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Figure S1: Comparison of the model evidence calculated from numerical calculation and Laplacian
approximation. (A) The likelihood function of cue direction and spike count, p(x,Λ|s,R) in Eq. (9)
(top). Marginalizing the spike count yields the likelihood for cue direction, p(x|s,R) (bottom). Dots
and line indicate the likelihood obtained from numerical simulation and Laplacian approximation
(Eq. 16 and Sec. 5.3). (B) Comparison of the concentration of the likelihood function of cue direction
obtained from numerical simulation and Laplacian approximation.
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2 Laplacian Approximation

Laplace’s method is approximating the integral of a function by using its second order expansion
around a peak value. We assume that an unnormalized probability density p∗(x), and we are interested
in finding its normalizing constant,

Zp =

∫
p∗(x)dx. (S1)

The p∗(x) has a peak at point x0. We can take Taylor expansion of logarithm of p∗(x) around x0,

ln p∗(x) ' ln p∗(x0)− h

2
(x− x0)2 +O((x− x0)n). (S2)

Note that the first order expansion is zero on x0 because x0 is a maximum point. In above equation,

h = − ∂2

∂x2
ln p∗(x)

∣∣∣
x=x0

. (S3)

We then approximate p∗(x) by an unnormalized Gaussian,

Q∗(x) = p∗(x0) exp

[
−h

2
(x− x0)2

]
, (S4)

and then the normalizing constant Zp can be approximated by the normalizing constant of Q∗(x),

ZQ = p∗(x0)
√

2πh−1 (S5)

For a multivariate variable x satisfying a unnormalized distribution p∗(x), its normalizing constant
can be also similarly approximated,

Zp ' ZQ = p∗(x0) det(H/2π)−1/2, (S6)

where H is the negative Hessian matrix

Hij = − ∂2

∂xi∂xj
ln p∗(x)

∣∣∣
x=x0

. (S7)

3 Background of the von Mises Distribution

3.1 Analogy between the von Mises and the normal distribution

A von Mises distribution is defined as

M(x;µ, κ) =
1

2πI0(κ)
exp [κ cos(x− µ)] , (S8)

with x and κ denote the mean and concentration respectively. I0(κ) is the modified Bessel function
of first kind and zero order. When κ is large, we let ξ = κ1/2(x− µ), and the von Mises distribution
is approximated to be

M(ξ; 0, κ) ∝ exp
(
−κ[1− cos(κ−1/2ξ)]

)
. (S9)

Further approximating 1− cos(κ−1/2ξ) = 1
2κ
−1ξ2 +O(κ−2) for small ξ, we have

M(ξ; 0, κ) ∝ exp
(
−ξ2/2

)
∝ N (ξ; 0, 1). (S10)

Thus, the von Mises distribution can be approximated to be a normal distribution for large κ and
small |x− µ|, i.e,

M(x;µ, κ) ≈ N (x;µ, κ−1). (S11)
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3.2 Product of two von Mises distributions

The posterior of sint under integration model mint is the product of two von Mises distributions (see
Eq. 19 in the main text)

p(sint|D,mint) ∝ M(sint|x1, κ1)M(sint|x2, κ2),

∝ exp [κ1 cos(sint − x1) + κ2 cos(sint − x2)] (S12)

For the terms inside exponential function in above equation, we have,

κ1 cos(sint − x1) + κ2 cos(sint − x2)

= κ1(cosx1 cos sint + sinx1 sin sint) + κ2(cosx2 cos sint + sinx2 sin sint),

= (κ1 cosx1 + κ2 cosx2) cos sint + (κ1 sinx1 + κ2 sinx2) sin sint,

= κ̂int cos(sint − ŝint), (S13)

where

κ̂int =
[
(κ1 cosx1 + κ2 cosx2)2 + (κ1 sinx1 + κ2 sinx2)2

]1/2
,

=
[
κ2

1 + κ2
2 + 2κ1κ2 cos(x1 − x2)

