Practical Two-Step Look-ahead
Bayesian Optimization

Supplementary Material

A Proof of Theorem 1

To prove Theorem 1, we need to prove the interchange of the expectation and the gradient operators
is valid.

We fix X and A(§). We then choose ¢ € [q] = {1,...,q} representing a point within the first stage
of points X; and a component j € [d] = {1,...,d} of that point. For real-valued ¢, we then let
X1 (e) be X but with this component replaced by its sum with e. Then,

30PT5(X,(€), Z) = max(f§ — po(X1(€)) — Co(X1())2)* + ELi(X1(e), 23(c, 2), Z),
a

We then choose an open set © C R containing 0 such that K¢ (X7 (¢), X1 (€)) and hence Co (X1 (€))
1(0

is (strictly) positive definite for each e € ©. This is possible because K| O(X ), X1(0)) was assumed
positive definite. We also choose © with the requirement that sup g |e| < /2.
Here, we have modified our notation to x5 (¢, Z) € argmin,, . 4EI1 (X1 (€), 22, Z) (called z3 in the

body of the paper) to note dependence on € and Z.
With this notation, the claimed validity of this interchange can be restated as the claim that

%Z-OPT(;(Xl(e)) =E, %Z-/OFF(;(Xl(e), Z) (6)

To prove that (6) is valid, we use Theorem 1 in L’Ecuyer [1990]. This theorem requires three sufficient
conditions:

e (i) 2-OPT; (X1(e), Z) is continuous in € over O for any fixed Z;

e (ii) 2-OPT 5(X1(e), Z) is differentiable in € except on a denumerable set in O for any given
e (iii) the derivative of 2-/0FF5(X 1(€), Z) with respect to € (when it exists) is uniformly
bounded by a random variable M (Z) for all ¢ € © and the expectation of M (Z) is finite.
Before proving these conditions, we first state several lemmas.

Lemma 1. EI(m,v) = m®(m/\/v) + vp(m/\/v) is continuously differentiable in m, v for any
m € R and any v in (0, 00).

Proof. The following expressions can be verified from direct differentiation, and also appear in
slightly modified form in Jones et al. [1998]:

The chain rule then implies

0 1 m

—EI =——p|—

61] (m,'l)) 2\/*S0 <f>
These expressions for 88 EI(m,v) and 81 EI(m,v) are continuous in m and v over the claimed
ranges, which notably exclude v = 0. O

Lemma 2. Kl(ZCQ, 6) = Ko(.’[g) — Ko(ﬂj27 Xl(E))Ko(Xl (6))71K0(X1 (6), 1’2) and 0’0(1’2, Xl(E))
are continuously differentiable in x5 and € for all ¢ € © and all x5 € A(9).

Proof. Recall (22, X1(€)) = Ko(x2, X1(€))Co(X1 (€)™t and Cy(X1 (€)) is the Cholesky decom-
position of K¢(X1(¢)).
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Ky(X1(e€)) is positive definite for all ¢ € © (we chose O so this would be true). Also, (1) the
Cholesky decomposition is continuously differentiable Smith [1995]; (2) the matrix inverse is
continuously differentiable for positive definite matrices; and (3) K is continuously differentiable.
The result follows since compositions, products, and sums of continuously differentiable functions
are continuously differentiable. O

Lemma 3. K (2, €) is bounded below by a strictly positive constant r > 0 across all x2 € A(9)
and all € € ©.

Proof. All points in A(J) have Kg(z2) > 0. Also, since € < §/2 for all e € © (we chose O so this
would be true), all points in .A(¢) are separated from all points in X (¢) by at least § —e > §/2 > 0.
Thus, by the assumption that the kernel is non-degenerate in the statement of the theorem, the
posterior variance K1 (x2, €) is strictly positive for all o € A(0).

Also, K (z2, X1 (€)) is continuous by Lemma 2. Thus, since .A(J) is compact, the infimum over
x9 € A(0) is attained within A(). This infimum is thus strictly positive. O

Lemma 4. Consider any fixed Z. Then, max,, ¢ a(s) EI1 (X1 (€), 22, Z) is differentiable for almost
every € € O. At each € for which this derivative exists, the derivative is equal to

LB (X(0), 7300, 2), 2). )

where either x5 (€o, Z) € argming, ¢ 4(5El1(X1(€0), 72, Z) is unique or (7) does not depend on the
choice within this set.

Proof. To show this result, the envelope theorem (Corollary 4 of Milgrom and Segal 2002) tells us
that it is sufficient to verify the following conditions:

1. A(d) is a non-empty compact space;

2. EIi (X1(¢), z2, Z) is continuous in x5;

3. LEI (X (€), z2, Z) is continuous in € and z5.
This will then imply absolute continuity of max,, ¢ 4(sy EI1 (X1 (€), x2, Z) (implying differentiability
for almost every €) and the claimed expression for the derivative.
The first condition is assumed in the statement of Theorem 1.
We now verify the second and third conditions. Recall that

EL (X1(€), 22, Z) = EI(f{ — po(z2) — 0o(z2, X1(€)) Z, K1 (2, €))

The second condition follows from continuity of EI (Lemma 1), uo (assumed in the statement of the
Theorem), o¢(z2, X1 (€)) (Lemma 2), and K (x2, €) (Lemma 2).

The third condition follows from the fact that K (x2, €) stays bounded away from 0 (Lemma 3),
EI(m,v) is continuously differentiable when v > 0 (Lemma 1), continuous differentiability of
to(x2) (assumed in the statement of the Theorem), and continuous differentiability of o (z2, X1 (€))
and K (2, €) (Lemma 2).

