
Appendix A Modified ConvDRAW

Convolutional DRAW [21] is an instance of a deep variational auto-encoder [63, 64]. It has a recurrent
encoder and recurrent decoder with latent variables at each step, forming auto-regressive distributions
over the latent variables, Figure 7.

The decoder has a special layer named canvas, which accumulates the result into distribution over
inputs p(x|z). All the operations are convolutional, and all the states are three dimensional (spatial
times feature dimensions).

We introduce several modifications to the original formulation. First, we replaced the LSTM
recurrence by a product of tanh and sigmoid non-linearity, which halves the number of operations,
given the number of feature maps. This is part of the LSTM operation and was also used in [26].
Second, instead of passing a conditioning vector into the decoder, we create a separate network that
defines the prior over the latent variables. We find that this helps with conditioning. Finally, we
adaptively scale the input loss relative to the latent loss so as to achieve a set target accuracy on the
reconstructions, as described in [28].

Figure 7: Diagram of ConvDraw’s likelihood computation.

We use 8 iterations of the repeated operations (two are displayed in Figure 7). The input of size
64⇥ 64 is processed through two layer convolutional network with rectified linear units, with hidden
sizes 32 ⇥ 32 ⇥ 16 and 16 ⇥ 16 ⇥ 16. All the circles have have tanh sigmoid nonlinearity. The
encoder recurrent state (blue circles) is of size 8⇥ 8 (after tanh sigmoid multiplication) and the other
recurrent parts (orange and red circles) are of size 8⇥ 8⇥ 64. The decoder convolutional network
hidden layers are of size 16⇥ 16⇥ 32 and 32⇥ 32⇥ 32. The canvas is the size of the image and
contains the current reconstruction. We don’t model the variance. The error vector E is the difference
between the current canvas and the reconstruction. The kernel sizes of the convolutions between
layers that change stride are 4 ⇥ 4 and between those that don’t are 5 ⇥ 5. The first conditioning
operation (the first red circle) is applied four times before producing the first prior on z. No weights
are shared.

Appendix B Memory Architectures

Here we discuss the architectures used to aggregate the observations as well as perform prediction.
Such networks need to store a new information quickly and incorporate it into their belief state.
There are two places where recurrent networks store information - in activations and in weights. For
classic recurrent networks, the weights are updated by back-propagation, which is a slow process that
results in small updates at every time step. Therefore such networks need to form the belief state in
activations. For this type of network in our experiments, we use the standard LSTM [16].

We use two models that were developed as one shot memory architectures. The first one is that of
[18]. It is a slot based memory that at a given time step, takes a specific vector produced from the
input and an LSTM, and stores that vector in a new slot in memory. The memory starts empty at the
beginning of the episode and a new slot is allocated at every time step. Reading from memory is
done using an attention based mechanism. The advantage of such memory is that nothing is forgotten

14

and one does not need to learn how to write into the memory. The disadvantage is that new slots are
being allocated and written to even if nothing new is happening.

More appealing would be a mechanism that compares the current input to what is already stored in the
memory, and only makes updates necessary to incorporate the new information present in such input.
For such mechanism we use Kanerva machines [17], specifically the version in [65]. The Kanerva
machine is a generative model of exchangeable observations, in which the global latent variable
is used as a memory. Due to its statistical interpretation, writing into the memory is equivalent
to inferring the posterior distribution of this global latent variable given a new observation. This
inference is exact and efficient, since the linear Gaussian model underlying a Kanerva machine is
analytically tractable.

For all the types of RNNs (LSTM, LSTM+RMA, LSTM+Kanerva), we use the same network
architecture for both the belief state and the simulation networks. For the networks with memory, we
turn off writing into the memory in the simulation network. The LSTM’s in all the cases do not share
weights between the belief and simulation networks.

Appendix C Integrating Kanerva Machines with the RNNs

This section describes how to integrate a Kanerva Machine (KM) with an RNN, so it functions as an
external memory for the SimCore (LSTM + Kanerva in the main text). KMs were originally proposed
as unsupervised models trained with lower-bounds of log-likelihoods [17, 65]. Here we present a
simplification that works as black-box module, which is trained end-to-end by back-propagation with
the rest of the model without incurring any auxiliary loss function.

