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Appendix A Model and optimization details

Our optimizer matches that of BigGAN [2] – we use Adam [7] with batch size 2048 and the same
learning rates and other hyperparameters, using the G optimizer to update E simultaneously, with
the same alternating optimization: two D updates followed by a single joint update of G and E . (We
do not use orthogonal regularization used in [2], finding it gave worse results in the unconditional
setting, matching the findings of [8].) Spectral normalization [9] is used in G and D, but not in E .
Full cross-replica batch normalization is used in both G and E (including for the linear classifier
training on E features used for evaluations). We also apply exponential moving averaging (EMA)
with a decay of 0.9999 to the G and E weights in all evaluations. (We find this results in only a small
improvement for E evaluations, but a substantial one for G evaluations.)

At BigBiGAN training time, as well as linear classification evaluation training time, we preprocess
inputs with ResNet [6]-style data augmentation, though with crops of size 128 or 256 rather than
2241.

For linear classification evaluations in the ablations reported in Table 1 (main text), we hold out
10K randomly selected images from the official ImageNet [11] training set as a validation set and
report accuracy on that validation set, which we call trainval. All results in Table 1 (main text) are
run for 500K steps, with early stopping based on linear classifier accuracy on our trainval split. In all
of these models the linear classifier is initialized to 0 and trained for 5K Adam steps with a (high)
learning rate of 0.01 and EMA smoothing with decay 0.9999. We have found it helpful to monitor
representation learning progress during BigBiGAN training by periodically rerunning this linear
classification evaluation from scratch given the current E weights, resetting the classifier weights to 0
before each evaluation.

In Table 2 (main text) we extend the BigBiGAN training time to 1M steps, and report results on the
official validation set of 50K images for comparison with prior work. The classifier in these results is
trained for 100K Adam steps, sweeping over learning rates {10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2},
again applying EMA with decay 0.9999 to the classifier weights. Hyperparameter selection and
early stopping is again based on classification accuracy on trainval. As in [2], FID is reported against
statistics over the full ImageNet training set, preprocessed by resizing the minor axis to the G output
resolution and taking the center crop along the major axis, except as noted in Table 3 (main text),
where we also report FID against the validation set for comparison with [8].

All models were trained via TensorFlow [1] and Sonnet [10] with data parallelism on TPU pod
slices [5] using 32 to 512 cores, coordinated by TF-Replicator [3].

Supervised model performance. In Table 1 we present the results of fully supervised training with
the model architectures used in our experiments in Section 3 (main text) for comparison purposes.

1Preprocessing code from the TensorFlow ResNet TPU model: https://github.com/tensorflow/tpu/
tree/master/models/official/resnet.
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Architecture Top-1 Top-5

ResNet-50 76.3 93.1
ResNet-101 77.8 93.8
RevNet-50 71.8 90.5
RevNet-50 ×2 74.9 92.2
RevNet-50 ×4 76.6 93.1

Table 1: ImageNet validation set accuracy for fully supervised end-to-end training of the model
architectures used in our representation learning experiments.

(a) RevNet ×4 (b) + ↑ E LR

Figure 1: Visualization of first layer convolutional filters for our unsupervised BigBiGAN models
with the RevNet ×4 E architecture, which includes 1024 filters. (Best viewed with zoom.)

First layer convolutional filters. In Figure 1 we visualize the learned convolutional filters for the
first convolutional layer of our BigBiGAN encoders E using the largest RevNet ×4 E architecture.
Note the difference between the filters in (a) and (b) (corresponding to rows RevNet ×4 and RevNet
×4 (↑ E LR) in Table 1 (main text)). In (b) we use the higher E learning rate and see a corresponding
qualitative improvement in the appearance of the learned filters, with less noise and more Gabor-like
and color filters, as observed in BiGAN [4]. This suggests that examining the convolutional filters of
the input layer can serve as a diagnostic for undertrained models.
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Samples Reconstructions
Model Image IS (↑) FID (↓) Image Rel. `1 Error % (↓)
Base Figure 2 24.10 30.14 Figure 3 70.54
Light Augmentation Figure 4 27.09 20.96 Figure 5 72.53
High Res E (256) Figure 6 24.91 26.56 Figure 7 70.60
High Res G (256) Figure 8 25.73 37.21 Figure 9 77.70

Table 2: Links to BigBiGAN samples and reconstructions with associated metrics.

