
A Proofs of Theorems in Section 3

In this section, we prove Theorems 3.3, 3.5, 3.8 and 3.10.

A.1 Proof of Theorem 3.3

Proof. Define g(µ, α, ε,G) = argminE∈G {µ(Eε) : µ(E) ≥ α}, and let E = g(µ, α + δ, ε,G) and
Ê = g(µ̂S , α, ε,G). (Note that these sets achieving the minimum might not exist, in which case we
select a set for which the expansion is arbitrarily close to the infimum and every step of the proof will
extend to this variant).

By the definition of the complexity penalty we have

Pr
S←µm

[∣∣∣µ(Ê)− µ̂S(Ê)
∣∣∣ ≥ δ] ≤ φ(m, δ)

which implies
Pr

S←µm
[µ(Ê) ≤ α− δ] ≤ φ(m, δ).

Therefore, by the definition of h we have

Pr
S←µm

[µ(Êε) ≤ h(µ, α− δ, ε,G)] ≤ φ(m, δ). (4)

On the other hand, based on the definition of φε we have

Pr
S←µm

[∣∣∣µ(Êε)− µ̂S(Êε)
∣∣∣ ≥ δ] ≤ φε(m, δ). (5)

Combining Equation 4 and Equation 5, and by a union bound we get

Pr
S←µm

[µ̂S(Êε) ≤ h(µ, α− δ, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ)

which by the definition of Ê implies that

Pr
S←µm

[h(µ̂S , α, ε,G) ≤ h(µ, α− δ, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ). (6)

Now we bound the probability for the other side of our inequality. By the definition of the notion of
complexity penalty we have

Pr
S←µm

[|µ(E)− µ̂S(E)| ≥ δ] ≤ φ(m, δ)

which implies
Pr

S←µm
[µ̂S(E) ≤ α] ≤ φ(m, δ).

Therefore, by the definition of h we have,

Pr
S←µm

[µ̂S(Eε) ≤ h(µ̂S , α, ε,G)] ≤ φ(m, δ). (7)

On the other hand, based on the definition of φε we have

Pr
S←µm

[|µ(Eε)− µ̂S(Eε)| ≥ δ] ≤ φ(m, δ) + φε(m, δ). (8)

Combining Equations 7 and 8, by union bound we get

Pr
S←µm

[µ(Eε) ≤ h(µ̂S , α, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ)

which by the definition of E implies

Pr
S←µm

[h(µ, α+ δ, ε,G) ≤ h(µ̂S , α, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ). (9)

Now combining Equations 6 and 9, by union bound we have

Pr
S←µm

[h(µ, α−δ, ε,G)−δ ≤ h(µ̂S , α, ε,G) ≤ h(µ, α+δ, ε,G)+δ] ≥ 1−2 (φ(m, δ) + φε(m, δ)) .
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A.2 Proof of Theorem 3.5

In this section, we prove Theorem 3.5 using ideas similar to ideas used in Scott & Nowak (2006).
Before proving the theorem, we lay out the following lemma which will be used in the proof.
Lemma A.1 (Borel-Cantelli Lemma). Let {ET }T∈N be a series of events such that

∞∑
T=1

Pr[ET ] <∞

Then with probability 1, only finite number of events will occur.

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Define ET to be the event that
h(µ, α−δ(T ), ε,G(T ))−δ(T ) > h(µ̂ST

, α, ε) or h(µ, α+δ(T ), ε,G(T ))+δ(T ) < h(µ̂ST
, α, ε,G).

Based on Theorem 3.3 we have Pr[ET ] ≤ 2 · (φT (m(T ), δ(T )) + φTε (m(T ), δ(T ))). Therefore, by
Conditions 1 and 2 we have

∞∑
T=1

Pr[ET ] ≤ 2

( ∞∑
T=1

φT (m(T ), δ(T )) + φTε (m(T ), δ(T ))

)
<∞.