We use the dynamic version as in [65], which uses fully content-based addressing, requiring only a
word z as the input for either reading or writing. The optimal location for memory access is obtained
by solving a least-squares problem involving both z and memory mean matrix M [65]. At time
step t, the memory module takes as input the RNN’s previous output bt�1, and current action at
and embedding of the observation et. They are concatenated and linearly projected to obtain a read
word zr = L · concat(bt�1, at, et). zr is used to query the memory for a read-out, which is then
use as an input to the RNN, together with at and xt, for updating to bt. To update the memory, we
obtain a write word by passing through an MLP a similar concatenated vector using the new state bt:
zw = MLP (concat(bt, at, et)) The memory is updated as the posterior distribution conditioned on
zw. These operations are illustrated in Figure 8.

read

write

Linear MLP

Figure 8: Illustration of a dynamic Kanerva machine integrated with an RNN.

Appendix D Reinforcement learning framework

For all reinforcement learning experiments, we assume a standard setup where the agents interact with
the environment in discrete time steps and using a discrete set of actions. At a particular time step t

15

the agent with belief-state bt observes a frame xt, produces an action at and receives a reward rt. The
goal of the optimization is to maximize the discounted sum of rewards R(bt) = E [

P1
s=t �

s�trs|bt]
with a discount � and subject to entropy regularization of the policy.

The agents are trained in a distributed setting using the IMPALA framework [19], which we describe
here briefly. There are N parallel ‘actors’ acting in an environment and collecting their experience in
a replay buffer. There is one learner which takes subsets of trajectories, forms a batch and performs
learning. The learning step consists of unrolling the recurrent core of the agent and computing the
losses and gradients. A given piece of experience is used only once and is only slightly off policy.
The policy loss and model loss are computed in the same networks, both passing gradients into the
main recurrent core.

Appendix E Data pre-processing for plotting

For all plots showing RL scores, position accuracy and map MSE we first smooth each individual
curves using an exponential moving window of length 10. We then sub-sample the curves using
linear interpolation, re-evaluating them at 128 points uniformly covering the x-axis range. The shown
error bars correspond to the 90% confidence region.

Appendix F Hyperparameters

The hyper-parameter values used in experiments are reported in Table 2. In addition, Table 3 and
Table 4 report the parameters for slot-based and Kanerva memory respectively. Please refer to [18]
and [65] for explanations of the memory models’ parameters.

Hyper-parameter Description Range
µ learning rate [0.0001-0.0002]
c policy entropy regularization [0.03-0.0005]
�1 Adam �1 [0, 0.95]
�2 Adam �2 [0.99, 0.999]
Lo Overshoot Length {1, 2, 3, 6, 12}
Lu Unroll Length [24-100]

Nt
Number of points used to evaluate
the generative loss per trajectory [6]

Ng
Number of points used to evaluate
the generative loss per overshoot [2]

Ns Number of ConvDRAW Steps [8]
Nh Number of units in LSTM [512-1024]

Table 2: Hyper-parameters used. Each reported experiment was repeated at least 3 times with different
random seeds. The reported curves for each model are the best we found with the hyper-parameters
in the ranges shown above.

Hyper-parameter Description Range
K memory size 1350
D word size 200
nr number of reads 3
nk top k entries for read 50

Table 3: Hyper-parameters used for RMA memory.

Appendix G GECO

It has been shown [28] that latent variable models defining a conditional density p✓(x, z) =
N (x|g✓(z),�)⇡✓(z) such as ConvDRAW and VAEs can achieve better sample-quality if we constrain

16

Hyper-parameter Description Range
K memory size 32
D word size 512
�n initial noise variance 1.0

write projection linear
read projection 2-layer MLP with hidden layer size 400

Table 4: Hyper-parameters used for Kanerva memory.

the reconstruction error to be not larger than a given threshold . A Lagrangian formulation of this
constrained optimization problem can be written as a min-max optimization instead of direct ELBO
maximization. More specifically, we train ConvDRAW following

✓?,�? = min
✓,�

max
�2[0,1000]

⇥
KL[q�(z|x);⇡✓(z)] + �E

⇥
kx� g✓(z)k2 �

⇤⇤
,

where q�(z|x) is an approximation to the posterior distribution p✓(z|x) with parameters �.

We look at the effect of the choice of in our belief-state model and observe empirically that there is
an optimal range of values with respect to map reconstruction. This analysis is shown in Figure 9.

