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A Multivariate Likelihood

The probability density function of a multivariate normal distribution can be expressed as

φµ,Σ(x) =
1√

(2π)d|L|
exp

(
−1

2
||L−1(x− µ)||2

)
where µ ∈ Rd and L ∈ Rd×d is the Cholesky factor of the covariance matrix Σ = LLT . This form
is particularly amenable to computation using common neural network frameworks, as we only need
to compute the determinant of a triangular matrix and solve a triangular system, which can both be
done in O(d2).

This approach works in modest dimensions, but the quadratic cost in computational time and number
of parameters becomes prohibitive when considering larger dimensions. This issue can be avoided
by utilizing a low-rank matrix Σ = D + V V T , where D ∈ Rd×d and diagonal, and V ∈ Rd×r
where r � d is a rank hyper-parameter. This parametrization of the covariance matrix also arises
from the factor analysis model [18, 13, 3, 12], i.e. as the marginal distribution of x under the latent
variable model

y ∼ N (0, I), x ∼ N (V x, D)

When the covariance matrix is restricted in this way, it has O(dr) parameters, and the Gaussian
likelihood can be computed in O(dr2 + r3) time.

In particular, the log-likelihood log φµ,Σ(x) can be evaluated by first computing an r-by-r matrix
C = Ir + V TD−1V in O(dr2) time, followed by computing its Cholesky decomposition C =
LCL

T
C in O(r3) time. Using the matrix determinant lemma in [7] we can write

log |Σ| = log |D + V V T |
= log |C|+ log |D|
= 2 log |LC |+ log |D|

which can be computed in O(d + r) as LC and D are triangular. Given LC , the Mahalanobis
distance xTΣ−1x can also be computed efficiently. By the Woodbury matrix identity we have
Σ−1 = D−1 −D−1V C−1V TD−1. We can then write,

xTΣ−1x = xT (D−1 −D−1V C−1V TD−1)x

= xTD−1x− xT (D−1V C−1V TD−1)x

= xTD−1x− yTC−1y, with y = V TD−1x

= xTD−1x− ||L−1
C y||2

The first term of the final equality can be computed in O(d) and the second term can be computed
with back-substitution in O(r2), so that the total time is O(dr2 + r3) and the number of parameters
is O(dr).

The factor analysis latent variable model is closely related to PCA [21]: If we restrict the diagonal
matrix D to a multiple of the identity matrix, D = ψI , we obtain a probabilistic version of PCA,
from which the classical PCA can recovered in the limitψ → 0. Previous work [19] has applied PCA
as a preprocessing step for uncovering latent structure. Here we propose an end-to-end approach that
learns the structure of the covariance matrix jointly with the time series model.

B Empirical CDF

The naive empirical CDF estimator can exhibit large variance and the following truncated estimator
from [10] is used instead:

F̃i(v) =


δm if F̂i(v) < δm
F̂i(v) if δm ≤ F̂i(v) ≤ 1− δm
1− δm if F̂i(v) > 1− δm

,
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where choosing δm = 1
4m1/4

√
π logm

strikes the right bias-variance trade-off [10].

Further, we add jitter noise at training when computing the mapping fi to smooth the CDF for
discrete data.

C Effect of rank on low-rank approximation

The effect of the low-rank approximation is analyzed in Figure 1 and Table 1 on the electricity
dataset. As expected, the negative log-likelihood training loss decreases as the rank r of V increases
in Figure 1. Table 1 shows the impact of the rank on the training/test loss. While the training
loss decreases as the rank is increased, our model reaches its best performance on the test dataset
with rank values 32/64. For higher ranks (128 and 256), the difference between training and test
loss increases. This indicates that the high rank models may over-fit to the training data due to the
flexibility of high-rank covariance matrix approximation.
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Figure 1: Training loss vs training time when in-
creasing rank on the electricity dataset.

rank test NLL train NLL

1 -291.4+/-8.2 -288.9+/-8.2
2 -306.2+/-6.7 -304.8+/-5.7
4 -319.3+/-4.9 -312.1+/-3.5
8 -333.6+/-7.7 -330.2+/-6.3
16 -334.8+/-4.9 -337.5+/-4.
32 -341.8+/-6.8 -345.2+/-17.0
64 -338.5+/-10.9 -360.5+/-10.7
128 -326.6+/-20.1 -393.7+/-26.1
256 -238.0+/-38.4 -423.1+/-20.7

Table 1: Error metrics when evaluating on the
electricity dataset with increasing rank. We show
the mean +/- 95% confidence interval over five
runs.

