
Supplementary Material
7 Proofs

7.1 Proof of Lemma 1

Proof: By contradiction, assume that expert j is being wiped-out at the iteration t based on line 12
in algorithm 1, and without loss of generality, k 6= j is the leading expert at that time,

vt,k = arg max
i
{vt,i}

vt,j < vt,k · exp {−2ηL(T − t)} (7)
Since expert j is the optimal one in hindsight, specifically,

vT,j ≥ vT,k (8)
However, since the loss is L-bounded, the ratios between weights at time t, T are bounded as well,

vT,k ≥ vt,k · exp {−ηL(T − t)} (9)
vT,j ≤ vt,j · exp {ηL(T − t)} (10)

Recap inequalities (8)-(10),
vt,j ≥ vT,j · exp {−ηL(T − t)}
≥ vT,k · exp {−ηL(T − t)}
≥ vt,k · exp {−2ηL(T − t)}

In contradiction to (7).

7.2 Proof of Lemma 2

Proof: Left Hand Side. Due to the non-negativity of {vt,i}Ni=1 for all t = 1, . . . , T , we have,

Γt = 1 +

∑
i∈It−1\It vt−1,i∑

i∈It vt,i
≥ 1 (11)

Hence,

γT =

T∏
t=1

Γt ≥
T∏
t=1

1 = 1 (12)

Right Hand Side. Denote |S| as the cardinally of the set S. Then,

Γt = 1 +

∑
i∈It−1\It vt,i∑
i∈It vt,i

< 1 +
|It−1 \ It| · θt∑

i∈It vt,i
(13)

≤ 1 +
|It−1 \ It| · θt
|It| · θt

(14)

=
|It|+ |It−1 \ It|

|It|

=
|It−1|
|It|

where (13) is since vt,i < θt ∀i ∈ It−1 \ It and (14) is since vt,i ≥ θt ∀i ∈ It, according to line 13
of algorithm 1. Thus taking the telescopic product yields,

γT =

T∏
t=1

Γt <

T∏
t=1

|It−1|
|It|

=
|I0|
|IT |

=
N

|IT |
≤ N (15)

Finally we have,
1 ≤ γT < N (16)
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7.3 Proof of XNAS Regret Bound

Proof: First let us state an auxiliary lemma,
Lemma 3 (Hoeffding). For any random variable X with Pr (a ≤ X ≤ b) = 1 and s ∈ R,

ln E
[
esX

]
≤ sE [X] +

s2(b− a)2

8
. (17)

Proof can be found in [15].

We start with defining experts’ auxiliary and accumulated-auxiliary losses following [4] ,

`′t(ft,i) = ∇`(pt) · ft,i = −Rt,i (18)

L′T,i =

T∑
t=1

`′t(ft,i) (19)

Notice that the auxiliary losses are bounded by an input parameter in line 1 of algorithm 1,

|`′t(ft,i)| ≤ L (20)

We also define the set of remaining experts at time t,

It = {i|i ∈ It−1 and vt,i ≥ θt} ; I0 = {1, . . . , N} (21)

Such that,

IT ⊂ IT−1 ⊂ · · · ⊂ I0 (22)

We Now bound the ratio of weights sums from both sides.
Let us derive a lower bound:

ln
VT
V0

= ln

∑
i∈IT vT,i

N

= ln

(∑
i∈IT

exp {−ηL′T,i}

)
− lnN

≥ ln max
i∈IT

exp {−ηL′T,i} − lnN

= ln max
i=1,...,N

exp {−ηL′T,i} − lnN (23)

= −η min
i=1,...,N

L′T,i − lnN

Where we used lemma 1 in (23), assuring that loss minimizer is among the remaining experts.
Let us derive an upper bound:

ln
Vt
Vt−1

= ln

∑
i∈It vt,i∑

i∈It−1
vt−1,i

= ln

∑
i∈It−1

vt,i∑
i∈It−1

vt−1,i
+ ln

∑
i∈It vt,i∑
i∈It−1

vt,i

= ln

∑
i∈It−1

vt,i∑
i∈It−1

vt−1,i
+ ln

∑
i∈It vt,i∑

i∈It vt,i +
∑
i∈It−1\It vt,i

(24)