Figure 9: Effect of the choice of GECO’s threshold on map-reconstruction using SimCore. We find
that a value ⇡ 1e-3 produces the best results for map reconstruction.

Appendix H Map decoding on Random City environment

Here we show additional map decoding samples for each of model in Figure 10.

Appendix I Procedurally generated terrain

We created a 64⇥ 64 procedurally generated terrain to analyze the belief state in a more naturalistic
environment, Figure 11. See the caption for a description and analysis.

We also show in Figure 12 the map decoding mse and a few map decoding samples along a single
trajectory.

Appendix J Extra levels and samples from the model

We also trained the agent on harder versions of the levels. The first level is a higher version of the
cliff where the agent learns to build longer staircase. The remaining two consists of food placed in an
even higher level locations, showing agent building high structures.

17

Figure 10: Additional map decoding samples for each model. All models were trained for the same
amount of iterations. For each model we show 8 samples for overshoot length Lo = 1 (left) and
8 samples for Lo = 12 (right). We used unroll length Lu = 100 and the maps were extracted at
time-step 70. These results confirm that the best models allow to decode the maps with substantially
more details compared to other baselines.

We show a number of rollouts from the model in different environments Figure 13 and Figure 14.
To make a rollout, we simulate deterministically in latent space. To obtain a frame, we sample from
the convDRAW model. If the simulation knows well what should be in a given frame, the sample
should match the actual frame. If it does not, either because of limitation of the model or because it
has not seen that part of the environment, it should sample something consistent with its knowledge,
but (most likely) different from the actual frame.

18

Figure 11: Terrain. The agent moves around a procedurally generated terrain. The first row in each of
the three sections show the frames seen by the agent (only a fraction of frames are shown to display a
large part of an episode). The second row shows top down view. Conditioned on state, we trained the
decoder to predict the top down view (without passing gradients into belief state formation). The third
row of each section shows the map reconstructed from the belief state. We also trained ConvDRAW
as a model of the map conditioned on the belief state. In the last three rows we show samples from
the model. If the agent is uncertain about parts of the map, the model should sample random pieces
of map in those locations. This environment is harder than the city environment in that it is larger
(64⇥ 64), the speed of the agent is slower and it is run in RL setting (with the goal of collecting 20
randomly placed yellow blocks). We see that the agent does form a map that persist for some time
but the map also fades away slowly the longer the agent does not see that part of the environment.

19

Figure 12: Illustration of the Map decoding MSE along a single trajectory in the procedural terrain
environment. At each inset we can see from top to bottom: the true top-view, the decoded top-view
and the first-person-view at the same time. This graph show that the Map MSE decreases along
a single trahjectory, indicating that the model was successful at accumulating and remembering
evidence about the environment’s layout.

20

Figure 13: Inputs and samples from the building levels. First two rows show input and samples from
the model. These continue into the row three and four. Then, the process repeats for another example.
Top rows shows agent simulating building stairs. The second set shows the level with food placed at
high location and the last set shows the agent building a tower to climb to a platform.

21

Figure 14: Inputs and samples from the terrain environment.

22

Appendix K SimCore python pseudo-code
1 """ Unrolls the model starting from a random subset of agent states and

calculates the model likelihoods at random points.

2 """

3

4 import sonnet as snt

5 import tensorflow as tf

6

7

8 def swap_time_batch(t):

9 return nest.map_structure(

10 lambda x: tf.transpose(x, [1, 0] + range(2, x.shape.ndims)), t)

11

12

13 def extract_patches_1d(x, window_size):

14 """ Extracts 1D patches.

15

16 Extracts 1D patches of fixed window on the time dimension.

17

18 Args:

19 x: Tensor of shape [T, ...].

20 window_size: Int. Size of the window.

21

22 Returns:

23 Tensor of shape [window_size , T - window_size + 1, ...].

24 """

25 s = x.get_shape ().as_list ()

26 if len(s) > 2:

27 x = tf.reshape(x, (s[0], -1))

28 x = tf.expand_dims(tf.expand_dims(x, 0), -1) # [1, T, B, 1].

29

30 batched_x = tf.extract_image_patches(

31 x,

32 ksizes =(1, window_size , 1, 1),

33 strides =(1, 1, 1, 1),

34 rates=(1, 1, 1, 1),

35 padding=’VALID’)

36 # [window , B’, ...].