D Baseline additional description

The GARCH [22] (Generalize Orthogonal - Generalize Autoregressive Conditional Heteroskedastic-
ity) model is a composit model providing dynamics for the conditional mean and conditional covari-
ance matrix of a multivariate system. The model for the conditional mean is, here, an autoregressive
model of order one,

zi,t = αi + βizi,t−1 + εi,t.

Define εt = [ε1,t, ..., εN,t]
′. To predict the conditional covariance matrix, the GARCH model maps εt

to a set of F = min(N,T ) independent factors ft = [f1,t, ..., fF,t]
′, εt = Aft, where A is a time

independent, invertible matrix of dimension [N × F ]. The conditional variance σ2
j,t, j = [1, ..., F ]

of each of the factors is modeled using independent GARCH-type models, here a GARCH(1,0):

σ2
j,t = ωj + γjσ

2
j,t−1.

The linear mapping A and the factors f are estimated using the ICA method of [2, 24]. Let ft =

H
1/2
t xt, where xt is a vector of independent random variables with conditional mean zero and

conditional variance one. Ht is the diagonal matrix of conditional variances of the factors with
diagonal [σ2

1,t, ..., σ
2
F,t]. The conditional covariance matrix zt is then given by Σt = A′HtA. We

use the GARCH implementation of [5].

The VAR model is a multivariate linear vector auto-regression using lag 1 and a lag l where l corre-
sponds to the periodicity of the data,

zt = µ +B1zt−1 +Blzt−l + εt.

µ is a vector of intercepts of dimension [N×1], andB1 andBl are parameter matrices of dimension
[N×N ]. Letting zi = [zi,l+1, ..., zi,T ]′, xt = [z′t−1, z

′
t−l]
′, andX = [xl+1, ...,xT ]′, each individual

equation of the model can be written in stacked form as

zi = µi +Xθi + εi, (1)
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where µi is a scalar intercept parameter and θi is a parameter vector of length 2N .

The parameters of equation 1 are estimated by the Lasso implemented in [4] using the procedure
described in [8]. The estimated parameters are the minimizers of the loss function

L(µi,θi) =
1

T − l
‖zi − µi −Xθi‖2`2 + 2λi ‖θi‖`1 ,

where ‖.‖`2 is the `2-norm and ‖.‖`1 `1-norm. λi is a tuning parameter whose selection procedure
is explained below.

E Hyperparameter optimization

Parameters are learned with SGD using ADAM optimizer with batch of 16 elements, l2 regulariza-
tion with 1e-8 and gradient clipped to 10.0. For all methods, we apply 10000 gradient updates in
total and decay the learning rate by 2 after 500 consecutive updates without improvement.

Table 2 lists the parameters that are tuned as well as the value of hyper-parameters that are not tuned
and kept constant across all datasets.

HYPERPARAMETER VALUE OR RANGE SEARCHED

learning rate [1e-4, 1e-4, 1e-2]
LSTM cells [10, 20, 40]
LSTM layers 2
rank 10
num eval samples 400
conditioning length m 100
sampling dimension B 20
dropout 0.01
batch size 16

Table 2: Hyper-parameters values fixed or range searched in hyper-parameter tuning.

To tune hyper-parameters of RNN methods we perform a grid-search of 12 parameters on Electricity
and Exchange for Vec-LSTM-ind-scaling. The best hyperparameter for a method is set as the
hyperparameter having the best average rank for CRPS. The best learning-rate/number-cells found
for Vec-LSTM-ind-scaling is 1e-3 / 40, as LSTM and GP baselines has many variations, we use
the same hyperparameter for all variants.