= ln

∑
i∈It−1

vt,i∑
i∈It−1

vt−1,i
− ln Γt (25)

= ln

∑
i∈It−1

vt−1,i · exp {−η`′t(ft,i)}∑
i∈It−1

vt−1,i
− ln Γt

≤ −η
∑
i∈It vt−1,i · `

′
t(ft,i)∑

i∈It vt−1,i
+
η2L2

2
− ln Γt (26)

= −η`′t(pt) +
η2L2

2
− ln Γt (27)
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Where (24) is due to (22) and (25) is by setting,

Γt := 1 +

∑
i∈It−1\It vt,i∑
i∈It vt,i

=

∑
i∈It vt,i +

∑
i∈It−1\It vt,i∑

i∈It vt,i
(28)

Inequality (26) results from lemma 3, with [a, b] = [−L,L] and (27) is a result of the linearity of `′t.

Summing the logs telescopic sum:

ln
VT
V0

=

T∑
t=1

ln
Vt
Vt−1

≤ −η
T∑
t=1

`′t(pt) +
η2TL2

2
−

T∑
t=1

ln Γt (29)

Setting γT :=
∏T
t=1 Γt with bounds specified in by lemma 2, we have,

ln
VT
V0
≤ −η

T∑
t=1

`′t(pt) +
η2TL2

2
− ln γT (30)

Combining the lower and upper bounds and dividing by η,

T∑
t=1

`′t(pt)− min
i=1,...,N

L′T,i ≤
ηTL2

2
+

1

η
lnN − 1

η
ln γT (31)

We now bound the accumulated regret, using the convexity of the loss,

RegretT =

T∑
t=1

`t(pt)− min
i=1,...,N

T∑
t=1

`t(ft,i)

= max
i=1,...,N

{
T∑
t=1

`t(pt)− `t(ft,i)

}

≤ max
i=1,...,N

{
T∑
t=1

∇`t(pt) · (pt − ft,i)

}

= max
i=1,...,N

{
T∑
t=1

`′t(pt)− `′t(ft,i)

}

=

T∑
t=1

`′t(pt)− min
i=1,...,N

L′T,i (32)

Combining 31 and 32 completes the proof,

RegretT ≤
ηTL2

2
+

1

η
lnN − 1

η
ln γT (33)

8 Supporting Materials for the Key Properties Discussion

8.1 A Deterministic 3D Axes Toy Problem

In an attempt to demonstrate the possible recovery of late bloomers, we view an optimization problem
in a three dimensional space as a prediction-with-experts problem, where each axis represents an
expert with a constant prediction, i.e. ft,x ≡ (1, 0, 0), ft,y ≡ (0, 1, 0), ft,z ≡ (0, 0, 1) for the x, y, z
axes respectively. The forecaster then makes a prediction according to the following,

pt =
vt,x · ft,x + vt,y · ft,y + vt,z · ft,z

vt,x + vt,y + vt,z
= xt · ft,x + yt · ft,y + zt · ft,z = (xt, yt, zt)
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with pt in the simplex, i.e. (xt, yt, zt) ∈ ∆ = {(x, y, z) | x, y, z ≥ 0, x+ y + z = 1}. Setting
vt,i = exp{αt,i} for i ∈ {x, y, z}, for a given loss function `(pt), the update terms for GD with
softmax (section 3.2.1) and XNAS (section 2.2), associated with the z axis, are as follows,

(GD) ∂αz
`(pt) = z((x+ y)∂z`(pt)− x∂x`(pt)− y∂y`(pt)) (XNAS) ∇pt`(pt)ft,z = ∂z`(pt)

as the corresponding terms for the x and y axes are similar by symmetry, see a full derivation in
section 8.4.2.