37 batched_x = tf.transpose(tf.squeeze(batched_x , 0), (2, 0, 1))

38 new_shape = batched_x.get_shape ().as_list ()

39 return tf.reshape(batched_x , new_shape [:2] + s[1:])

40

41

42 def unroll_sim(core , indices , init_states , inputs , sim_length):

43 """ Unrolls a sim core."""

44

45 # Returns possibly nested [D, T’, B, ...]

46

47 def f1(x):

48 y = extract_patches_1d(x[1:], sim_length)

49 yt = swap_time_batch(y)

50 yt = tf.gather(yt , indices)

51 return swap_time_batch(yt)

52

53 staggered_inputs = nest.map_structure(f1 , inputs)

54 shape = nest.flatten(staggered_inputs)[0]. shape.as_list ()

55 staggered_inputs = nest.map_structure(snt.MergeDims (1, 2),

56 staggered_inputs) # [D, T’ *

B, ...]

57

58 init_states = nest.map_structure(lambda x: tf.gather(x, indices),

init_states)

59 initial_state = nest.map_structure(snt.MergeDims(0, 2), init_states)

60

23

61 sim_outputs , _ = tf.nn.dynamic_rnn(

62 core ,

63 inputs=staggered_inputs ,

64 initial_state=initial_state ,

65 time_major=True)

66

67 resh = lambda x: tf.reshape(x, shape [:3] + x.shape.as_list () [2:])

68 sim_outputs = nest.map_structure(resh , sim_outputs) # [D, T’, B,

...]

69

70 return sim_outputs

71

72

73 class SimCoreHead(snt.AbstractModule):

74 """ Model loss head.

75

76 From states of the trajectory , unrolls sim core at random subset of

indices ,

77 and applies generative model loss at a random index of the rollout

.

78

79 Args:

80 core: simcore rnn core (instance of snt.RNNCore).

81 model: Class implementing a conditional generative model of frames

.

82 sim_length: Number of steps the sim core is unrolled (overshoot

length).

83 num_to_model_time: number of model rollouts to using (each rollout

will start from a random point in the trajectory),

84 num_to_model_sim: how many indices along each rollout to compute

the model ’s loss.

85

86 Returns:

87 loss

88 """

89

90 def __init__(self ,

91 core ,

92 model ,

93 sim_length ,

94 num_to_model_time ,

95 num_to_model_sim ,

96 name=’model_sim_head ’):

97 super(SimCoreHead , self).__init__(name=name)

98 self._core = core

99 self._model = model

100 self._sim_length = sim_length

101 self._num_to_model_time = num_to_model_time

102 self._num_to_model_sim = num_to_model_sim

103

104 def _build(self , frames , actions , states):

105 """ Connects simulation and model.

106

107 Arguments are in the format: time x batch x ...

108

109 Args:

110 frames: Input frames (used for prediction)

111 actions: Actions that led to a given frame in one hot format

112 states: The belief states of an agent - the states of the rnn

that

113 forms the belief states

114

115 Returns:

116 loss

117 """

24

118 seq_length = nest.flatten(states)[0]. shape.as_list ()[0]

119

120 # Extract indices from which to do sim rollouts

121 sim_time_indices = tf.random.shuffle(

122 tf.range(seq_length - self._sim_length , dtype=tf.int32))

123 sim_time_indices = sim_time_indices [:self._num_to_model_time]

124

125 # Unroll sim. Returns tensors of shape:

126 # [sim_length , num_to_model_time , batch , spatial dims ...]

127 sim_outputs = unroll_sim(

128 self._core , sim_time_indices , states , actions , self.

_sim_length)

129

130 # Select states for conditioning and corresponding frames for

modeling

131 dt = tf.random.shuffle(tf.range(self._sim_length , dtype=tf.int32))

132 dt = dt[:self._num_to_model_sim]

133 model_cond = nest.map_structure(

134 lambda x: snt.MergeDims (0, 3)(tf.gather(x, dt)), sim_outputs)

135 frame_indices = snt.MergeDims(

136 0, 2)(1 + tf.expand_dims(dt, 1) + tf.expand_dims(

sim_time_indices , 0))

137 frames_dt = snt.MergeDims(0, 2)(tf.gather(frames , frame_indices))

138

139 # Model update

140 model_result = self._model(frames_dt , model_cond)

141 loss = tf.reduce_mean(model_result[’loss’])

142

143 return loss

Listing 1: SimCore Loss Pseudo-Code.

25