The Lasso estimator of the VAR model has a single Hyperparameter λi for each equation. The
best value of the parameter is selected within the sequence of values considered by the path-wise
coordinate descent algorithm [4]. λi is in the range [λi,min, λi,max], where λi,max is the smallest
value of λi such that all penalized parameters of the VAR are set to zero while λi,min = ελi,max
where ε = 0.0001 if N < T and ε = 0.01 otherwise[4]. The best value of λi the value in the
sequence that minimizes a Bayesian Information Criterion [8].

For the GARCH model, we performed a search among all combinations of mean and vari-
ance model specifications. The mean models considered were: AR(1), AR(Seasonal), VAR(1),
VAR(Seasonal). The models for the variance components considered were: GARCH(1,0),
GARCH(1,1), fGARCH(1,0) and fGARCH(1,1) [5]. We found that the only specification able to
consistently converge in even the smallest of our datasets was using AR(1) as the mean model and
GARCH(1,0) for the variance components.
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F Dataset details

dataset τ (num steps predicted) domain frequency dimensionN time steps T

Exchange rate 30 R+ daily 8 6071
Solar 24 R+ hourly 137 7009
Electricity 24 R+ hourly 370 5790
Traffic 24 R+ hourly 963 10413
Taxi 24 N 30-min 1214 1488
Wikipedia 30 N daily 2000 792

Table 3: Summary of the datasets used to test the models. Number of steps forecasted, data domain
D, frequency of observations, dimension of series N , and number of time steps T .

Datasets (or their processing) will be made available after publication. Table 3 shows the properties
of the used datasets. We only describe the processing for Taxi as all other datasets have been used
in previous publications. The dataset obtained from [20] is preprocessed with the following steps
similarly to [17]:

• Data cleaning: removal of outliers in terms of average speed (> 45.31 mph), trip duration
(> 720 minutes), trip distance (> 23 miles) and trip fare (> 86.6);

• Data reduction: the dataset is reduced to the most active areas by retaining the area bounded
by (40.70,-74.07) and (40.84,-73.95), expressed as (latitude, longitude) pairs;

• Data binning: first, the data is binned over time, using a frequency of 30 minutes; after-
wards, the data is aggregated spatially, by binning latitude and longitude on a grid with
spatial granularity of 0.001;

• For each subregion in the spatial grid and within each 30 minutes interval, the number of
pickups and dropoffs are summed;

• Data filtering: the least active areas are filtered out from the data, by retaining only areas
with at least 80% non-zero observations. This results in a total of 1214 time series.

We use January 2015 for the training set and January 2016 for the test set as in [17].

G Metrics

G.1 Continuous Ranked Probability Score (CRPS)

The continuous ranked probability score (CRPS) [11, 6] measures the compatibility of a probability
distribution F (represented by its quantile function F−1) with an observation y. The pinball loss (or
quantile loss) at a quantile level α ∈ [0, 1] and with a predicted α-th quantile q is defined as

Λα(q, y) = (α− I[y<q])(y − q). (2)

The CRPS has an intuitive definition as the pinball loss integrated over all quantile levels α ∈ [0, 1],

CRPS(F−1, y) =

∫ 1

0

2Λα(F−1(α), y) dα. (3)

An important property of the CRPS is that it is a proper scoring rule [6], implying that the CRPS is
minimized when the predictive distribution is equal to the distribution from which the data is drawn.

In our setting, we are interested in evaluating the accuracy of the prediction compared to an obser-
vation zt ∈ RN . To do so, we generate predictions in the form of 400 samples which allows to
estimate the quantile function F−1 predicted by the model.

We then report average marginal CRPS over dimensions and over predicted steps in Table 4, e.g. we
report

Ei,t[CRPS(F−1
i , zi,t)]

where F−1
i is obtained by sorting the samples drawn when predicting zi,t.
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CRPS