]1/2
; (S14)

ŝint = tan−1

(
κ1 sinx1 + κ2 sinx2

κ1 cosx1 + κ2 cosx2

)
, (S15)

After normalization, we get

p(sint|D,mint) =
1

2πI0(κ̂int)
exp [κ̂int cos(s− ŝint)] . (S16)

The parameters of above von Mises distributions (Eqs. S14 and S15) can be expressed as complex
numbers,

κ̂inte
jŝint = κ1e

jx1 + κ2e
jx2 , (S17)

where κejx denotes a vector in polar coordinates, with κ and x representing the length and angle of
the vector, respectively.

4 Neural Encoding Model

We present the mathematical details in deriving the likelihood function of stimulus parameters w
conveyed by neural population code. For the simplicity of notation, we ignore the index of sensory
modality l in the derivation below. In the brain, the information of each sensory cue d from sensory
modality is conveyed by the feedforward inputs u from unisensory areas. Consider the feedforward
inputs received by N multisensory neurons are Poisson spikes, u = {uj}Nj=1 (Fig. 1A, top), which
satisfies,

p(u|λ) =
∏N
j=1 Poisson(uj |λj) =

∏N
j=1

λ
uj
j

uj ! e
−λj , (S18)

where λl is the firing rate of ul. In most experiments, e.g., [1, 2], the measured firing rate λl is
a function of moving direction s and motion coherence R, which are the parameters of stimulus
presented to animal subjects (Fig. 1A, bottom) [1, 3],

λj(s,R) = R exp [a cos(s− θj)− a] , (S19)

where R and a determine the peak firing rate and the tuning width respectively. θj is the preferred
direction of j-th feedforward input, and all inputs’ preference {θj}Nj=1 are considered uniformly
cover the space of s and thus forming a homogeneous population code.

Substituting Eq. (S19) into Eq. (S18), it could be derived that,

p(u|s,R) ∝ R
∑

j uj exp
[
a
∑
j uj cos(s− θj)

]
exp

[
−R

∑
j e
a cos(s−θj)

]
. (S20)

To simplify notations, we denote

Λ =
∑
j uj , β =

∑
j e
a cos(s−θj)−a. (S21)
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where Λ is the total spike count of feedforward inputs, and β is the sum of normalized firing rate of
all neurons. In a homogeneous population code, i.e., inputs’ preference {θj}Nj=1 uniformly cover the
space of s, and β is a constant value irrelevant with the amount of input spikes. Working out the sum
of the trigonometric function in Eq. (S20) with similar math calculations presented in Sec. 3.2,

a
∑
j uj cos(s− θj) = κ cos(s− x) (S22)

where

x = arg
(∑

j uje
iθj
)

= tan−1
(∑

j uj sin θj∑
j uj cos θj

)
,

κ = aΛ
(

Λ−1
∑
j uj cos θj

)
= aΛρ(u). (S23)

x is the moving direction conveyed by feedforward input u and can be read out by population
vector [4], and κ quantifies the reliability of the populaiton vector. ρ(u) ∈ [0, 1] is the mean resultant
length of the normalized feedforward inputs [5], and characterizes the width of u. And ρ(u) is
irrelevant with amount of spikes, and increases with tuning concentration a. It can be derived that the
mean of ρ(u) given firing rate λ is,

〈ρ(u)〉p(u|λ) =

N∑
j=1

cos θje
a cos θj ,

= NI1(a), (S24)

where I1(a) is the modified Bessel function of the first kind and first order.