Now let us present the following toy problem: A three dimensional linear loss function `1(x, y, z) =
2z is being optimized for 30 gradient steps over the simplex, i.e. (x, y, z) ∈ ∆. Then for illustrating
a region shift in terms of the best expert, the loss function shifts into another linear loss function
`2(x, y, z) = −y − 2z which is then optimized for additional 90 steps. The trajectories are presented
in Figure 3. At the first stage the z axis suffers many penalties as its weight shrinks. Then it starts

Figure 3: Trajectories of XNAS and GD with softmax in 3D (left), projected on the simplex (middle)
and the update terms for the z axis (right). At the middle, color indicates progression through time,
starting darker and ending lighter

receiving rewards. For GD with softmax, those rewards are attenuated, as explained in section 3.2.1
and can be seen in Figure 3 (right). Despite the linear loss, with constant gradients, the update
term decays. Note that this effect is even more severe when dealing with more common losses of
higher curvature, where the gradients decay near the local minimum and then further attenuated, as
illustrated in section 8.2.4. Once the gradient shifts, it is already depressed due to past penalties,
hence the z axis struggles to recover. XNAS, however, is agnostic to the order of the loss values in
time. Once the rewards balance out the penalties, the path leads towards the z axis. In the meanwhile,
the y axis takes the lead.

8.2 A Deterministic 2D Axes Toy Problem

In section 8.1 we show the built-in attenuation of weak operations by GD with softmax. This is
illustrated by a three dimensional toy example where the axes represent experts of constant predictions.
Here we elaborate on this effect using a similar two dimensional toy problem, where the gradients
with respect to the axes are the negative values of one another. See section 8.4.3 for the setup and full
derivations. All the experiments in this section are conducted using a learning rate of 0.1 for both
optimizers for 50 steps.

8.2.1 Balanced Initialization

Figure 4 illustrates the attenuation of gradients for GD with softmax, as although the gradients of
the loss are constant, the gradients’ magnitude decreases as we move away from the initialization
αx = αy , i.e. (x, y) = (0.5, 0.5). XNAS indeed receives constant gradients thus reaches the minima
faster.

8.2.2 Imbalanced Initialization

The attenuated gradients also make GD with softmax more sensitive to the initialization, as demon-
strated in Figure 5, where αx = 0 < 5 = αy and GD with softmax, whose gradients are attenuated,
makes no progress while XNAS reaches the minima.
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Figure 4: Trajectories of GD with softmax and XNAS for a `(x, y) = −x (left) the distance from
the optimal point (middle) and the corresponding magnitude of the gradients (right) for a balanced
initialization αy = αx. The vertical lines are the contour lines of the loss function. The dashed line is
the simplex x+ y = 1, and the trajectories are the solid lines with circles at their ends.

Figure 5: Trajectories of GD with softmax and XNAS for a `(x, y) = −x (left) the distance from the
optimal point (middle) and the corresponding magnitude of the gradients (right) for an imbalanced
initialization αx < αy . The vertical lines are the contour lines of the loss function. The dashed line is
the simplex x+ y = 1, and the trajectories are the solid lines with circles at their ends.

8.2.3 The Preference of Dense Solutions

Presenting the attenuation factor x · y on the simplex, i.e. x · (1 − x), in Figure 6, demonstrates
how gradients are harder attenuated as far away as the variables move from a dense solution, e.g.
(x, y) = (0.5, 0.5) at αx = αy . Hence, it is harder for GD with softmax to strengthen a single expert

Figure 6: The attenuation factor of GD with softmax along the simplex (left) and versus αx as αy = 0
(right)

over the other. This effect encourages dense solutions over sparse solutions, i.e. a choice of a single
expert. Due to the descretization stage, described in section 2.1, the denser the solution is, the more
degradation in performance is incurred. Hence dense solutions should be discouraged rather than
encouraged.
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8.2.4 Loss Functions of a Higher Curvature

Sections 8.2.1 and 8.2.2 deal with a linear loss function of no curvature and constant gradients. Once
convex loss functions are considered, the gradients decrease towards the local minimum. Figure
7 illustrates the further attenuation of GD with softmax for a quadratic loss function `(x, y) =
0.5(x− 1)2 + 0.5y2, which makes it even harder for GD with softmax to reach the local minimum.