With these lemmas, we now proceed to show the conditions required by L’Ecuyer [1990].

A.1 Proof of condition (i)

Because the the mean function po and the kernel K are assumed continuous, po(X1(¢)) and
Co(X1(€)) are continuous in e.

Since the maximum of several continuous functions is continuous, max(f; — po(X1(€)) —
Co(X1(€))Z)™ is continuous in e.

Continuity of EI; (X (¢), x5 (e, Z), Z) was shown in Lemma 4.

Since the sum of continuous functions is continuous, 2-OPTs(X1(¢), Z) is continuous in €.
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A.2 Proof of condition (ii)

Fix any Z. Leveraging Lemma 4, it is sufficient to show that max( f§ — 10(X1(€)) —Co(X1(€)) Z) T +
ElL (X1(€), x5, Z) is differentiable with respect to ¢ except on a denumerable set in ©.

Let D C O be the set of values of € such that max(f§ — po(X1(€)) — Co(X1(€))Z)™ is not
differentiable. We have

D C Uijeoq {6 € 0 : hi(e) = hy(e), Lt dhée(e)}

where ho(e) = 0 and h;(e) for i > 0 is a component i of f — uo(X1(€)) — Co(X1(€))Z. Thus it is
sufficient to show that

{6 ¢ 0 () = hi(d) dhcge(i) ” dhéE(E) }

is denumerable.
Define 7)(¢€) := h;(e) — h;(€). Observe that differentiability of 1o and Ky imply differentiability of
1. We would like to show that £ := {e €0 :n(e) =0, d’;—(j) + 0} is denumerable. To prove this, it

is sufficient to show that F' contains only isolated points because any set of isolated points in R is
denumerable (see the proof of statement 4.2.25 on page 165 in Thomson et al. [2008]).

We prove that E' only contains isolated points by contradiction. Suppose that €, € E is not an isolated

point. Then, there is a sequence of points €;, €3, ... in E that converge to €.. Then, noting that
n(e,) = n(e) = 0, we have
d — (e, '
0 # 77(6)| [ TN [0 e[ B T S
dG €=€x n—00 €, — €4 n— 00

which is a contradiction. Thus we may conclude that £ only contains isolated points, and so is
denumerable.

A.3 Proof of condition (iii)

We first prove that % max(f§ — po(X1(e)) — Co(X1(€))Z)™, when it exists, has a magnitude
bounded above by

% max(f§ — po(X1(€)) — Co(Xi1(€))2) T

§M1+M2Z|Zi|

where M is the maximum of the absolute value of the derivatives of the components of p (X7 ) with
respect to € and, similarly, M5 is the maximum of the absolute value of the derivative of the entries of
Co(X1) with respect to e. Because 1o and K are both assumed continuously differentiable, M7 and
M, are finite. We then have that E[M; 4+ M, >, | Z;|] is finite.

We now concentrate on the second term in 2-OPT 5(X1(e),Z). By Lemma 4, when it exists,

%maxszA EIl(Xl(e)’x%Z”e:Eo = %Ell(X1(€)7x§(€0a )vZ)‘€=60'

Recall that
Ell(Xl(E),l‘g, Z) = EI(MQ(J?Q) + O'o(xg,Xl(G))Z, KQ(Z‘Q) — 0'0(332,Xl(G))O'()(xQ,X1(€))T).

We will bound the derivative of this quantity with respect to € by a constant.

In the proof of Lemma 4, we showed that %ao (z2, X1(€)) is continuous in x5 and €, and so its
components are bounded over O (since we assumed © is contained in a compact set). This bound
does not depend on Z. Call this constant M3.

We then use the chain rule to provide an expression for %Eh(Xl(e),xQ, Z). Recalling that
El; (X1(€),z2, Z) can be written more explicitly as EI(f; — po(z2) — oo(x2, X1)Z, K1(22,¢€))
we first note that the partial derivatives of EI with respect to its first and second arguments are
non-negative (provided in Lemma 1) and can be bounded above by 1 and ¢(0)/2+/r respectively
(leveraging Lemma 3). The derivative of the first argument with respect to € is the sum of:
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e the derivative of f; = min(fg, min p0(X1(e) + Co(X1(€))Z), whose absolute value is
bounded by the largest component of % to(X1(e)) + Co(X1(€)) Z;

° %Uo(.rg,Xl(G))Z.

Since pg, Co, and o are all continuously differentiable in €, © is contained within a compact set, and
the maximum of a continuous function over a compact set is finite, the magnitude of these quantities
can all be bounded above by a finite constant times |Z]|.

The derivative of the second argument is continuous in € (Lemma 2) and so has a maximum that is
similarly bounded above by a constant over ©.

Thus, \%Eh (X1(€), x2, Z)| is bounded above by a linear function | Z|, and a linear function of | Z|
is integrable.

B Additional Experiments

Here we include plots of numerical experiments discussed in the main paper, but that could not be
included there due to space constraints. Figure 4 shows computation time compared with EI, KG,
and GLASSES. Figure 5 shows mean performance across a collection of 8 widely used synthetic
benchmarks against common one-step heuristics.
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Figure 4: Run time benchmarks: 2-OPT is clear better than GLASSES and comparable to popular
one-step heuristics.
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Figure 5: Benchmarks of 2-OPT with common one-step heuristics: EI, PI, KG and GP-LCB on
eight common synthetic functions. 2-OPT outperforms the competitors on 7 out of 8 test functions,
although some of the one-step algorithms are known to be highly effective on these functions.
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