Using the simplified notations, the likelihood function can be reorganized as,

p(u|s,R) ∝ eκ cos(s−x) ×RΛe−βR. (S25)

We see x, κ and Λ are linear projections of u, and are sufficient statistics in determining the likelihood
function of s and R from u. Using the sufficient statistics of u, the likelihood function p(u|λ) can be
normalized into (Fig. 1B),

p (d = {x,Λ}|w = {s,R}) = p(x|s,Λ)p(Λ|R),

= M (x|s, aρΛ) Poisson(Λ|βR),

∝ M (s|x, aρΛ) Γ(R|Λ + 1, β), (S26)

whereM(x|µ, κ) denotes a von Mises distribution over x with mean µ and concentration κ, and
Poisson(x|λ) is a Poisson distribution over x with rate λ. Γ(x|α, β) denotes a Gamma distribution
over x with shape parameter α and rate parameter β. The x and Λ correspond to the sensory cue d in
Eq. (1), and the stimulus parameters s and R correspond to w in Eq. (9).

5 Theoretical Calculation of Model Evidence

We present the math details of calculating the model evidence given each model through using
Laplacian approximation [6]. We first calculate the model evidence of all observations, i.e., p(D|mh),
and then work out the model evidence of heading direction, i.e., p(x|mh). Recall that the model
evidence can be approximated as (Eq. 14) which is defined as

p(D|mh) =

∫
p(D|Wh)p(Wh|mh)dWh,

' p(D|Ŵh)p(Ŵh|mh) det(Hh/2π)−
1
2 , (S27)

To simplify notations, we denote the integrand in above equation as f(Wh),

f(Wh) = p(D|Wh)p(Wh|mh),

∝
{ ∏2

l=1M(sl,seg|xl, κl)Γ(Rl,seg|Λl + 1, β), mseg∏2
l=1M(sint|xl, κl)Γ(Rint|Λl + 1, β), mint.

(S28)
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5.1 Evidence of the segregation model

Since the prior p(s1,seg, s2,seg) and p(R1,seg, R2,seg) are both uniform distribution (Eqs. 3 and 10),

f(Wseg) ∝
2∏
l=1

M(sl,seg|xl, κl)Γ(Rl,seg|Λl + 1, β). (S29)

The logaritham of f(Wseg) is

ln f(Wseg) =

2∑
l=1

κl cos(sl,seg − xl) + Λl lnRl,seg − βRl,seg. (S30)

MAP estimate of stimulus parameters

Through taking the derivative of ln f(Wseg) over each parameter to be zero, the maximum-a-posteriori
estimate under model mseg can be found as

∂ ln f(Wseg)

∂sl,seg
= −κl sin(sl,seg − xl) = 0, ⇒ ŝl,seg = xl,

∂ ln f(W2)

∂Rl,seg
=

Λl
Rl,seg

− β = 0, ⇒ R̂l,seg = Λl/β. (S31)

Occam factor

Next, we calculate the negative Hessian matrix Hseg. Because the posterior of sl,seg and Rl,seg

(l = 1, 2) are conditionally independent with each other given cue inputs D (Eq. S29), Hseg is a
diagonal matrix. It can be calculated to be,

− ∂2

∂s2
l,seg

ln f(Wseg)

∣∣∣∣
sl,seg=ŝl,seg

= κl, − ∂2

∂R2
l,seg

ln f(Wseg)

∣∣∣∣
Rl,seg=R̂l,seg

=
β2

Λl
. (S32)

And the determinant ofHseg can be calculated as (using Eq. S23),

detHseg =

2∏
l=1

κl
β2

Λl
= a2ρ2β4. (S33)

The det(Hseg) doesn’t rely on the amount of spikes Λl. This is because the uncertainty (Hessian of
log-posterior) of sl,seg in the posterior decreases with Λl, while the uncertainty of Rl,seg increases
with Λl, and their joint effects are completely cancelled with each other. Since the segregation model
mseg has four parameters, i.e., sl, seg and Rl, seg for l = 1, 2, the Occam factor of segregation model
is,

OF(mseg) = p(Ŵseg|mseg) det(Hseg/2π)−
1
2 ,

=
1

L2
sL

2
R

√
(2π)4

a2ρ2β4
,

=
(2π)2

L2
sL

2
Raρβ

2
. (S34)

