
A Proof of Proposition 2.3

We briefly recall the contextual bandits setting below, for an arbitrary loss function:

Online Learning in the Contextual Bandits Setting
for t = 1, ..., T do

Learner chooses a convex combination πt ∈ ∆(H).
Environment draws (xt, yt) ∼ D independently, learner observes xt.
Learner labels the point ŷt = ht(xt), where ht ∼ πt.
Learner observes loss `(ŷt, yt) ∈ [0, 1].

Proof of Proposition 2.3. Consider the following transformed loss matrix:

L̃ =

y = +1 y = −1()
ŷ = +1 0 2
ŷ = −1 1 1

Given an online learning with partial feedback problem, we instantiate the bandit algorithm and
always play the action it recommends. We then provide the algorithm with its feedback L̃ŷt,yt . This
is possible because if ŷt = +1 then we observe yt, and if not then the feedback is 1 regardless of
the unobserved value of yt. For a sequence of arrivals S = {(xt, yt)}Tt=1, let m(S) be the number
of arrivals with yt = −1. Let L(π, S) =

∑t
t=1 Lŷt,yt and similarly for L̃(π, S). Then we have for

all π, S that L̃(π, S) = L(π, S) +m(S). In other words, on each round where yt = 1, a prediction
experiences the same loss under L and under L̃; and on each round where yt = −1, the loss is exactly
one larger in the bandit setting. This difference does not depend on the prediction of the hypothesis,
therefore every policy’s total loss under the bandit loss is exactly m(S) larger than under the original
loss.

It follows that our algorithm’s regret is exactly equal to the bandit algorithm’s. Finally, a bookkeeping
note: in order that losses be bounded in [0, 1], we must repeat the above argument using 0.5L̃ in place
of L̃, which simply scales the bandit algorithm’s regret by 0.5 relative to our algorithm’s.

B Missing Proofs for Section 3

B.1 Proof of Lemma 3.4

In this subsection, we establish a useful structural property for the general problem minimizing
linear loss function subject to fairness constraints. This in turn provides a proof for Lemma B.1. In
particular, given a hypothesis classH, and a training set of labelled samples S, vectors a, b ∈ R|H|,
consider the problem:

min
x∈∆(|H|)

aᵀx

subject to bᵀx ≤ γ
bᵀx ≥ −γ

Note that both the problem of weighted classification or cost-sensitive classification can be viewed as
an instantiation of the linear program defined above. The sparsity in the solution will be useful in our
analysis.

Theorem B.1. In the linear program above, there exists an optimal solution that is a distribution
overH with support size no greater than 2.

Proof. Consider the following embedding ofH in R2: ∀h ∈ H : φ(h) = (ah, bh). Let A = {φ(h) |
π ∈ H}. Then the optimization problem can be written as the following problem over the convex

12

hull conv(A):
minimize

(z1,z2)∈conv(A)
z1

subject to z2 ≤ γ
z2 ≥ −γ

Note there exists an optimal solution z∗ that lies on an edge of the polytope defined by conv(A). This
means z∗ is either a vertex of conv(A) or can be written as a convex combination of two vertices of
conv(A), say z′ and z′′. In the former case, z∗ can be induced by a single hypothesis h∗ ∈ H, and in
the latter case we know there exist h′, h′′ ∈ H such that z′ = φ(h′) and z′′ = φ(h′′). This means the
optimal solution z∗ can be induced by a convex combination of hypotheses.

Then the result of Lemma B.1 follows immediately.

B.2 Proof of Theorem 3.5

As mentioned, a standard concentration inequality immediately implies:

Lemma B.2. With probability 1− δ, as long as T0 ≥ c
√
T ln(|H|/δ) for some universal constant

c > 0, we have the following. First, every policy in Π satisfies γ + 2β-EFP, and second, every
support-2 γ-EFP policy is in Π, for β = O

(√
ln(|H|/δ)/T 1/4

)
.

Recall that we collect a set of T0 labeled examples {zi = (xi, ai, yi)}T0
i=1 during the initial exploration

phase, and let DE denote the corresponding empirical distribution. Recall thatH is a hypothesis class
defined over both the features and the protected group memberships. We assume that H contains
a constant classifier (which implies that there is at least one fair classifier to be found, for any
distribution). To simplify notation, we consider hypotheses that labels each example with either 0 or
1.