dataset exchange solar elec traffic taxi wiki
estimator

VAR 0.015+/-0.000 0.595+/-0.000 0.060+/-0.000 0.222+/-0.000 0.410+/-0.000 4.101+/-0.002
GARCH 0.024+/-0.000 0.928+/-0.000 0.291+/-0.000 0.426+/-0.000 - -
Vec-LSTM-ind 0.020+/-0.001 0.480+/-0.031 0.765+/-0.005 0.234+/-0.007 0.495+/-0.002 0.800+/-0.028
Vec-LSTM-ind-scaling 0.013+/-0.000 0.434+/-0.012 0.059+/-0.001 0.168+/-0.037 0.586+/-0.004 0.379+/-0.004
Vec-LSTM-fullrank 0.610+/-0.096 0.939+/-0.001 0.997+/-0.000 - - -
Vec-LSTM-fullrank-scaling 0.377+/-0.115 1.003+/-0.021 0.749+/-0.020 - - -
Vec-LSTM-lowrank-Copula 0.009+/-0.000 0.384+/-0.010 0.084+/-0.006 0.165+/-0.004 0.416+/-0.004 0.247+/-0.001
GP 0.029+/-0.000 0.834+/-0.002 0.900+/-0.023 1.255+/-0.562 0.475+/-0.177 0.870+/-0.011
GP-scaling 0.017+/-0.000 0.415+/-0.009 0.053+/-0.000 0.140+/-0.002 0.346+/-0.348 1.549+/-1.017
GP-Copula 0.008+/-0.000 0.371+/-0.022 0.056+/-0.002 0.133+/-0.001 0.360+/-0.201 0.236+/-0.000

Table 4: CRPS accuracy metrics (lower is better, best two methods are in bold). Mean and standard
error are reported by running each method 3 times.

MSE MSE-sum num_params
estimator

VAR - - -
GARCH - - -
Vec-LSTM-ind 17.0 52.3 13.6
Vec-LSTM-ind-scaling 1.3 1.3 13.6
Vec-LSTM-fullrank 801.8 1545.6 103.4
Vec-LSTM-fullrank-scaling 985.3 1937.5 103.4
Vec-LSTM-lowrank-Copula 4.7 10.4 19.2
GP 122.3 1080.7 1.0
GP-scaling 1.1 3.0 1.0
GP-Copula 1.0 1.0 1.0

Table 5: Baselines summary and average ratio compared to GP-Copula for MSE, MSE-Sum, and
number of parameters on all datasets.

To account for joint effect, we also report CRPS-Sum where accuracy is measured on the predicted
distribution of the sum, e.g.

Et[CRPS(F−1,
∑
i

zi,t)]

Where F−1 is obtained by first summing samples across dimensions and then sorting to get quan-
tiles.

Integrals are estimated with 10 equally-spaced quantiles.

G.2 Mean Squared Error (MSE)

The MSE is defined as the mean squared error over all time series, i.e., i = 1, . . . N , and over the
whole prediction range, i.e., t = T − t0 + 1, . . . , T :

MSE =
1

N(T − t0)

∑
i,t

(zi,t − ẑi,t)2 (4)

where z is the target and ẑ the predicted distribution mean. Tables 5 - 7 show the MSE results for
the marginal MSE and the MSE-sum. The definition of MSE-sum is analogous to CRPS-sum.

H Comparison with forecasting methods with diagonal covariance

We evaluated our approach against DeepAR [14] and MQCNN [23], which we believe are a fair
representation of the state-of-the-art in deep-learning-based forecasting. We also compared with
DeepGLO [16] on two datasets provided by the authors. Table 8 lists the results of this compari-
son. Note that none of these competing approaches models correlations across time series in their
forecasts (DeepGLO only provides point forecasts).
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Figure 2: Correlation matrix predicted by our model at four different equally spaced time-steps with
step = 6 for all datasets in this study. Exchange rate is nearly homoscedastic and most correlations
are close to 1, because all currencies are relative to US dollar and therefore highly correlated. The
remaining datasets are clearly heteroscedastic. For example, solar has low correlation at night and
electricity/traffic/taxi follow day-night cycles. Wikipedia also shows heteroscedasticity across time.
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MSE