Eventually, the evidence of segregation model can be obtained through substituting Eqs. (S31 and
S34) back into Eq. (S27),

p(D|mseg) ' p(D|Ŵseg)× OF(mseg),

'

[
2∏
l=1

M (xl|xl, aρΛl) Poisson (Λl|Λl)

]
(2π)2

L2
sL

2
Raρβ

2
. (S35)
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5.2 Evidence of the integration model

For the integration model, we have,

f(Wint) ∝
2∏
l=1

M(sint|xl, κl)Γ(Rint|Λl + 1, β). (S36)

Taking the logarithm of above equation,

ln f(Wint) =

2∑
l=1

[κl cos(sint − xl) + Λl lnRint − βRint],

=

2∑
l=1

κl cos(sint − xl) + (Λ1 + Λ2) lnRint − 2βRint. (S37)

MAP estimate of stimulus parameters

Taking the derivative of ln f(Wint) over each parameter to be zero, the maximum-a-posteriori
estimates of parameter under model mint are,

∂ ln f(Wint)

∂sint
= −

2∑
l=1

κl sin(sint − xl) = 0, ⇒ ŝint = tan−1

(
κ1 sinx1 + κ2 sinx2

κ1 cosx1 + κ2 cosx2

)
,

∂ ln f(Wint)

∂Rint
=

Λ1 + Λ2

Rint
− 2β = 0,⇒ R̂int =

Λ1 + Λ2

2β
. (S38)

Occam factor

The negative Hessian matrix of integration model mint is a two dimensional diagonal matrix, because
the posterior of sint and Rint are conditionally independent.

− ∂2

∂s2
int

ln f(Wint)

∣∣∣∣
sint=ŝint

= κ̂int =
√
κ2

1 + κ2
2 + 2κ1κ2 cos(x1 − x2),

− ∂2

∂R2
int

ln f(W2)

∣∣∣∣
Rint=R̂int

=
4β2

Λ1 + Λ2
. (S39)

Thus the determinant ofHint is

detHint = κ̂int
β2

Λ1 + Λ2
.

With the assumption that |x1 − x2| � min(κ1, κ2), κ̂int ≈ κ1 + κ2, which will be satisfied when Λl
is large enough,

detHint ≈ (κ1 + κ2)
β2

Λ1 + Λ2
= 4aρβ2. (S40)

Combining the above results together, the Occam factor of the integration model is,

OF(mint) = p(Ŵint|mint) det(Hint/2π)−
1
2 ,

=
1

LsLR

√
(2π)2

4aρβ2
,

=
π

LsLR
√
aρβ

. (S41)

Finally, the evidence of integration model mint is (substituting Eqs. S38 and S41 into Eq. S27),

p(D|mint) ' p(D|Ŵint)× OF(mint),

'

[
2∏
l=1

M (xl|ŝint, aρΛl) Poisson
(
Λl
∣∣Λ1+Λ2

2

)] π

LsLR
√
aρβ

. (S42)
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Comparing the Occam factors of two models (Eqs. S34 and S41), the OF(mint) is proportional to the
square root of OF(mseg), and is larger than OF(mseg) under the parameter setting in current study.
This is because the segregation model has more parameters than the integration model, and thus will
be penalized more by a smaller Occam factor.

5.3 Likelihood of moving direction

We present the math details in approximating the likelihood of moving direction x given stimulus
parameters s and R by using Laplace’s method, which requires to maginalize the population spike
count Λ,

p(x|s,R) =

∫
p(x,Λ|s,R)dΛ,

=

∫
M(x|s, aρΛ)Poisson(Λ|βR)dΛ. (S43)

First, we approximate both the von Mises distribution and the Poisson distribution by Gaussian
distributions in above equation,

p(x|s,R) =

∫
N
[
x|s, (aρΛ)−1

]
N (Λ|βR, βR)dΛ,

≈ N
[
x|s, (aρΛ̂)−1

]
N [Λ̂|βR, βR] det(H/2π)−1/2, (S44)

where

Λ̂ = arg max
Λ

p(x,Λ|s,R), H = −∂
2 ln p(x,Λ|s,R)