Suppose that we are given a cost-sensitive classification instance (Xj , C
1
j , C

0
j). We would like to

compute a distribution over classifiers fromH that minimizes total cost subject to the false positive
rate fairness constraint. In particular, consider the following fair cost-sensitive classification (CSC)
problem:

min
π∈∆(H)

E
h∼π

 n∑
j=1

(C1
j h(Xj) + C0

j (1− h(Xj)))

 (2)

such that ∀j ∈ {±1} FPRj(π)− FPR−j(π) ≤ γ. (3)

FPRj(π) = Eh∼π [FPRj(h)]. We will write OPTC to denote the objective value at the optimum
for the problem, that is the minimum cost achieved by a γ-EFP policy over distribution DE .

Equivalently, we can consider optimizing the following objective function:

min
π∈∆(H)

E
h∼π

 n∑
j=1

Wi 1{h(Xj) 6= Yj}


where each Wj = |C0

j − C1
j |, Yj = 1 if C0

j > C1
j and Yj = 0 otherwise. To reduce the problem

further to the same formulation of [1], we consider objective with normalized weights

min
π∈∆(H)

E
h∼π

 n∑
j=1

wj 1{h(Xj) 6= Yj}


such that each wj = Wj/(

∑
jWj). To simplify notation, we will write err(h,P) =∑n

j=1 wj 1{h(Xj) 6= Yj}, and OPT to denote optimal objective subject to γ-EFP.

For each of the fairness constraint in (3), we will introduce a dual variable λj ≥ 0. This allows us to
define the partial Lagrangian of the problem:

L(π, λ) = E
h∼π

[err(h,P)] +
∑

j∈{±1}

λj (FPRj(π)− FPR−j(π)− γ)

13

By strong duality, we have

OPT = min
g∈∆(H)

max
λ∈R2

+

L(g, λ) = max
g∈∆(H)

min
λ∈R2

+

L(g, λ).

where OPT is the optimal objective value of the ERM problem.

[1] provide an oracle-efficient algorithm for finding a ν-approximate saddle point (ĝ, λ̂) of the
Lagrangian:

L(π̂, λ̂) ≤ L(g, λ̂) + ν for all g ∈ ∆(H)

L(π̂, λ̂) ≥ L(π̂, λ)− ν for all λ ∈ Λ

In their result, the algorithm restricts the dual space to be Λ = {‖λ‖1 ≤ B | λ ∈ R2
+} for some

sufficiently large constant B. Their convergence rate and approximation parameter both depend on
such C. We show that under the assumption that H constains the two classifiers 1[a = j] for all
j ∈ {±1}, it is sufficient to set C = 2, and thus restrict the dual space to be

Λ = {‖λ‖1 ≤ 2 | λ ∈ R2
+}

Consequently, we can use their algorithm to find a ν-approximate saddle point with only O
(

1
ν2

)
number of calls to the oracle CSC(H).
Lemma B.3 (Follows from Theorem 1 of [1]). There is an oracle-efficient algorithm that computes
a ν-approximate saddle point for the restricted Lagrangian with Λ{‖λ‖1 ≤ 2 | λ ∈ R2

+}, using
O
(
1/ν2

)
calls to a CSC oracle overH.

Moreover, the approximate saddle point provides an approximate solution for our problem.

Lemma B.4. Suppose that the classH contains the two classifiers 1[a = j] for all j and that (π̂, λ̂)
is a ν-approximate saddle point of the Lagrangian. Then the distribution π̂ satisfies

err(π̂,P) ≤ OPT + 2ν, and ∀j ∈ {±1} FPRj(ĝ)− FPR−j(ĝ) ≤ γ + 2ν.

Proof. Let π∗ be the optimal feasible solution for the fair ERM problem. First, by the definition of
approximate saddle point, we know that

err(π̂,P) = L(π̂,0)

≤ max
λ∈Λ
L(π̂, λ)

≤ L(π̂, λ̂) + ν

≤ min
π∈∆(H)

L(π, λ̂) + 2ν

≤ L(π∗, λ̂) + 2ν = OPT + 2ν

where the equality follows from the fact that L(π∗, λ̂) = OPT.