dataset exchange solar elec traffic taxi wiki
estimator

VAR 4.4e-2+/-2.2e-5 7.0e3+/-2.5e1 1.2e7+/-5.4e3 5.1e-3+/-2.9e-6 - -
GARCH 4.0e-2+/-5.3e-5 3.5e3+/-2.0e1 1.2e6+/-2.5e4 3.3e-3+/-1.8e-6 - -
Vec-LSTM-ind 3.9e-4+/-2.0e-4 9.9e2+/-2.8e2 2.6e7+/-4.6e4 6.5e-4+/-1.1e-4 5.2e1+/-2.2e-1 5.2e7+/-3.8e5
Vec-LSTM-ind-scaling 1.6e-4+/-2.6e-5 9.3e2+/-1.9e2 2.1e5+/-1.2e4 6.3e-4+/-5.6e-5 7.3e1+/-1.1e0 7.2e7+/-2.1e6
Vec-LSTM-fullrank 5.2e-1+/-1.5e-1 3.8e3+/-1.8e1 2.7e7+/-2.3e2 - - -
Vec-LSTM-fullrank-scaling 6.5e-1+/-4.3e-2 3.8e3+/-6.9e1 3.2e7+/-1.1e7 - - -
Vec-LSTM-lowrank-Copula 1.9e-4+/-1.3e-6 2.9e3+/-1.1e2 5.5e6+/-1.2e6 1.5e-3+/-2.5e-6 5.1e1+/-3.2e-1 3.8e7+/-1.5e5
GP 3.0e-4+/-4.8e-5 3.7e3+/-5.7e1 2.7e7+/-2.0e3 5.1e-1+/-2.5e-1 5.9e1+/-2.0e1 5.4e7+/-2.3e4
GP-scaling 2.9e-4+/-3.5e-5 1.1e3+/-3.3e1 1.8e5+/-1.4e4 5.2e-4+/-4.4e-6 2.7e1+/-1.0e1 5.5e7+/-3.6e7
GP-Copula 1.7e-4+/-1.6e-5 9.8e2+/-5.2e1 2.4e5+/-5.5e4 6.9e-4+/-2.2e-5 3.1e1+/-1.4e0 4.0e7+/-1.6e9

Table 6: MSE accuracy metrics (lower is better). Mean and standard error are reported by running
each method 3 times.

MSE-sum

dataset exchange solar elec traffic taxi wiki
estimator

VAR 1.2e0+/-8.6e-4 1.1e8+/-3.9e5 1.8e10+/-1.3e7 2.5e3+/-3.4e0 - -
GARCH 1.1e0+/-2.0e-3 5.6e7+/-3.2e5 2.7e9+/-3.3e7 1.1e3+/-2.1e0 - -
Vec-LSTM-ind 1.3e-2+/-7.0e-3 1.1e7+/-4.6e6 5.3e10+/-9.2e8 1.2e2+/-8.1e1 2.7e7+/-2.8e5 2.6e13+/-1.5e12
Vec-LSTM-ind-scaling 3.2e-3+/-1.3e-3 1.1e7+/-2.4e6 1.2e8+/-7.9e6 5.5e1+/-2.8e1 4.0e7+/-1.0e6 1.2e12+/-9.7e10
Vec-LSTM-fullrank 2.3e1+/-8.0e0 5.8e7+/-3.0e5 8.9e10+/-7.9e6 - - -
Vec-LSTM-fullrank-scaling 3.0e1+/-2.5e0 5.6e7+/-7.8e5 8.8e10+/-1.7e10 - - -
Vec-LSTM-lowrank-Copula 4.6e-3+/-8.3e-5 4.2e7+/-2.0e6 8.1e9+/-9.0e8 7.0e2+/-6.4e0 2.5e7+/-2.8e5 5.8e11+/-6.5e10
GP 7.2e-3+/-2.4e-3 5.5e7+/-1.0e6 8.6e10+/-1.9e9 4.3e5+/-2.2e5 3.3e7+/-1.8e7 3.5e13+/-9.5e10
GP-scaling 7.3e-3+/-1.8e-3 1.2e7+/-6.4e5 1.4e8+/-1.9e7 7.0e1+/-3.4e0 7.9e6+/-8.9e6 2.7e13+/-4.5e13
GP-Copula 4.2e-3+/-6.5e-4 1.2e7+/-8.3e5 1.5e8+/-3.5e7 6.2e1+/-4.3e0 1.0e7+/-1.1e6 1.9e12+/-2.2e15

Table 7: MSE-sum accuracy metrics (lower is better). Mean and standard error are reported by
running each method 3 times.

dataset exchange solar elec traffic taxi wiki

DeepAR [14] 0.007 0.379 0.063 0.147 0.332 0.337
MQCNN [23] 0.013 0.482 0.078 0.177 0.657 0.277
GP-Copula (Ours) 0.008 0.371 0.056 0.133 0.360 0.236

dataset electricity traffic

DeepGLO [16] 0.109 0.221
TRMF [16] 0.105 0.210
GP-Copula (Ours) 0.083 0.168

Table 8: CRPS for additional baselines (left) and comparison with [16] when measuring WAPE
(right).

