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Theorem 1. If Ro, Rs are two rules of length T obtained by optimizing the objective related to ΩI
H

,
with confidence values αo, αs, then there exists ` rules of length T , R1, R2, · · · , R`, with confidence
values α1, α2, · · · , α` such that:

d(Ro, R1) = d(R`, Rs) = 1 and d(Ro, Rs) ≤ `+ 1,

d(Rl, Rl+1) = 1 and αl ≥ min(αo, αs) for 1 ≤ l ≤ `,

where d(., .) is a distance between two rules of the same size defined as the number of mismatched
atoms between them.

Proof. Define:
a∗

.
= arg max

a
OI

H
(a) =

∑
(x,H,y)∈KG

vT
x ΩI

H
(a)vy,

where OI
H(a), is the objective related to the ΩI

H
(a) model. The confidence value of a rule of length

T , for instance S, with body Br1 ∧Br2 ∧ · · · ∧BrT , is

α∗S =

T∏
i=1

a∗i,ri .

Therefore changing a body atom Bri to Br′i
in S, does not decrease the confidence value iff a∗i,ri ≤

a∗i,r′i
. Let a∗i,r∗i be the maximum element of the sequence a∗i,1, · · · , a∗i,|R|. By consequently changing

Bri in S toBr∗i
(for i’s where r∗i 6= ri) we obtain a sequence of rules of length T, with non-decreasing

confidence values. The distance between any two consecutive elements in that sequence is 1. The last
element of the sequence (S∗) is the rule with the highest confidence value among length T rules, and
the length of the sequence is d(S, S∗) + 1.

To prove the theorem, it is sufficient to substitute S with Ro and Rs to obtain two sequences of rules,
with lengths d(Ro, S

∗) + 1 and d(Rs, S
∗) + 1, respectively. by reversing the sequence related to Rs

and concatenate it with the other sequence, we have a sequence of length d(Ro, S
∗) + d(Rs, S

∗) + 1,
satisfying the conditions required to prove the theorem (after excluding Ro and Rs).

The confidences values for the rules in the sequence satisfy the condition αl ≥ min(αo, αs), because
all the rules in the sequence related to Rs (Ro) and S∗ have larger or equal confidence value to
Rs (Ro). And since d(., .) is a valid distance function it satisfies the triangle inequality; therefore
d(Ro, Rs) ≤ d(Ro, S

∗) + d(Rs, S
∗), which implies d(Rs, Ro) ≤ `+ 1.
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Table 1: Comparison with other reasoning methods, an extension to the table 2 in the paper

Datasets UMLS Kinship
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ConvE 0.94 0.92 0.96 0.99 0.83 0.98 0.92 0.98
ComplEx 0.89 0.82 0.96 1 0.81 0.7 0.89 0.98
MINERVA 0.82 0.73 0.90 0.97 0.72 0.60 0.81 0.92
NTP1 0.88 0.82 0.92 0.97 0.6 0.48 0.7 0.78
NTP-λ1 0.93 0.87 0.98 1 0.8 0.76 0.82 0.89
NTP 2.0 0.76 0.68 0.81 0.88 0.65 0.57 0.69 0.81
DRUM 0.81 0.67 0.94 0.98 0.61 0.46 0.71 0.91

Table 2: Transductive link prediction results

WN18 FB15K
Hits Hits

MRR @10 @3 @1 MRR @10 @3 @1

DistMult .822 .936 .914 .728 .XXX .XXX .XXX XXX
ComplEx .941 .947 .936 .936 XXX XXX XXX XXX
Gaifman – .939 – .761 – – – –
R-GCN .814 .964 .929 .697 XXX XXX XXX XXX
TransE .495 .943 .888 .113 XXX XXX XXX XXX
ConvE .943 .956 .946 .935 XXX XXX XXX XXX

Neural LP .94 .945 – – XXX XXX – –
DRUM .944 .954 .943 .939 XXX XXX XXX XXX

Table 3: Transductive link prediction results

WN18
Hits

MRR @10 @3 @1

DistMult .822 .936 .914 .728
ComplEx .941 .947 .936 .936
Gaifman – .939 – .761
R-GCN .814 .964 .929 .697
TransE .495 .943 .888 .113
ConvE .943 .956 .946 .935

Neural LP .94 .945 – –
DRUM .944 .954 .943 .939

Head brother(., .) wife(., .) son(., .)

NeuralLP

(B, A) � inv_sister(B, A)
(C, A) � inv_sister(B, A), inv_sister(C, B)
(C, A) � inv_brother(B, A), inv_sister(C, B)
(B, A) � inv_brother(B, A)
(C, A) � inv_sister(B, A), inv_brother(C, B)
(C, A) � inv_brother(B, A), inv_brother(C, B)
(B, A) � son(B, A)
(C, A) � inv_sister(B, A), son(C, B)
N/A
N/A

(C, A) � inv_husband(B, A), inv_husband(C, B)
(B, A) � inv_husband(B, A)
(C, A) � daughter(B, A), inv_husband(C, B)
(C, A) � wife(B, A), inv_husband(C, B)
(C, A) � inv_husband(B, A), mother(C, B)
(C, A) � mother(B, A), inv_husband(C, B)
N/A
N/A
N/A
N/A

(C, A) � son(B, A), brother(C, B)
(B, A) � brother(B, A)
(C, A) � son(B, A), inv_mother(C, B)
(C, A) � inv_mother(B, A), brother(C, B)
(B, A) � inv_mother(B, A)
(C, A) � inv_mother(B, A), inv_mother(C, B)
(C, A) � inv_husband(B, A), brother(C, B)
(C, A) � inv_father(B, A), brother(C, B)
(C, A) � inv_husband(B, A), inv_mother(C, B)
(C, A) � inv_father(B, A), inv_mother(C, B)

DRUM

(C, A) � nephew(A, B), uncle(B, C)
(C, A) � nephew(A, B), inv_nephew(B, C)
(C, A) � brother(A, B), sister(B, C)
(C, A) � brother(A, B), inv_sister(B, C)
(C, A) � brother(A, B), inv_brother(B, C)
(C, A) � brother(A, B), brother(B, C)
(C, A) � nephew(A, B), inv_niece(B, C)
(C, A) � nephew(A, B), aunt(B, C)
(C, A) � inv_uncle(A, B), uncle(B, C)
(C, A) � inv_uncle(A, B), inv_nephew(B, C)

(A, B) � inv_husband(A, B)
(C, A) � mother(A, B), inv_father(B, C)
(C, A) � inv_son(A, B), inv_father(B, C)
(C, A) � mother(A, B), son(B, C)
(C, A) � inv_son(A, B), son(B, C)
(C, A) � mother(A, B), daughter(B, C)
(C, A) � inv_son(A, B), daughter(B, C)
(C, A) � inv_daughter(A, B), inv_father(B, C)
(C, A) � inv_daughter(A, B), son(B, C)
N/A

(C, A) � nephew(A, B), brother(B, C)
(C, A) � brother(A, B), inv_mother(B, C)
(C, A) � brother(A, B), daughter(B, C)
(C, A) � brother(A, B), son(B, C)
(C, A) � brother(A, B), inv_father(B, C)
(C, A) � inv_sister(A, B), inv_mother(B, C)
(C, A) � inv_sister(A, B), daughter(B, C)
(C, A) � inv_sister(A, B), son(B, C)
(C, A) � inv_sister(A, B), inv_father(B, C)
(C, A) � inv_uncle(A, B), brother(B, C)

Table 4: Examples of top rules obtained by each system learned on family dataset
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