Figure 7: Trajectories of GD with softmax and XNAS for a `(x, y) = 0.5(x− 1)2 + 0.5y2 (left) the
distance from the optimal point (middle) and the corresponding magnitude of the gradients (right).
The circular lines are the contour lines of the loss function. The dashed line is the simplex x+ y = 1,
and the trajectories are the solid lines with circles at their ends.

8.3 Regret and Correct Selection in Statistical Setting

Figure 8: Correct selection fraction and regret of optimizers.

We consider a statistical setup for comparing XNAS with the common Gradient Descent (GD) with
softmax, described in section 3.2.1. This setup simulates the iterative architecture optimization and
final selection of the top expert for a single forecaster.

Two forecasters are compared, XNAS and GD with softmax. Both receive noisy independent and
identically distributed (i.i.d) rewards of N experts. Each expert has an initial i.i.d bias {bi}Ni=1 ∼
N(0, 1) simulating its inherent value, so its rewards satisfy Rt,i ∼ N(bi, σ

2
R) for i = 1, . . . , N and

t = 1, . . . , T , where N(µ, σ2) is a Gaussian distribution with a mean µ and a standard deviation σ.

The first forecaster updates its weights using GD with softmax update rule from Equation 6 (full
derivation in section 8.4.1), common to previous NAS methods, while the second is using Algorithm 1.

The forecasters use their update rules to update weights along the run. At the end of the run each
selects the expert with the largest weight. A correct classification satisfies max

i=1,...,N
αi = max

i=1,...,N
bi.

The average regret of those runs is also calculated based on equation 2.

Figure 8 shows a mean of 1000 Monte-Carlo runs, each of 1000 time-steps, plotting the regret and
the fraction of correct selection (classification). In Figure 8 (left), both terms are plotted versus a
varying number of experts. It can be seen that the regret of XNAS is significantly smaller, scaling
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with the number of experts like O(
√

lnN), as implied by its regret upper bound in equation 4, while
GD regret scales like O(

√
N) [14].

In Figure 8 (right), the noise standard deviation σR is varying, making it harder to correctly classify
the expert with the highest bias. Again, XNAS dominates GD with softmax, which is more sensitive
to the noisy rewards due to the ’late bloomers’ described in 3.2.1, e.g. the best experts might suffer
some large penalties right at the beginning due to the noise, thus might not recover for GD with
softmax.
In both graphs it can be seen that the correct selection fraction is monotonically decreasing as the
regret is increasing. This gives an additional motivation for the use of the regret minimization
approach as a criterion for neural architecture search.

8.4 Gradients Derivations

For the comparison to previous work [25], we consider the decision variables αt,i = ln vt,i, as the
right hand side is defined at (1).

8.4.1 The Derivation of Derivatives in the General Case

∂ut,j
∂αt,i

=
∂

∂αt,i

eαt,j∑N
k=1 e

αt,k

=
δi,je

αt,i ·
∑N
k=1 e

αt,k − eαt,j · eαt,i(∑N
k=1 e

αt,k

)2
=

eαt,i∑N
k=1 e

αt,k

(
δi,j −

eαt,j∑N
k=1 e

αt,k

)
= ut,i (δi,j − ut,j) (34)

where δi,j =

{
1, if i = j,

0, if i 6= j.
is the Kronecker delta.