I Predicted correlation matrices

We illustrate the learned correlations of our model on all datasets in Figure 2.

J Effect of the number of evaluation samples on CRPS and inference
runtime

Figure 3 shows the effect of the number of evaluation samples on the CRPS and inference runtime.
Drawing more than 100 samples only has a small effect on the CRPS and linearly increases the
inference runtime.

K Additional experiments details

We use generic features to represent time. For hourly dataset, we use hour of day, day of week, day
of month features. For daily dataset, we use day of week feature. For minutes granularity, we use
minute of hour, hour of day and day of week features. All features are encoded with one number,
for instance hour of day feature takes values in [0, 23[. Feature values are concatenated to the LSTM
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(a) Effect of the number of evaluation samples (num eval samples) on the CRPS for electricity, solar, and
taxi datasets. The line shows the mean CRPS over three independent runs and the shaded area shows the
95% confidence interval. Increasing the number of samples from 100 to 600 has a small effect on the CRPS
(average CRPS over all datasets decreases from 0.272 to 0.271 for GP-Copula and from 0.52 to 0.50 for
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(b) Effect of the number of evaluation samples (num eval samples) on the inference runtime. The inference
runtime scales linearly with the number of drawn samples. The inferences runtimes for 10, 50, and 100 samples
are similar due to initialization overhead. Note that the samples are only drawn during inference. Thus, the num
eval samples parameter does not affect training runtime.

Figure 3: Effect of the number of evaluation samples on CRPS and inference runtime.
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CRPS-sum

dataset exchange solar elec traffic taxi wiki
estimator

GP-Copula 0.007+/-0.000 0.337+/-0.024 0.024+/-0.002 0.078+/-0.002 0.208+/-0.183 0.086+/-0.004
GP-Copula (GluonTS) 0.007+/-0.000 0.404+/-0.009 0.027+/-0.001 0.050+/-0.003 0.159+/-0.001 0.055+/-0.005

Table 9: CRPS-sum accuracy metrics for the GluonTS implementation of our model (lower is
better). Mean and standard error are reported by running each method 3 times.

CRPS

dataset exchange solar elec traffic taxi wiki
estimator

GP-Copula 0.008+/-0.000 0.371+/-0.022 0.056+/-0.002 0.133+/-0.001 0.360+/-0.201 0.236+/-0.000
GP-Copula (GluonTS) 0.009+/-0.000 0.416+/-0.007 0.054+/-0.000 0.106+/-0.002 0.339+/-0.001 0.244+/-0.003

Table 10: CRPS accuracy metrics for the GluonTS implementation of our model (lower is better).
Mean and standard error are reported by running each method 3 times.

input at each time-step. We also lags values as input L according to the time-frequency, [1, 24, 168]
for hourly data, [1, 7, 14] for daily, and [1, 2, 4, 12, 24, 48] for 30 minutes data.

All models are evaluated on a Amazon Web Services c5.4xlarge instance with 16 cores and 32GB
RAM. All RNNs models take under five hours to perform training and evaluation. Missing numbers
in Table 4 happens either because Out-of-memory prevents training or NaNs appear during training
because of unstable models. Finally, RNNs are combined with Zone-out regularization [9] and
residual connections and MXNet is used as the neural network framework [15].

L Open-source implementation of our model

We re-implemented the model described in this paper in GluonTS [1], an open-source time series
toolkit. To ensure re-reproducibility, we released a static version of the code online that is not
part of the latest GluonTS releases (for which we cannot guarantee reproducibility over time) at
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release. Tables 9 and 10 show the bench-
mark results of our re-implementation. Our GluonTS implementation performs similar to the imple-
mentation that was used in this paper. In the new implementation, we set the sampling dimension
B to 2. Furthermore, we found that the piecewise-constant derivatives did not improve the results
and removed them from our implementation.
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