
A Omitted proofs

Proof of Proposition 3.7. Suppose F satisfies Assumptions 3.1 and 3.2. Fix some " > 0 and let
m = m⇤

F("/3) and � = wm!
�1
m,F("/3). Now fix some t 2 Z+ and consider any two u,v 2 M(R)

such that

max
s2{0,...,t}

wt�s|us � vs| < �. (A.1)

Using the same reasoning as in the proof of Theorem 3.3, we can write (FWt,mu)t = F̃m(ut�m:t)
and (FWt,mv)t = F̃m(vt�m:t), where, as before, we set us = vs = 0 for s < 0. From the
monotonicity of w and (A.1) it follows that

kut�m:t � vt�m:tk1  1

wm

max
s2{t�m,...,t}

wt�s|us � vs| < !�1
m,F("/3),

which implies that

|(FWt,mu)t � (FWt,mv)t| = |F̃m(ut�m:t)� F̃m(vt�m:t)| < "/3.

Altogether, we see that (A.1) implies that

|(Fu)t � (Fv)t|  |(Fu)t � (FWt,mu)t|+ |(FWt,mu)t � (FWt,mv)t|+ |(Fv)t � (FWt,mv)t|
< "/3 + "/3 + "/3 = ",

which leads to (6).

Now suppose that F has fading memory w.r.t. w. Given " > 0, let � = ↵�1
w,F(") and choose any

m 2 Z+, such that wm < �/R. If t < m, then u0:t = (Wt,mu)0:t, and thus (Fu)t = (FWt,mu)t.
On the other hand, if t � m, then, for any u 2 M(R),

max
s2{0,...,t}

|us � (Wt,mu)s| =
(
0, t�m  s  t
|us|, s < t�m

and therefore, by the monotonicity of w and the choice of m,

max
s2{0,...,t}

wt�s|us � (Wut,m)s| = max
s<t�m

wt�s|us|  wmkuk1 < �,

which implies that |(Fu)t � (FWt,mu)t| < ". Consequently, m⇤
F(")  m. Moreover, since the

elements of w take values in (0, 1], it follows from definitions that, for any u,v 2 M(R) and any t,

ku0:t � v0:tk1 < � =) max
s2{0,...,t}

wt�s|us � vs| < � =) |(Fu)t � (Fv)t|  ↵w,F(�).

This establishes (7).

Proof of Proposition 4.2. The family of mappings 'u
s,t
(·) has the following semiflow property: for

any input u and any 0  r  s  t,

'u
r,t
(⇠) = 'u

s,t
('u

r,s
(⇠)). (A.2)

By telescoping and by the semiflow property (A.2), we have

'u
0,t(⇠)� 'ũ

0,t(⇠) =
t�1X

s=0

⇣
'u
s,t
('ũ

0,s(⇠))� 'u
s+1,t('

ũ
0,s+1(⇠))

⌘

=
t�1X

s=0

⇣
'u
s+1,t('

u
s,s+1('

ũ
0,s(⇠)))� 'u

s+1,t('
ũ
0,s+1(⇠))

⌘
. (A.3)

Using the fact that 'u
s,s+1('

ũ
0,s(⇠)) = 'u

s,s+1(f('
ũ
0,s(⇠), us)) and the stability property (9),

���'u
s+1,t('

u
s,s+1('

ũ
0,s(⇠)))� 'u

s+1,t('
ũ
0,s+1(⇠))

���  �
�
kf(x̃s, us)� f(x̃s, ũs)k, t� s� 1

�
.

Substituting this into (A.3), we get (10).
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Proof of Proposition 4.14. Since the matrix A is Schur, the function

g(r) := sup
z2T

|G(rz)| = kG(r·)kH1(T), r > ⇢(A)

is continuous. In particular, there exists some r0 2 (⇢(A), 1), such that g(r0) < g(1) < ��1.
Consequently, the rational function

H(z) := �G(r0z) =
�C

r0

✓
zIn � A

r0

◆�1

B

is well-defined for all z 2 C with |z| � r0, and we have the following:

• A

r0
is a Schur matrix;

• the pair ( A

r0
, B) is controllable;

• the pair ( A

r0
, �C

r0
) is observable;

• kHkH1(T) < 1.

Then, by the Discrete-Time Bounded-Real Lemma [Vaidyanathan, 1985], there exist real matrices
L,W and a symmetric positive definite matrix P 2 Rn⇥n, such that

A>PA+ �2C>C + r20L
>L = r20P (A.4a)

B>PB +W>W = In (A.4b)

A>PB + r0L
>W = r0In. (A.4c)

From (A.4), for any ✓ 2 R we have

(A� ✓BC)>P (A� ✓BC)� r20P

= A>PA� ✓(C>B>PA+A>PBC) + ✓2C>B>PBC � r20P

= (✓2 � �2)C>C � (r0L� ✓WC)>(r0L� ✓WC).

Let µ := r20 . Then, since �2 � ✓2 for all ✓ 2 [a, b], it follows that

(A� ✓BC)>P (A� ✓BC)� µP � 0, a  ✓  b.

Since
@

@x
f(x, u) =

@

@x

�
Ax+B (u� Cx)

�
= A�  0(u� Cx)BC

and  0(u� Cx) 2 [a, b] for all x and u, the proposition is proved.
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