Next, we will bound the fairness constraint violations. Suppose without loss of generality that the
following fairness constraint is violated: FPR1(π̂) − FPR−1(π̂) = γ + α for some α ≥ 0. Let
λ′ ∈ Λ such that λ′1 = 2. Then

L(π̂, λ̂) + ν ≥ L(π̂, λ′) = err(π̂,P) + 2α

Thus, by the assumption of approximate saddle point,

err(π̂,P) ≤ L(π̂, λ̂) + ν − 2α ≤ L(π∗, λ̂) + 2ν − α = OPT + 2ν − 2α.

Now consider a distribution π′ that is defined as the mixture of

π′ = (1− α)π̂ + α1[a = −1].

This means

FPR1(π′) = (1− α)FPR1(π̂) + αFPR1(1[a = −1]) = (1− α)FPR1(π̂)

FPR−1(π′) = (1− α)FPR−1(π̂) + αFPR−1(1[a = −1]) = (1− α)FPR−1(π̂) + α

14

It follows that
FPR1(π′)− FPR−1(π′) = (1− α)(γ + α)− α ≤ γ

which implies that π′ is a feasible solution for the fair ERM problem. This implies that

err(π̂,P) ≥ err(π′,P)− α ≥ OPT− α

Thus, we have OPT + 2ν − 2α ≥ OPT − α, which implies that α ≤ 2ν. This completes the
proof.

To facilitate our analysis, we would like a solution π̂ that satisfies the fairness cosntraint without any
violation. To achieve this, we simply tighten the constraint by an amount of 2ν and compute the
ν-approximate saddle point for the tightened Lagrangian, replacing γ with γ′ = γ − 2ν. We also
need ensure such tightening of the constraint does not severely increase the resulting error.

Lemma B.5 (Bound on additional error from tightening.). Suppose that γ > 2ν. Let OPT′ be the
objective value at the optimum for the tighted optimization problem:

min
π∈∆(H)

E
h∼π

 n∑
j=1

wj 1{h(Xj) 6= Yj}


such that ∀j ∈ {±1} FPRj(π)− FPR−j(π) ≤ γ − 2ν

Then as long as that the classH contains the two classifiers 1[a = j] for both j ∈ {±1}, OPT′ −
OPT ≤ 2ν.

Proof. Let π∗ be an optimal solution to the original (un-tightened) problem. Suppose without loss
of generality that the following fairness constraint is violated: FPR1(π̂) − FPR−1(π̂) ≥ 0. Now
consider a distribution π′ that is defined as the mixture of

π′ = (1− 2ν)π∗ + 2ν1[a = −1].

Consequently, we can write

FPR1(π′) = (1− 2ν)FPR1(π∗) + 2νFPR1(1[a = −1]) = (1− 2ν)FPR1(π∗)

FPR−1(π′) = (1− 2ν)FPR−1(π∗) + 2νFPR−1(1[a = −1]) = (1− 2ν)FPR−1(π∗) + 2ν

It follows that
FPR1(π′)− FPR−1(π′) = (1− 2ν)(γ + 2ν)− 2ν ≤ γ

which implies that π′ is a feasible solution for the fair ERM problem. This implies that

err(π̂,P) ≥ err(π′,P)− 2ν ≥ OPT− 2ν

This completes the proof.

Next, we translate the approximation guarantee for the normalized weighted classification problem to
the orginal cost-sensitive classification problem. This leads to our guarantee stated below.

Lemma B.6. For any 0 < ν < γ/2, there exists an oracle-efficient algorithm that calls CSC oracle
overH at most O(1/ν2) times and computes a solution π̂ that satisfies γ-EFP and has total cost

E
h∼π̂

 n∑
j=1

(C1
j h(Xj) + C0

j (1− h(Xj)))

 ≤ OPTC + ε

with ε = 4ν
∑n
j=1 |C1

j − C0
j |.

The result of Lemma B.6 shows a computationally efficient algorithm that returns an approximate CSC
solution with support size at most O(1/ν2). Finally, we will shrink the support of the solution. To
derive a sparse-support solution, we consider a linear program that computes a probability distribution
over the support of π̂. Then we will compute a basic solution obtain the final sparse solution (e.g. by
running a variant of the ellipsoid algorithm [17]).