Appendix B Samples and reconstructions

In this Appendix we present BigBiGAN samples and reconstructions from several variants of the
method. Table 2 includes pointers to samples and reconstruction images, as well as relevant metrics.
The samples were selected by best FID vs. training set statistics, and we show the IS and FID
along with sample images at that point. The reconstructions were selected by best (lowest) relative
pixel-wise `1 error, the error metric presented in Table 2, computed as:

ERel`1 =
Ex∼Px ||x− G(E(x))||1

Ex,x′∼Px ||x′ − G(E(x))||1
,

where x and x′ are independent data samples, and ||x′−G(E(x))||1 serves as a “baseline” reconstruc-
tion error relative to a “random” input. For example, with a random initialization of G and E , we have
ERel`1 ≈ 1. This relative metric penalizes degenerate reconstructions, such as the mean image, which
would sometimes achieve low absolute reconstruction error despite having no perceptual similarity
to the inputs. despite that the resulting images having no perceptual similarity to the inputs. In
practice, given N data samples x0,x1, . . . ,xN−1 (we use N = 50K), we estimate the denominator
by comparing each sample xi with a single neighbor x(i+1)modN , computing:

ERel`1 ≈
∑N−1

i=0 ||xi − G(E(xi))||1∑N−1
i=0 ||x(i+1)modN − G(E(xi))||1

Iterated reconstruction To further explore the behavior of a BigBiGAN (or any other model
capable of approximately reconstructing its input), we can “iterate” the reconstruction operation. In
particular, let Ri(x) be defined for non-negative integers i and input images x as:

R0(x) = x

Ri+1(x) = G(E(Ri(x)))

In Figure 10 we show the results of up to 500 steps of this process for a few sample images.
Qualitatively, the first several steps of this process often appear to retain some semantics of the
input image x. After dozens or hundreds of iterations, however, little content from the original input
apparently remains intact.
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Figure 2: 128× 128 samples x̂ ∼ G(z) from an unsupervised BigBiGAN generator G, trained using
the Base method from Table 1 (main text).
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Figure 3: 128× 128 reconstructions from an unsupervised BigBiGAN model, trained using the Base
method from Table 1 (main text). The top rows of each pair are real data x ∼ Px, and bottom rows
are generated reconstructions computed by G(E(x)).
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Figure 4: 128× 128 samples x̂ ∼ G(z) from an unsupervised BigBiGAN generator G, trained using
the lighter augmentation from [8] with generation results reported in Table 3 (main text).
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Figure 5: 128 × 128 reconstructions from an unsupervised BigBiGAN model, trained using the
lighter augmentation from [8] with generation results reported in Table 3 (main text). The top rows of
each pair are real data x ∼ Px, and bottom rows are generated reconstructions computed by G(E(x)).
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Figure 6: 128× 128 samples x̂ ∼ G(z) from an unsupervised BigBiGAN generator G, trained using
the High Res E (256) configuration from Table 1 (main text).
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Figure 7: 128 × 128 reconstructions of 256 × 256 encoder input images from an unsupervised
BigBiGAN model, trained using the High Res E (256) configuration from Table 1 (main text).
Reconstructions are upsampled from 128× 128 to 256× 256 for visualization. The top rows of each
pair are real data x ∼ Px, and bottom rows are generated reconstructions computed by G(E(x)).
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Figure 8: 256× 256 samples x̂ ∼ G(z) from an unsupervised BigBiGAN generator G, trained with a
high-resolution E and G (High Res G (256) from Table 1 (main text)).
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Figure 9: 256× 256 reconstructions from an unsupervised BigBiGAN model, trained with a high-
resolution E and G (High Res G (256) from Table 1 (main text)). The top rows of each pair are real
data x ∼ Px, and bottom rows are generated reconstructions computed by G(E(x)).
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R0 : R9 R10 : R500 R0 : R9 R10 : R500 R0 : R9 R10 : R500

Image 1 Image 2 Image 3

Figure 10: Iterated reconstructions from an unsupervised BigBiGAN model, trained using the ResNet
(↑ E LR) method from Table 1 (main text), computed by recursively running the reconstruction
operation G(E(·)) on its own output as described in Appendix B. In each pair of columns, the left
column shows a real input image R0 at the top, and R1 through R9 in the remaining rows, the results
of iterating reconstruction one to nine times, The right column shows the result of up to 500 iterations
sampled at longer intervals, displaying R10, R20, R30, R40, R50, R100, R200, R300, R400, and R500.
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Top-1 / Top-5 Acc. (%)
Metric k = 1 k = 5 k = 25 k = 50

D1 38.09 / - 41.28 / 58.56 43.32 / 65.12 42.73 / 66.22
D2 35.68 / - 38.61 / 55.59 40.65 / 62.23 40.15 / 63.42

Table 3: Accuracy of k nearest neighbors classifiers in BigBiGAN feature space on the ImageNet
validation set. We report results under the normalized `1 distance D1 as well as the normalized `2
(cosine) distance D2.