∂Λ2

∣∣∣
Λ=Λ̂

. (S45)

The calculation of Λ̂ and H is presented below. To simplify notations, we use L to denote the
likelihood p(x, λ|s,R).

lnL =
1

2
ln Λ− aρΛ

2
(s− x)2 − (Λ− βR)2

2βR
. (S46)

Λ̂ can be found by taking the derivative of L over Λ to be zero,

∂ lnL
∂Λ

=
1

2Λ
− aρ

2
(s− x)2 − Λ− βR

βR
= 0,

Λ̂ =
[
1− aρ

2
(s− x)2

] βR
2

+
1

2

√[
1− aρ

2
(s− x)2

]2
β2R2 + 2βR,

≈
[
1− aρ

2
(s− x)2

]
βR+O(R1/2). (S47)

To gain theoretical insight, we simplify above equation by omitting the term 2βR inside the square
root function . This approximation works well when R is large enough, since R2 is a order larger
than R.

On the other hand, the negative Hessian matrix is,

∂2L
∂Λ2

∣∣∣
Λ=Λ̂

= − 1

2Λ̂2
− 1

R
,

= − 1

2[1− aρ
2 (s− x)2]2β2R2

− 1

R
,

≈ − 1

R
+O(R−2). (S48)

This approximation is also considered under the large R limit where the omitted term is a order
smaller than 1/R.

Substituting Eqs. (S47 and S48) back into Eq. (S44), we get an unnormalized likelihood for moving
direction x,

p(x|s,R) ∝
√

Λ̂(x) exp
[
− aρΛ̂(x)

2
(s− x)2

]
exp

[
− (Λ̂(x)− βR)2

2βR

]
. (S49)
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Since this distribution is complicated, again, we approximate it by a Gaussian distribution in order to
simplify our theoretical analysis. It is easy to see p(x|s,R) is a symmetric distribution over its center
x = s, and it is a mixture of Gaussian distributions with different width. Next, we find the Hessian of
p(x|s,R) at it peak location, x = s. Similarly, denote by L(x) = p(x|s,R) to simplify notations,
and we have,

lnL(x) =
1

2
ln Λ̂(x)− aρΛ̂(x)

2
(s− x)2 − (Λ̂(x)− βR)2

2βR
. (S50)

The Hessian of L(x) is calculated as

∂ lnL(x)

∂x
=

1

2Λ̂(x)

∂Λ̂(x)

∂x
− aρ(s− x)2

2

∂Λ̂(x)

∂x
+ aρΛ̂(x)(s− x)− Λ̂(x)− βR

βR

∂Λ̂(x)

∂x
,

∂2 lnL(x)

∂x2
= − 1

2Λ̂(x)2

(∂Λ̂(x)

∂x

)2

+

[
1

2Λ̂(x)
− aρ(s− x)2

2
− Λ̂(x)

βR
+ 1

]
∂2Λ̂(x)

∂x2

+

[
2aρ(s− x)− 1

βR

]
∂Λ̂(x)

∂x
− aρΛ̂(x).

Meanwhile, the derivative of Λ̂(x) over x is

∂Λ̂(x)

∂x
= aρβR(s− x),

∂2Λ̂(x)

∂x2
= −aρβR.

And then we have,
∂2 lnL(x)

∂x2
= − [aρ(s− x)]2

2[1− aρ
2 (s− x)2]2

− aρ

2[1− aρ
2 (s− x)2]

+
5

2
a2ρ2βR(s− x)2 − aρ(s− x)− aρβR.