15

B.3 Missing Details and Proofs in Section 3.2

Algorithm 1: Coordinate descent algorithm for solving the feasibility program
1 Input: history Ht from previous rounds; minimum probability µt; target accuracy parameter ν

2 Initialize: Q = 0; Call FairCSC(ν) to compute the policy π0 that approximately minimizes
L̂t(π) (up to error ν).

for π ∈ Π do

Let R̃egt(π) = max{L̂t(π)− L̂t(π0), 0}, b̃t(π) =
R̃egt(π)

4(e− 2)µt ln(T)

end
for π ∈ Π do

Vπ(Q) = E
x∼Ht

[1/Qµt(π(x) | x)]

Sπ(Q) = E
x∼Ht

[
1/Qµt(π(x) | x)2

]
D̃π(Q) = Vπ(Q)− (4 + b̃t−1(π))

end
3 if

∫
π∈Π

Q(π)(4 + b̃π)dπ > 4 then
Replace Q by cQ with

c =
4∫

π
Q(π)(4 + b̃t−1(π))dπ

< 1

end
4 if calling FairCSC(ν) for π approximating maxπ′ D̃π′(Q), we have D̃π(Q) > 0 then

Add the following (positive) quantity to Q(π) while keeping all other weights unchanged:

απ(Q) =
Vπ(Q) + D̃π(Q)

2(1− 2µt)Sπ(Q)

end
5 else

Halt. If the sum of the weights Q is smaller than 1, let Q place the remaining weight on π0.
Output Q (note the algorithm will draw from Qµt).

end

Proof of lemma 3.6. The first oracle call is used to approximately solve

arg min
π
L̂t(π) = arg min

π

1

t

t∑
s=1

`s
Pr[π(xs) = as]

Qs(as | xs)

=
1

µt
arg min

π

t∑
s=1

µt`s
t

Pr[π(xs) = as]

Qs(as | xs)

where, because Qs(a|x) is constrained to at least µs (which is decreasing in s), the argmin now has
weights summing to at most 1. Therefore the oracle, given ν, returns π̃ such that

min
π
L̂t(π) ≤ L̂t(π̃) ≤ min

π
L̂t(π) +

ν

µt
.

This implies that, for all π,

R̂egt(π) ≥ R̃egt(π) ≥ R̂egt(π)− ν

µt
.

This gives
bt(π) ≥ b̃t(π) ≥ bt(π)− Λt.

16

If the first condition is met and the algorithm halts, then
∫
Q(π)(4 + b̃t(π))dπ ≤ 4, implying that the

sum of Q’s weights is at most 1 (since b̃t(π) ≥ 0), and implying that
∫
Q(π)(4 + bt(π))dπ ≤ 4 + Λt,

which is the first inequality.

Next, the oracle is called once per loop to request

arg max
π

D̃π(Q) = arg max
π

t∑
s=1

1

tQµss (as | xs)
− (4 + b̃t−1(π))

There are two cases, where R̃egt(π) = 0 and otherwise. If 0, then we again obtain an additive ν
µt

approximation. Otherwise, after dropping terms that don’t depend on π, we have

arg max
π

t∑
s=1

1

tQµts (as | xs)
− `s Pr[π(xs) = as]

4(e− 2)µtt ln(T)Qs(as | xs)

Scaling each term by 4(e − 2) ln(T)µ2
t ensures that the sum of the weights is at most 1, implying

that the approximation we get is again an additive Λt. So if π is chosen by the algorithm, then
maxπ′ D̃π′(Q) ≥ D̃π(Q) ≥ D̃π′(Q) − Λt. Plugging in the guarantee for bt, if we let Dπ(Q) =
Vπ(Q)− (4 + bt−1(π)), then we get

max
π∗

Dπ∗(Q) + Λt ≥ D̃π(Q) ≥ max
π∗

Dπ∗(Q)− Λt.

So if the algorithm halts after obtaining π from the oracle with D̃π(Q) ≤ 0, then maxπ∗ Dπ∗(Q) ≤
Λt, which implies the second guarantee.