Now by Lemma A.1, we know there exist with measure 1 some j ∈ N, such that for all T ≥ j,
h(µ, α− δ(T ), ε,G(T ))− δ(T ) ≤ h(µ̂ST

, α, ε,G(T )) ≤ h(µ, α+ δ(T ), ε,G(T )) + δ(T ).

The above implies that
lim
T→∞

h(µ, α−δ(T ), ε,G(T ))−δ(T ) ≤ lim
T→∞

h(µ̂ST
, α, ε,G(T )) ≤ lim

T→∞
h(µ, α+δ(T ), ε,G(T ))+δ(T ).

We know that
lim
T→∞

h(µ, α− δ(T ), ε,G(T )) = lim
T1→∞

lim
T2→∞

h(µ, α− δ(T1), ε,G(T2))

(By condition 4) = lim
T1→∞

h(µ, α− δ(T1), ε)

(By local continuity and condition 3) = h(µ, α, ε).

Similarly, we have
lim
T→∞

h(µ, α+ δ(T ), ε,G(T )) = h(µ, α, ε).

Therefore we have,
lim
T→∞

h(µ, α, ε)− δ(T ) ≤ lim
T→∞

h(µ̂ST
, α, ε,G(T )) ≤ lim

T→∞
h(µ, α, ε) + δ(T )

which by condition 3 implies
lim
T→∞

h(µ̂ST
, α, ε,G(T )) = h(µ, α, ε).

A.3 Proof of Theorem 3.8

Proof. This theorem follows from our general Theorem 3.5. We show that the choice of parameters
here satisfies all four conditions of Theorem 3.5.

If we let G(T ) to be the collection of subsets specified by complement of union of T hyperrectangles.
Then Gε(T ) will be the collection of of subsets specified by complement of union of T hyperrectangles
that are bigger than ε in each coordinate. Therefore we have Gε(T ) ⊂ G(T ). We know that the VC
dimension of G(T ) is dT = O(nT log(T )) because the VC dimension of all hyperrectangles is O(n)
and the functions formed by T fold union of functions in a VC class is at most n · T log(T ) (See
Eisenstat & Angluin (2007)). Therefore, by VC inequality we have

Pr
S←µm

[
sup
E∈G(T )

|µ(E)− µ̂S(E)| ≥ δ
]
≤ 8enT log(T ) log(m)−mδ2/128.

Therefore ΦT (m, δ) = 8enT log(T ) log(m)−mδ2/128 is a complexity penalty for both G(T ) and Gε(T ).
Hence, if we define δ(T ) = 1/T and m(T ) ≥ T 4, then the first three conditions of Theorem 3.5 are
satisfied. The fourth condition is also satisfied by the universal consistency of histogram rules (See
Devroye et al. (2013), Ch. 9).
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A.4 Proof of Theorem 3.10

Proof. Similar to Theorem 3.8 This theorem follows from our general Theorem 3.5. We show that
the choice of parameters here satisfies all four conditions of Theorem 3.5.

If we let G(T ) to be the collection of subsets specified by union of T balls. Then Gε(T ) will be the
collection of of subsets specified by union of T balls with diameter at least ε. Similar to the proof of
Theorem 3.8, we have Gε(T ) ⊂ G(T ). We know that the VC dimension of all balls is O(n) so using
the fact that G(T ) is T fold union of balls, the VC dimension of G(T ) is dT = O(nT log(T )) (See
Eisenstat & Angluin (2007)). Therefore, by VC inequality we have complexity penalties similar to
those of Theorem 3.8 for both G(T ) and Gε(T ). Hence, if we define δ(T ) = 1/T and m(T ) ≥ T 4,
then the first three conditions of Theorem 3.5 are satisfied. The fourth condition is also satisfied by
the universal consistency of kernel-based rules (See Devroye et al. (2013) , Ch. 10).

B The Proposed Algorithms

This section provides the pseudocode and a runtime analysis for our algorithms for finding robust
error regions under `∞ and `2, respectively.