And the Hessian of L(x) at x = s is,

∂2 lnL(x)

∂x2

∣∣∣
x=s

= −aρ
(

1

2
+ βR

)
,

≈ −aρβR. (S51)

We throw out 1/2 in above equation since it is much smaller than βR when R is large. Finally, the
likelihood can be approximated as a Gaussian distribution, or a von Mises distribution (using the
analogy between the Gaussian and von Mises distribution in SI. 3.1),

p(x|s,R) = N
[
x|s, (aρβR)−1

]
,

≈ M(x|s, aρβR). (S52)

Fig. S1 suggests this approximation works very well under the parameters considered in our study.

6 Neural Implementation of Integration and Bayes Factor

We present the math details of how the population of neurons could compute and represent the
posterior of heading direction in the integration model, i.e., p(sint|D,mint), and the likelhood ratio
of heading direction of cue 1, i.e., LR(x1).

6.1 Implementation of integration

From Eq. (S20), the unnormalized likelihood function of heading direction sint in the integration
model given feedforward input ul is,

p(sint|ul) ∝ exp
[
a
∑
j

ul(θj) cos(sint − θj)
]
, (S53)

where ul(θj) denotes the feedforward input from modality l with preferred direction θj given cue l.
Then the posterior of sint is proportional to,

p(sint|u1,u2) ∝ p(u1|sint)p(u2|sint),

∝ exp
[
a
∑
j

(u1(θj) + u2(θj)) cos(sint − θj)
]
. (S54)
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Suppose the posterior p(sint|u1,u2) is represented by a population of N multisensory neurons rc,
whose tuning is also satisfied by Eq. (S19), and thus the posterior decoded from the population
activity rc is

p(sint|rc) ∝ exp
[
a
∑
j

rc(j) cos(sint − θj)
]
. (S55)

Equating the terms inside the exponential functions in above two equation,∑
j r

c(j) cos(sint − θj) =
∑
j u1(θj) cos(sint − θj) +

∑
j u2(θj) cos(sint − θj). (S56)

Equating the coefficients of every cosine terms, we have,
rc1(j) = u1(θj) + u2(θj). (S57)

It suggests that the posterior of heading direction after integration could be represented by a population
of neurons whose responses are the sum of two feedforward inputs together. This is consistent with a
previous study [7].

Moreover, the preferred direction of rc(j) under two cues are both θj , and thus this is consistent with
the congruent neuron discovered in MSTd and VIP [1, 2].

6.2 Implementation of Bayes factor

Suppose there is another population of neurons rc representing the likelihood ratio LR(x1). Similar
with the derivations of implementing the integration in Sec. 6.1, from Eqs. (24-25), the neuronal
responses should satisfy,∑

j

ro(j) cos(x1 − θj) =
1

2

[∑
j

u1(θj) cos(x1 − θj)−
∑
j

u2(θj) cos(x1 − θj)
]
, (S58)

Above equation indicate that the Bayes factor might be implemented by

ro(j) =
1

2
[u1(θj)− u2(θj)]. (S59)

However, since the firing rate ro is only a positive number, the responses ro will be rectified when
u2(θj) is larger than u1(θj). And then there would be rectification error.

This problem could be solved through using the property of cosine functions,∑
j

ro(j) cos(x1 − θj) =
1

2

[∑
j

u1(θj) cos(x1 − θj) +
∑
j

u2(θj) cos[x1 − (θj + π)]
]
,

=
1

2

[∑
j

u1(θj) cos(x1 − θj) +
∑
j

u2(θj + π) cos(x1 − θj)
]
,

=
1

2

[∑
j

[u1(θj) + u2(θj + π)] cos(x1 − θj)
]
, (S60)

Equating the coefficients of the same cosine terms in above equation, the neuronal response in
representing Bayes factor should satisfy,

ro(j) =
1

2

[
u1(θ1j) + u2(θj + π)

]
. (S61)

It means the neuronal response ro is the sum of u1 from modality 1 and the inputs u2 from modality
2 but being rotated to the opposite direction. Therefore, the preferred direction of ro(j) over stimulus
of sensory modality 1 is θj , while it becomes θj + π under sensory modality 2. This is consistent
with the tuning of opposite neurons obsrved in experiments [1, 2].

