 1 gradient descent update on V✓(s) at each iteration. We fix the discount factor
to � = 0.98 for all environments and policy evaluation methods.

B.3 Policy Optimization

In this section we describe in detail the experimental setup for policy optimization regarding imple-
mentation and hyper-parameter search. The code of Trust-PCL is available at github.3 Algorithm 1
describes details in pseudocode, where the the main change compared to Trust-PCL is highlighted.
Note that as in previous work, we use the d-step version of Bellman operator, an immediate extension
to the d = 1 case described in the main text.

3https://github.com/tensorflow/models/tree/master/research/pcl_rl

15

https://github.com/tensorflow/models/tree/master/research/pcl_rl

Algorithm 1 K-Loss for PCL
Input: rollout step d, batch size B, coefficient �, ⌧,↵.
Initialize V✓(s), ⇡�(a|s), and empty replay buffer RB(�). Set �̃ = �.
repeat

// Collecting Samples

Sample P steps st:t+P ⇠ ⇡� on ENV.
Insert st:t+P to RB(�).

// Train

Sample batch {s(k)t:t+d, a
(k)
t:t+d, r

(k)
t:t+d}

B
k=1 from RB(�) to contain a total of Q transitions (B ⇡ Q/d).

�✓ = ↵r✓L̂KV (V✓) + (1� ↵)r✓L̂KU (V✓),
�� = � 1

B

P
1iB [R̂i

Pd�1
t=0 r� log ⇡�(at+i|st+i)], where

R̂i = �V✓(si) + �dV✓(si+d) +
d�1X

t=0

�t(ri+t � (�+ ⌧) log ⇡�(at+i|st+1) + ⌧ log ⇡�̃(at+i|st+1)).

Update ✓ and � using ADAM with �✓,��.

// Update auxiliary variables

Update �̃ = ↵�̃+ (1� ↵)�.
until Convergence

(a) Walker2d (b) HalfCheetah

Figure 5: More results of various variants of Trust PCL on Mujoco Benchmark (on top of Figure 4).

B.3.1 Network Architectures

We use fully-connected feed-forward neural network to represent both policy and value network. The
policy ⇡✓ is represented by a neural network with 64⇥ 64 hidden layers with tanh activations. At
each time step t, the next action at is sampled randomly from a Gaussian distribution N (µ✓(st),�✓).
The value network V✓(s) is represented by a neural network with 64⇥ 64 hidden layers with tanh
activations. At each time step t, the network is given the observation st and it produces a single scalar
output value. All methods share the same policy and value network architectures.

B.3.2 Training Details

We average over the best 5 of 6 randomly seeded training runs and evaluate each method using the
mean µ✓(s) of the diagonal Gaussian policy ⇡✓. Since Trust-PCL is off-policy, we collect experience
and train on batches of experience sampled from the replay buffer. At each training iteration, we
will first sample T = 10 timestep samples and add them to the replay buffer, then both the policy
and value parameters are updated in a single gradient step using the Adam optimizer with a proper
learning rate searched, using a minibatch randomly sampled from replay buffer. For Trust-PCL using
FVI updating V✓(s), which requires a target network to estimate the final state for each path, we use
an exponentially moving average, with a smoothing constant ⌧ = 0.99, to update the target value
network weights as common in the prior work (Mnih et al., 2015). For Trust-PCL using TD(0), we
will directly use current value network V✓(s) to estimate the final states except we do not perform
gradient update for the final states. For Trsut-PCL using RG and K-loss, which has an objective loss,
we will directly perform gradient descent to optimize both policy and value parameters.

16

B.3.3 Hyperparameter Search

We follow the same hyperparameter search procedure in Nachum et al. (2018) for FVI, TD(0)
and RG based Trust-PCL.4 We search the maximum divergence ✏ between ⇡✓ and ⇡✓̂ among 2

{0.001, 0.0005, 0.002}, and parameter learning rate in {0.001, 0.0003, 0.0001}, and the rollout
length d 2 {1, 5, 10}. We also searched with the entropy coefficient �, either keeping it at a constant
0 (thus, no exploration) or decaying it from 0.1 to 0.0 by a smoothed exponential rate of 0.1 every
2500 training iterations. For each hyper-parameter setting, we average best 5 of 6 seeds and report
the best performance for these methods.

For our proposed K-loss, we also search the maximum divergence ✏ but keep the learning
rate as 0.001. Additionally, for K-loss we use a Gaussian RBF kernel K([si, ai], [sj , aj]) =

exp (�(ksi � sjk
2
2 + kai � ajk

2
2)/h), and take the bandwidth to be h = (↵ ⇥ med)2, where we

search ↵ 2 {0.1, 0.01, (1/
p
logB)}, and B = 64 is the gradient update batch size. We fix the

discount to � = 0.995 for all environments and batch size B = 64 for each training iteration.

4See README in https://github.com/tensorflow/models/tree/master/research/pcl_rl

17

https://github.com/tensorflow/models/tree/master/research/pcl_rl