To show convergence of the algorithm, consider the following potential function

Φ(Q) =
EHt [RE(U2‖Qµt(· | x))]

1− 2µt
+

∫
π∈Π

Q(π)b̃t−1(π)dπ

4

where U2 denotes the uniform distribution over the two predictions and RE(p‖q) denotes the unnor-
malized relative entropy between two nonnegative vectors p and q in R2 (over the two predictions):

RE(p‖q) =
∑

ŷ∈{±1}

(pŷ ln(pŷ/qŷ) + qŷ − pŷ) .

First, we note that any renormalization step does not increase potential, i.e. letting c = 4/
∫
π
Q(π)(4+

b̃t(π)dπ, if c < 1 (which is equivalent to the update condition) then Φ(cQ) ≤ Φ(Q). This is directly
proven in Lemma 6 of [2] and we do not re-prove it. The only difference is that where we used b̃t(π)
in the definition of c and Φ [2] uses bt−1(π); but the proof does not use any property of bt−1(π)
except nonnegativity.

Second, we note that a renormalization step can only occur once in a row; after that, either the
algorithm halts, or the other condition (D̃π(Q) > 0) is triggered.

Third, when the other condition is triggered, the potential decreases significantly, specifically, by at
least 1

4(1−2µt)
. This is also directly proven in Lemma 7 of [2].2 The only difference is that the proof

in that paper uses b̃t(π) instead of bt−1(π), which yields D̃π(Q) rather than Dπ(Q). However, the
only property of Dπ(Q) used in the proof is Dπ(Q) > 0, which is satisfied by D̃π(Q) as well.

The potential begins with Q = 0 at Φ(Q) ≤
ln 1
µt

1−2µt
, and remains nonnegative by definition, so after a

polynomial number of steps, the algorithm satisfies both conditions and halts.

B.4 Missing Proofs in Section 3.3

Proof of Claim 3.7. Let π be any policy in Π. Note, in particular, that −1 ∈ Π and let π′−1 ∈ Πη

such that
min
π′∈Πη

‖−1− π′−1|∞ ≤ η

2In that paper the potential function is scaled by a factor of τµt compared to here, where τ > 0.

17

Then, we can see that

|V (P, π, µ)− V (P, π′, µ)|∞ ≤ |V (P,−1, µ)− V (P, π′−1, µ)|∞ ≤
1

µ
− 1

µ+ η
=

η

µ(µ+ η)

|V̂t(P, π, µ)− V̂t(P, π′, µ)|∞ ≤ |V̂t(P,−1, µ)− V̂t(P, π′−1, µ)|∞ ≤
1

µ
− 1

µ+ η
=

η

µ(µ+ η)

The following lemma follows directly from Lemma 10 of [2].
Lemma B.7 (Full version of Lemma 3.8). Fix any µ ∈ [0, 1/2] and any δ ∈ (0, 1). Then, with
probability 1− δ,

V (P, π, µ) ≤ 6.4V̂t(P, π, µ) +
75(1− 2µ) ln |Πη|

µ2
t t

+
6.3 ln(2|Πη|2t2/δ)

µtt
+

2η

µt(µt + η)

for all probability distributions P over Π, all π ∈ Π, and for all t. In particular, if

µt ≥
√

ln(2|Πη|t2/δ)
2t

, t ≥ 8 ln(2|Πη|t2/δ)

then,

V (P, π, µt) ≤ 6.4V̂t(P, π, µt) + 162.6 +
2η

µt(µt + η)

We will make use of the following concentration inequality.
Lemma B.8 (Freedman’s inequality [6]). Let Z1, ..., Zn be a martingale difference sequence with

Zi ≤ R for all i. Let Vn =
n∑
i=1

E
[
Z2
i | Z1, . . . , Zi−1

]
. For any δ ∈ (0, 1) and any λ ∈ [0, 1/R],

with probability at least 1− δ
n∑
i=1

Zi ≤ (e− 2)λVn +
ln(1/δ)

λ

Proof of Lemma 3.9. By applying the Freedman’s inequality and union bound, we know that with
probability 1− δ′, for all t ∈ [T], π ∈ Π and λ ∈ [0, 1/µt],

|L(π)− L̂t(π)| ≤ (e− 2)λ

(
1

t

t∑
s=1

V (Qt, π, µt)