7 Simulation Details and Model Parameters

To confirm the validity of the neural implementation for integration and Bayes factor, we conducted
a simulation consisting a population of congruent neurons and another population of opposite
neurons. And then compare the decoded quantity from congruent neurons and opposite neurons
with the theoretical predictions of integration (Eq. 20) and likelihood ratio in Bayes factor (Eq. 25)
respectively.
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7.1 Simulation details and model parameters

We list the typical parameters of our model. The width of space of moving direction Ls = 2π. And
the width of space of tuning curve peak R is LR = 100, consistent with that a cortical neurons’ firing
rate can be up to about 100Hz. And the tuning concentration a = 3, corresponding to the tuning
width of approximately 40◦. There are N = 180 input neurons for each sensory modality.

In the simulation performed in Fig. 3E-F, we consider a time window ∆t = β−1, which makes the
average spike counts 〈Λl〉 of feedforward input ul is Rβ∆t = R. The direction of stimulus 1, s1

is fixed at 0◦, while the direction of stimulus 2, s2 is ranging from 0◦ to 60◦ with a step of 10◦.
Moreover, the strength of each stimulusRl ranges from 5Hz to 50Hz with a step of 5Hz independently.
Given a combination of stimulus parameters, the firing rates of two feedforward inputs λ1 and λ2 are
calculated (Eq. 7), and then we use the Poisson spike generator to produce Poisson spikes u1 and u2

as feedforward inputs (Eq. 6). For each combination of stimulus parameters, it was repeated for 50
trials. Within each trial, the feedforward spiking inputs are generated.

Neural responses and decoding

The responses of congruent neurons implementing integration are obtained by summing the two
spiking inputs together, i.e., rc = u1 + u2 in Eq. (26). In contrast, the responses of “opposite”
neurons implementing the likelihood ratio of cue 1, LR(x1), will be obtained through combining the
two inputs in an opposite way, i.e., ro(j) = [u1(θj) + u2(θj + π)]/2 in Eq. (27).

Once the neuronal responses are obtained in a trial, we decode the mean and concentration of the
posterior of direction encoded by congruent neurons,

ŝ(rc) = arg
(∑

j r
c
je
iθj
)

= tan−1
(∑

j r
c
j sin θj∑

j r
c
j cos θj

)
,

κ̂(rc) = a
∑
j r

c
j cos θj . (S62)

Then ŝ(rc) and κ̂(rc) decoded from congruent neurons will be compared with the theoretical predic-
tions κ̂int and ŝint obtained from Eq. 20. The result is plotted in Fig. 3E.

On the other hande, we decode the mean and concentration from opposite neurons by using the same
way as Eq. (S62), which are denoted by ŝ(ro) and κ̂(ro) respectively. ŝ(ro) and κ̂(ro) are supposed
to the estimate of x1p and κ1p (Eq. 24) computed by opposite neurons. Meanwhile, the parameters of
LR(x2) will be obtained by x2p = ŝ(ro) + π, and κ2p = κ̂(ro). Then we substitute the estimates of
x1p, x2p, κ1p and κ2p into Eqs. (23-24) to calculate the Bayes factor read out by opposite neurons.
Finally, the results will be compared with the Bayes factor computed by theoretical prediction, and
are plotted in Fig. 3F.

Theoretical prediction

For each feedforward input ul, we decode xl and κl from it by using population vector as specified in
Eq. (8). And then we substitute the decoded x1, x2, κ1 and κ2 into Eq. (20) to calculate ŝint and κ̂int,
which will be used as the theoretical prediction of the posterior of heading direction after integration.

On the other hand, we substitute the decoded x1, x2, Λ1 and Λ2 into Eq. (25) to get the parameters of
likelihood ratio, i.e., xlp and κlp, and then calculate the value of likelihood ratio LR(x1) and LR(x2)
(Eq. 24). Finally, the Bayes factor could be calculated by using Eq. (23).
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