B.1 Pseudocode

Algorithm 1: Heuristic Search for Robust Error Region under `∞
Input :a set of images S; perturbation strength ε∞; error threshold α; number of hyperrectangles

T ; number of nearest neighbours k; precision for binary search δbin.
1 rk(x)← compute the `1-norm distance to the k-th nearest neighbour for each x ∈ S;
2 Ssort ← sort all the images in S by rk(x) in an ascending order;
3 qlower ← 0.0, qupper ← 1.0;
4 while qupper − qlower > δbin do
5 q ← (qlower + qupper)/2;
6 perform kmeans clustering algorithm (T clusters, `1 metric) on the top-q images of Ssort;
7 {u(t)}Tt=1 ← record the centroids of the resulted T clusters;
8 for t = 1, 2, . . . , T do
9 Rect(u(t), r(t))← cover t-th cluster with the minimum-sized rectangle centered at u(t);

10 end
11 Eq ← X \ ∪Tt=1Rectε∞(u(t), r(t)) ; // Rectε(u, r) denotes the ε-expansion ofRect(u, r)
12 if |S ∩ Eq|/|S| ≥ α then
13 qlower ← q, AdvRiskq ←

∣∣{x ∈ S : x 6∈ ∪Tt=1Rect(u(t), r(t))
}∣∣/|S|;

14 else
15 qupper ← q;
16 end
17 end
18 q̂ ← argminq{AdvRiskq};

Output : (q̂, AdvRiskq̂ , Eq̂)

B.2 Runtime Analysis

For `∞, we construct the systems of hyperrectangles by first precomputing an approximate k-NN
distance estimate using Ball Trees (Omohundro, 1989; Pedregosa et al., 2011) for each data point,
and then clustering the top-q densest data points into T partitions using the k-means algorithm, where
we binary search for the optimal parameter q. The time complexity of precomputing and sorting
the nearest neighbor distance estimates is approximately O(nd log(n)), where n is the total number
of data points in Rd. In addition, the time complexity of k-means algorithm is O(ndTI), where I
is the averaged number of iterations for k-means algorithm to converge. Therefore, the total time
complexity of the proposed algorithm for `∞ is O(nd log(n) + ndTI log(1/δ)). In our experiments
on CIFAR-10 (ε∞ = 8/255, T = 40 and δ = 0.005), the proposed algorithm takes 76 minutes for
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Algorithm 2: Heuristic Search for Robust Error Region under `2
Input :a set of images S; perturbation strength ε2; error threshold α; number of balls T .

1 Ê ← {}, Ŝinit ← {}, Ŝexp ← {};
2 for t = 1, 2, . . . , T do
3 klower ← d(α|S| − |Ŝinit|)/(T − t+ 1)e, kupper ← (α|S| − |Ŝinit|);
4 for u ∈ S do
5 for k ∈ [klower, kupper] do
6 rk(u)← compute the `2 distance from u to the k-th nearest neighbour in S \ Ŝinit;
7 Sinit(u, k)← {x ∈ S \ Ŝinit : ‖x− u‖2 ≤ rk(u)};
8 Sexp(u, k)← {x ∈ S \ Ŝexp : ‖x− u‖2 ≤ rk(u) + ε2};
9 end

10 end
11 (û, k̂)← argmin(u,k){|Sexp(u, k)| − |Sinit(u, k)|};
12 Ê ← Ê ∪ Ball(û, rk̂(û));
13 Ŝinit ← Ŝinit ∪ Sinit(û, k̂), Ŝexp ← Ŝexp ∪ Sexp(û, k̂);
14 end

Output : Ê

precomputing the nearest neighbors, and takes around 2 hours for the iterative steps to converge on a
Intel Xeon CPU E5-2620 v4 server with 32 processors.