)
+

ln(|Πη|T/δ′)
tλ

(4)

By the result of Lemma 3.8, we know that with probability 1 − δ′, for all P ∈ Π, for any µt and
t ≥ 8 ln(2|Πη|t2/δ′),

V (P, π, µ) ≤ 6.4V̂t(P, π, µt) + 162.6 +
2η

µt(µt + η)
(5)

We will condition on events of (4) and (5) for the remainder of the proof, which occurs with probability
at least 1− 2δ′. Then we can further rewrite

|L(π)− L̂t(π)| ≤ (e− 2)λ

(
1

t

t∑
s=1

(
6.4V̂t(Qt, π, µt) + 162.6 +

2η

µt(µt + η)

))
+

ln(|Πη|T/δ′)
λt

Recall that by the accuracy guarantee of Lemma 3.6, we know for all π ∈ Π,

V̂t(Qt, π, µt) ≤ 4 + bt−1(π) + Λt−1

Thus, we can further bound
|L(π)− L̂t(π)|

≤ (e− 2)λ

(
1

t

t∑
s=1

(
6.4 (4 + bs−1(π) + Λs−1) + 162.6 +

2η

µt(µt + η)

))
+

ln(|Πη|T/δ′)
λt

≤ (e− 2)λ

(
188.2 +

1

t

t∑
s=1

(
6.4bs−1(π) + 6.4Λs−1 +

2η

µt(µt + η)

))
+

ln(|Πη|T/δ′)
λt

To complete the proof, we will set δ′ = δ/2.

18

Proof of Lemma 3.10. To simplify notation, let

Ct = (e− 2)λ

(
188.2 +

1

t

t∑
s=1

(
6.4Λs−1 +

η

µs(µs + η)

))
+

ln(|Πη|T/δ)
tλ

Recall that
Λt :=

ν

4(e− 2)µ2
t ln(T)

.

Then as long as we have ν ≤ 1/T and η ≤ 1/T 2, we have

Ct ≤ 190(e− 2)λ+
ln(|Πη|T/δ)

tλ

We will prove our result by induction. First, the base case holds trivially given our choice of εt. Next,
we will show Reg(π) ≤ 2R̂egt(π) + εt, and R̂eg(π) ≤ 2Regt(π) + εt follows analogously. Observe
that for any policy π, we can first decompose the regret difference as

Reg(π)− R̂egt(π) ≤ (L(π)− L̂t(π))− (L(π∗)− L̂t(π∗))
where π∗ denotes the optimal policy in Π. Then using the result of Lemma 3.9, we can further bound
the regret difference as follows: for any λ ∈ [0, µt],

Reg(π)− R̂egt(π)

≤ 6.4(e− 2)λ

t

(
t∑

s=1

bs−1(π) + bs−1(π∗)

)
+ 2Ct

=
1.6λ

µt ln(T)t

(
t∑

s=1

R̂egs−1(π) + R̂egs−1(π∗)

)
+ 2Ct

≤ 3.2λ

µt ln(T)t

(
t∑

s=1

Reg(π) + Reg(π∗) + εs−1

)
+ 2Ct (Induction hypothesis)

≤ 3.2λ

µt ln(T)t

(
tReg(π) +

t∑
s=1

εs−1

)
+ 2Ct (Reg(π∗) = 0)

≤ 3.2λ

µt ln(T)
Reg(π) +

3.2λ

µt ln(T)t

(
t∑

s=1

εs−1

)
+ 2Ct

We will set λ = µt/3.2, which allows us to simplify the bound

Reg(π)− R̂eg(π) ≤ Reg(π)

ln(T)
+

1

ln(T)t

(
t∑

s=1

εs−1

)
+ 2Ct

Since (1− 1/ ln(T)) > 1/2 and µt =
3.2 ln(|Πη|T/δ)√

t
, it follows that

Reg(π) ≤ 2R̂eg(π) +
2

ln(T)t

(
t∑

s=1

εs−1

)
+ 4Ct

≤ 2R̂eg(π) +
2

ln(T)t

(
t∑

s=1

εs−1

)
+ 4

(
190(e− 2) ln(|Πη|T/δ)√

t
+

1√
t

)

≤ 2R̂eg(π) +
2

ln(T)t

(
t∑

s=1

εs−1

)
+

560 ln(|Πη|T/δ)√
t

Observe that
∑t
s=1 εs−1 = 1000(ln(|Πη|T/δ))

∑t−1
s=1

1
s ≤ 1000(ln(|Πη|T/δ))

√
t. This means

Reg(π) ≤ 2R̂eg(π) +
2000

ln(T)
√
t
(ln(|Πη|T/δ)) +

560 ln(|Πη|T/δ)√
t

≤ 2R̂eg(π) + εt

where the last inequality holds as long as ln(T) ≥ 5.