Appendix C Nearest neighbors

In this Appendix we consider an alternative way of evaluating representations — by means of k
nearest neighbors classification, which does not involve learning any parameters during evaluation
and is even simpler than learning a linear classifier as done in Section 3 (main text). For all results in
this section, we use the outputs of the global average pooling layer (a flat 8192D feature) of our best
performing model, RevNet ×4, ↑ E LR. We do not do any data augmentation for either the training or
validation sets: we simply crop each image at the center of its larger axis and resize to 256× 256.

We use a normalized `1 or `2 distance metric as our nearest neighbors criterion, defined as Dp(a, b) =∣∣∣∣∣∣ a
||a||p −

b
||b||p

∣∣∣∣∣∣
p
, for p ∈ {1, 2}. (D2 corresponds to cosine distance.) For label predictions with

multiple neighbors (k > 1), we use a simple counting scheme: the label with the most votes is
selected as the prediction. Ties (multiple labels with the same number of votes) are broken by k = 1
nearest neighbor classification among the data with the tied labels.

Quantitative results. In Table 3 we present k nearest neighbors classification results for k ∈
{1, 5, 25, 50}. Across all k, the `1-based metric D1 outperforms D2, and the remainder of our
discussion refers to the D1 results. With just a single neighbor (k = 1) we achieve a top-1 accuracy
around 38%. Top-1 accuracy reaches 43% with k = 25, dropping off slightly at k = 50 as votes from
more distant neighbors are added.

Qualitative results. Figure 11 shows sample nearest neighbors in the ImageNet training set for
query images in the validation set. Despite being fully unsupervised, the neighbors in many cases
match the query image in terms of high-level semantic content such as the category of the object
of interest, demonstrating BigBiGAN’s ability to capture high-level attributes of the data in its
unsupervised representations. Where applicable, the object’s pose and position in the image appears
to be important as well – for example, the nearest neighbors of the RV (row 2, column 2) are all
RVs facing roughly the same direction. In other cases, the nearest neighbors appear to be selected
primarily based on the background or color scheme.

Discussion. While our quantitative k nearest neighbors classification results are far from the state of
the art for ImageNet classification and significantly below the linear classifier-based results reported
in Table 2 (main text), note that in this setup, no supervised learning of model parameters from labels
occurs at any point: labels are predicted purely based on distance in a feature space learned from
BigBiGAN training on image pixels alone. We believe this makes nearest neighbors classification an
interesting additional benchmark for future approaches to unsupervised representation learning.
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Figure 11: Nearest neighbors in BigBiGAN E feature space, from our best performing model (RevNet
×4, ↑ E LR). In each row, the first (left) column is a query image, and the remaining columns are its
three nearest neighbors from the training set (the leftmost being the nearest, next being the second
nearest, etc.). The query images above are the first 24 images in the ImageNet validation set.
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Figure 12: Image generation learning curves for several of the ablations in Section 3 (main text),
including a comparison of BigBiGAN to standard GAN. Legend entries correspond to the following
rows in Table 1 (main text): Base, No E (GAN), and High Res E (256).

Appendix D Learning curves

In this Appendix we present learning curves showing how the image generation and representation
learning metrics that we measured evolve throughout training, as a more detailed view of the results
in Section 3 (main text), Table 1 (main text). We include plots for the following results:

• Image generation (Figure 12)

• Latent distribution Pz and stochastic E (Figure 13)

• Unary loss terms (Figure 14)

• G capacity (Figure 15)

• High resolution E with varying resolution G (Figure 16)

• E architecture (Figure 17)

• Decoupled E /G learning rates (Figure 18)
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Figure 13: Image generation and representation learning curves for the latent space variations explored
in Section 3 (main text). Legend entries correspond to the following rows in Table 1 (main text):
Base, Deterministic E , and Uniform Pz.
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Figure 14: Image generation and representation learning curves for the unary loss component
variations explored in Section 3 (main text). Legend entries correspond to the following rows in
Table 1 (main text): Base, x Unary Only, z Unary Only, and No Unaries (BiGAN).
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Figure 15: Image generation and representation learning curves for the G size variations explored in
Section 3 (main text). Legend entries correspond to the following rows in Table 1 (main text): Base,
Small G (32), and Small G (64).
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Figure 16: Image generation and representation learning curves for high resolution E with varying
resolution G explored in Section 3 (main text). Legend entries correspond to the following rows in
Table 1 (main text): High Res E (256), Low Res G (64), and High Res G (256).
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Figure 17: Image generation and representation learning curves for the E architecture variations
explored in Section 3 (main text). Legend entries correspond to the following rows in Table 1 (main
text): High Res E (256), ResNet-101, ResNet ×2, RevNet, RevNet ×2, and RevNet ×4.
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Figure 18: Image generation and representation learning curves showing the effect of decoupling
the E and G optimizers to train E with 10× higher learning rate. Legend entries correspond to the
following rows in Table 1 (main text): High Res E (256), ResNet (↑ E LR), RevNet ×4, and RevNet
×4 (↑ E LR).
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