For `2, instead of computing the k-NN distances for each iteration, we precompute and keep the k-NN
neighbours using Ball Trees for each image to save computation, which requires a time complexity
of O(nd log n). The iterative steps require the major computation of O(αTn2d), since we iterate
through all the possible choices of ball centers and corresponding radii to find the optimal error
region with the smallest expansion. We believe the quadratic dependency on the sample size can be
improved using better searching algorithm for finding the robust error region. Since our main focus
is to understand the limitation of robust learning on real datasets, we leave the optimization of the
proposed heuristic method for better computational efficiency as future work.
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C Other Experimental Results

C.1 Results for `∞ on other datasets

We also evaluate the proposed empirical method for `∞ metric on other benchmark image datasets,
including Fashion-MNIST (Xiao et al., 2017) and SVHN (Netzer et al., 2011).

Table 4: Summary of the main results using our method for different settings with `∞ perturbations.

Dataset α ε∞ T Best q
Empirical Risk (%) Empirical AdvRisk (%)

training testing training testing

Fashion-
MNIST

0.05
0.1 10 0.758 5.64± 0.78 5.92± 0.85 10.30± 0.72 11.56± 0.84
0.2 10 0.726 5.79± 1.00 6.00± 1.02 13.44± 0.60 14.82± 0.71
0.3 10 0.668 5.90± 0.94 6.13± 0.93 17.46± 0.53 18.87± 0.66

SVHN 0.05
0.01 10 0.812 5.21± 0.19 8.83± 0.30 6.08± 0.20 10.17± 0.29
0.02 10 0.773 5.31± 0.12 8.86± 0.20 7.76± 0.12 12.46± 0.15
0.03 10 0.750 5.15± 0.13 8.55± 0.22 8.88± 0.13 13.82± 0.25

C.2 Detailed results for `2 using our method

In this section, we demonstrate the detailed training and testing results on the best error region
obtained using Algorithm 2 on MNIST and CIFAR-10 with `2 perturbations, as well as results on
Fashion-MNIST and SVHN. Note that for the additional datasets, we set α to be the same as the case
of `∞ and set ε2 =

√
n/π · ε∞ using the same conversion rule, where n is the input dimension.

Table 5: Summary of the main results using our method for different settings with `2 perturbations.

Dataset α ε2 T
Empirical Risk Empirical AdvRisk

training testing training testing

MNIST 0.01
1.58 20 1.25% 1.07% 2.23% 2.19%
3.16 20 1.25% 1.02% 4.35% 4.15%
4.74 20 1.25% 1.07% 10.71% 10.09%

CIFAR-10 0.05
0.2453 5 5.00% 5.16% 5.22% 5.53%
0.4905 5 5.00% 5.14% 5.61% 5.83%
0.9810 5 5.00% 5.12% 6.38% 6.56%

Fashion-
MNIST

0.05
1.58 10 5.25% 5.07% 7.84% 7.77%
3.16 10 5.25% 4.99% 15.95% 16.23%
4.74 10 5.25% 5.21% 19.76% 20.10%

SVHN 0.05
0.3127 10 5.00% 6.92% 5.24% 7.34%
0.6254 10 5.00% 7.30% 5.59% 8.16%
0.9381 10 5.00% 7.56% 5.96% 8.94%
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C.3 Additional training curves
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(a) MNIST (ε∞ = 0.1 and T = 10)
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(b) MNIST (ε∞ = 0.3 and T = 10)
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(c) CIFAR-10 (ε∞ = 4/255 and T = 20)
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(d) CIFAR-10 (ε∞ = 8/255 and T = 40)

Figure 2: Risk and adversarial risk of the corresponding region as q varies under different settings.
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Figure 3: Adversarial risk of the resulted error region with best q obtained using our method as
T varies under different settings: (a) MNIST (ε = 0.1, α = 0.01) and CIFAR-10 (ε∞ = 2/255,
α = 0.05); (b) MNIST (ε∞ = 0.2, α = 0.01) and CIFAR-10 (ε∞ = 4/255, α = 0.05)

18