19

Proof of Theorem 3.11. The cumulative regret of the first T1 = 8 ln(2|H|2T 3/δ) rounds is trivially
bounded by O(

√
T ln(|H|T/δ)). For each of the remaining rounds, we can use Lemma 3.10 to first

bound the per-round regret of the sequence of Qt as∫
π∈Π

Qt(π)Reg(π)dπ ≤ 2

∫
π∈Π

Qt−1(π)R̂eg(π)dπ + εt−1

By the guarantee of Lemma 3.6, we can further bound the right hand side by
(4(e− 2)µt−1 ln(T)) Λt−1 ≤ O

(
ln(|H|T/δ)/

√
t
)
. Summing over rounds, we see that the cu-

mulative expected regret of the sequence of Qt’s is bounded by O
(

ln(|H|T/δ)
√
T
)

. Finally, we
need to take into account the µt mixture of uniform prediction at each round, which incurs an
additional cumulative regret of no more than O

(
ln(|H|T/δ)

√
T
)

.

C Lower Bound Proof

In this section, we prove theorem 4.1. We make use of a couple of standard tools:
Lemma C.1. (Pinsker’s Inequality) Let D1, D2 be probability distributions. Let A be any event.
Then:

|D1(A)−D2(A)| ≤
√

1

2
KL(D1||D2)

The following is a simple corollary that follows from the additivity of KL-divergence over product
distributions.
Corollary C.2. Let t ∈ N. Consider the product distributions Dt1, Dt2. For any event A,∣∣Dt1(A)−Dt2(A)

∣∣ ≤√1

2
t ·KL(D1||D2)

Next, for any algorithm A, round t, hypothesis h, and distribution D, let

Pt(h,D) = P [A plays h on round t]

when given inputs from D. We say an algorithm (β, t, h)-distinguishes distributions D1 and D2 if

|Pt(h,D1)− Pt(h,D2)| > β.

Lemma C.3. Let D1,D2 be two probability distributions. No algorithm can (β, t, h)-distinguish D1

and D2 for any h and t ≤ 2β2

KL(D1||D2) .

Proof. Assume for contradiction that there exists an algorithm that (β, t, h)-distinguishes D1 and D2

for some h and t ≤ 2β2

KL(D1||D2) . This defines an event A such that

|Dt1(A)−Dt2(A)| > β ≥
√

1

2
tKL(D1||D2)

which contradicts corollary C.2.

With these tools in hand, we are ready to prove the lower bound (Theorem 4.1):

Proof of Theorem 4.1. Fix any α ∈ (0, 0.5) and let T ≥ α
√

16. Denote γ = T−α. Fix any δ ≤ 0.24.

Define the following distributions over (X,A,Y):

D1 given by:

x1 x2 x3 x4

P[(x, a)] 1/8 1/8 1/8 1/8
A = −1 P[y = 1|(x, a)] 0.5 + 4γ 0.5− 4γ 1 0

P[(x, a)] 1/8 1/8 1/8 1/8
A = +1 P[y = 1|(x, a)] 0.5− 4γ 0.5 + 4γ 1 0

20

D2 given by:

x1 x2 x3 x4

P[(x, a)] 1/8 1/8 1/8 1/8
A = −1 P[y = 1|(x, a)] 0.5 + 4γ 0.5− 4γ 1 0

P[(x, a)] 1/8 1/8 1/8 1/8
A = +1 P[y = 1|(x, a)] 0.5 + 4γ 0.5− 4γ 1 0

The available hypothesesH = {−1,+1, h1, h2} are defined as:

x1 x2 x3 x4

−1 A = −1 −1 −1 −1 −1
A = +1 −1 −1 −1 −1

+1
A = −1 +1 +1 +1 +1
A = +1 +1 +1 +1 +1

h1
A = −1 +1 −1 +1 −1
A = +1 +1 −1 +1 −1

h2
A = −1 +1 −1 +1 −1
A = +1 −1 +1 +1 −1

The performance of the hypotheses inH on the two distributions is given by: On D1:

L0−1
D (h) ∆FPR(h)

−1 0.5 0
+1 0.5 0
h1 0.25 4γ
h2 0.25− 2γ 0

On D2:

L0−1
D (h) ∆FPR(h)

−1 0.5 0
+1 0.5 0
h1 0.25− 2γ 0
h2 0.25 4γ

Note that on both distributions, h1 and h2 both have substantially lower error than the two constant
classifiers, but only one of them satisfies the γ-fairness constraint — and which one of them it is
depends on whether the underlying distribution is D1 or D2. Note also that one of them always
satisfies a 0-fairness constraint, and so sets the benchmark for 0-EFP regret. The main fact driving our
lower bound is that until the algorithm can reliably distinguish D1 from D2, it must place substantial
weight on the constant classifiers, incurring high regret.

21

We first establish that the two distributions are hard to distinguish by showing that the KL-divergence
between D1, D2 is bounded by O(γ2):

KL(D1||D2) =
2

8

(
1 + 8γ

2
ln

(
1 + 8γ

1− 8γ

)
+

1− 8γ

2
ln

(
1− 8γ

1 + 8γ

))
= γ ln

(
1+8γ
1−8γ
1−8γ
1+8γ

)

= γ ln

((
1 + 8γ

1− 8γ

)2
)

= 2γ ln

(
1 + 8γ

1− 8γ

)
= 2γ ln

(
1 +

16γ

1− 8γ

)
≤ 2γ

16γ

1− 8γ

=
64γ2

2(1− 8γ)

≤ 64γ2

Let A be a γ-EFP(δ) algorithm. Let K = 0.012

32γ2 (and note that, for α ∈ (0, 0.5), K = 0.012

32γ2 =
0.012T 2α

32 < 0.012T
32 ≤ T). Let t ≤ K (note that the number of samples observed by time t is t′ ≤ t);

then by lemma C.3,
Pt(h1,D2) ≤ Pt(h1,D1) + 0.01

Pt(h2,D1) ≤ Pt(h2,D2) + 0.01

Observe that any convex combination π of classifiers played under D1 fails to satisfy the γ-EFP
constraint unless it puts weight less than 1/4 on h1. Similarly, any convex combination π of classifiers
played under D2 fails to satisfy the γ-EFP constraint unless it puts weight less than 1/4 on h2. Since
by definition, and γ-EFP(δ) algorithm plays only γ-EFP hypotheses on any distribution it is played
on except with probability δ, we have that for all t ∈ [T]

Pt(h1,D1) ≤ 1

4
+ δ

Pt(h2,D2) ≤ 1

4
+ δ

And thus
Pt(h1,D2) ≤ Pt(h1,D1) + 0.01 = 0.25 + 0.01 + δ = 0.26 + δ

Pt(h2,D1) ≤ Pt(h2,D2) + 0.01 = 0.25 + 0.01 + δ = 0.26 + δ

Hence on either distribution, we have,

P[A plays +1 or −1 on round t] ≥ 1− (0.25 + δ)− (0.26 + δ) = 0.49− 2δ

The best performing 0-EFP policy on D1 is h2, while on D2 it is h1. Both of these induce expected
per-round loss of less than 1

4 . Since the expected per round loss of either +1 or −1 is 1
2 on both

distributions, if +1 or−1 are played with constant probability, the expected per-round regret incurred
is a constant bounded away from zero. As a result, the expected 0-EFP regret of A is at least
Ω(K) = Ω

(
1
γ2

)
.

The result is that any T−α-EFP(δ) algorithm must have expected 0-EFP regret of Ω(T 2α).

22

	Proof of Proposition 2.3
	Missing Proofs for Section 3
	Proof of Lemma 3.4
	Proof of Theorem 3.5
	Missing Details and Proofs in Section 3.2
	Missing Proofs in Section 3.3

	Lower Bound Proof

