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A Supplementary material: missing proofs

A.1 Proof of Lemma 5

Proof. From the Davis-Kahan sin © theorem, ||II — II||; < 2||E||2/Ay therefore ||II — || <

2Vk||E||2/Ay. This implies that IT = II + E’, where E' € R™? and ||E/||p < 2VE|E|2/Ar.
Then

A\k — Ag :ﬁ(A+E)—Ak
=+ E)(A+E)— A
=IIE+FEA+FEE
Third equation is from the fact that ITA = Ag. Thus the H in the statement can be setto £’ A + E'E.

Let us bound its norm. We have | E’A||r < ||E’|| || All2 = M\1||E’|| . The next term can similarly
be bounded by ||E’|| ¢|| E||2- Combining these implies the claim. O

A.2 Proof of Lemma 7
Proof. The proof requires relating Ay, because it is easier to obtain a bound on H ||Ek — Akl Hq .
Let us write A, — A* as (A, — Ag) + (Ax — A*). As in the proof of Lemma 5,

|Ax = Apllr = [ITH(A + E) — TA||

< (T~ WAl + ] -
T 2VEM|E 3vVEMIE
< -1, + VBBl < 2NIEL gy, o SYEMIELL,

Now for the second term, using triangle inequality,

14" = Aullr = B[4 — Adllr < E[l A — Aulle]

N sVi[IE]: |
< |1~ ], < .
< || 1Ak = Axllp " A
Thus we have
) N 6ViM[I1 ]2 |
(14 = astie|| < |14 = Aulle|) |+ 114" = Aule < 1
1 1 Ay
Using Lemma 3 from [6] now completes the proof. O

A.3 Proof of Theorem 8

Proof.

e * 1 < 2 (e *
1A = Al =1l - 30 AY = A%l
=1

AW — A* € R, Let us define Y; as a R?” vector which is equal to the flattened A\”) — A* matrix.
Now 5 5572, ¥ill = 1 57 A — 4% 5] = 0ana 11|, < 420 /S0 fora
1

constant C';. Using Lemma 4 in [6] (which is a consequence of Theorem 2.5 of [3]), for a constant

3For any matrices X,Y, | XY||r < || X||»||Y]2. (This is easy to show, by observing how Y acts on the
rows of X.)
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1 Y,
oz 22, =I5
=1 =1
- A ENTr(A)
< 2 M 1
- ; zC1 A2 n
< Cgﬁ k)\lT’I"(A)
Ak mn
This completes the proof. O

A.4 Proof of Theorem 9

Proof. Let us define B,=1 Zze[m] AW — A 2 . By definition, B, = A — Ay, where A is simply
L =D e[m A We start by showing some basic properties about A Ak and Bk

First, note that Ais the empirical average (over m machines) of g(i), and each such matrix is the
empirical average (over n) samples of xz”. Since samples across and within machines are all i.i.d.,
the difference A — A is simply the error in the estimate of A using mn i.i.d. samples « ~ D. Thus,
using Lemma 3 of [6], we have

A Tr(A
’ L() 5)
mn
From Theorem 1, we have that for any § > 0, with probability at least 1 — 4,
~ K1 %)
A — A <[|— log(1/9). 6
e - L ©

Let II denote the projection matrix onto the span of the top k SVD directions of A, and [T+ = I — II.
We will also denote x = “* + \/W for convenience.

Next, we claim that || TLBy || is O(x log(1/8)) with high probability. To see this, write B, = A— A, =
(A— Ap)+ (A — Ag) — (A — A). Now, II(A — A,) = 0, by definition. Thus, using (6) and (5),
the claim follows.

Note that our goal is not to reason about the eigenvalues of ﬁk, but the eigenvalues of Xt, where
t > k. To this end, we define B’ = o Zle (A( /TS)). By definition, we have B’ = th — Ek_

Now, let us relate B’ and Bk. Note that for any machine, 29 — Eg) < A — ﬁl(f), by definition.
Thus by taking averages, we have that B’ < By.

We will now argue that with probability > 1 — 6,
B' =TI*B'TI* + E, where ||E| < O(x)log(1/6). (7)
To see this, let us expand the first term on the RHS using I+ = (I — II):
[I* BT+ = B’ — BNl - 1IB' + IIB'IL

Now, since B’ < By, we have || B'II|| < || BiII|| < O(x)log(1/4), by the earlier claim. Thus the
last three terms are all bounded in norm by O(x) log(1/6), and hence we have the desired bound on
IE]-

Putting (6) and (7) together, we have that with probability at least 1 — 6,
Ay = A+ B' = Ay + I-B'TIY + E, where ||E'|| < O(k)log(1/6).

Now, because Aj, and I+ B’IT+ are in orthogonal spaces, the eigenvalues of A, 4 IT+B/II+ are
precisely the union of the eigenvalues of the two matrices. The eigenvalues of A are simply
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A, .oy Ak We claim that Apax(B') < Agy1 + O(k) log(1/6), with probability at least (1 — ).

This can be shown as follows. First, since B’ < By, it suffices to bound Apax(By). Since By, =

(A— Ag) + (A — Ax) — (A — A), using (5) and (6), it follows that with probability at least 1 — 4,
)\max(ék) < Amax(A — Ag) + O(klog(1/6)) = A1 + O(klog(1/0)).

Thus, due to the gap between \;, and Ay 1, the top k eigenvalues of A; + II+B'II+ are exactly

A1, ..., Ax. Thus by Weyl’s inequality, the eigenvalues of A; satisfy (3). This completes the
proof. O
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