Observe that:

∂`t(pt)

∂ut,i
= ∇pt`t(pt)T ·

∂pt
∂ut,i

= ∇pt`t(pt)T ·
∂

∂ut,i

N∑
j=1

ut,jft,j

= ∇pt`t(pt)T · ft,i (35)

Finally,

∂`t(pt)

∂αt,i
=

N∑
j=1

∂`t(pt)

∂ut,j
· ∂ut,j
∂αt,i

=

N∑
j=1

∇pt`t(pt)T · ft,j · ut,i (δi,j − ut,j) (36)

= ∇pt`t(pt)T · ut,i

ft,i − N∑
j=1

ut,jft,j


= ∇pt`t(pt)T · ut,i (ft,i − pt) (37)

where (36) is due to (34) and (35).
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8.4.2 The Derivation of Derivatives for the 3D Axes Problem

In this section we derive the derivatives with respect to the x, y, z axes for the toy problem introduced
at section 8.1. In this case,

ft,x ≡ (1, 0, 0)T ut,x = xt

ft,y ≡ (0, 1, 0)T ut,y = yt (38)

ft,z ≡ (0, 0, 1)T ut,z = zt

Hence,

pt =
∑

i∈{x,y,z}

ut,ift,i = xt(1, 0, 0)T + yt(0, 1, 0)T + zt(0, 0, 1)T = (xt, yt, zt)
T (39)

such that for a loss function `,

∇pt`(pt) =

(
∂`(pt)(pt)

∂xt
,
∂`(pt)(pt)

∂yt
,
∂`(pt)(pt)

∂zt

)T
= (∂xt

`(pt), ∂yt`(pt), ∂zt`(pt))
T (40)

Then, setting (38) and (40) in (37), we have,

∂αx
`(pt) =

∂`(pt)

∂αx
= (∂xt`(pt), ∂yt`(pt), ∂zt`(pt))

T · xt
(
(1, 0, 0)T − (xt, yt, zt)

T
)

= (∂xt
`(pt), ∂yt`(pt), ∂zt`(pt))

T · xt (yt + zt,−yt,−zt)T (41)

= xt
(
(yt + zt)∂αx`(pt)− yt∂αy`(pt)− zt∂αz`(pt)

)
(42)

where (41) is since (x, y, z) ∈ ∆, defined in section 8.1. By symmetry we have,

∂αy
`(pt) = yt

(
(xt + zt)∂αy

`(pt)− xt∂αx
`(pt)− zt∂αz

`(pt)
)

(43)

∂αz`(pt) = zt
(
(xt + yt)∂αz`(pt)− xt∂αx`(pt)− yt∂αy`(pt)

)
(44)

The update terms for XNAS are according to (35),

∇pt`(pt)T · ft,x = (∂xt
`(pt), ∂yt`(pt), ∂zt`(pt)) · (1, 0, 0)T = ∂xt

`(pt) (45)

∇pt`(pt)T · ft,y = (∂xt`(pt), ∂yt`(pt), ∂zt`(pt)) · (0, 1, 0)T = ∂yt`(pt) (46)

∇pt`(pt)T · ft,z = (∂xt`(pt), ∂yt`(pt), ∂zt`(pt)) · (0, 0, 1)T = ∂zt`(pt) (47)

8.4.3 The Derivation of Derivatives for a 2D Axes Problem

In this section we derive the derivatives with respect to the x, y axes for a two dimensional toy
problem. Similar to section 8.1 where a three dimensional problem was considered, now we consider
only two axes. Each axis represents an expert of a constant prediction,

ft,x ≡ (1, 0)T ut,x = xt

ft,y ≡ (0, 1)T ut,y = yt (48)

Where xt + yt ≡ 1. Hence,

pt =
∑

i∈{x,y}

ut,ift,i = xt(1, 0)T + yt(0, 1)T = (xt, yt)
T (49)

such that for a loss function `,

∇pt`(pt) =

(
∂`(pt)

∂xt
,
∂`(pt)

∂yt

)T
= (∂xt`(pt), ∂yt`(pt))

T (50)

Then, setting (48) and (50) in (37), we have,

∂αx
`(pt) =

∂`(pt)

∂αx
= (∂xt

`(pt), ∂yt`(pt))
T · xt

(
(1, 0)T − (xt, yt)

T
)

= (∂xt`(pt), ∂yt`(pt))
T · xt (yt,−yt)T (51)

= xtyt (∂xt`(pt)− ∂yt`(pt)) (52)

where (51) is since xt + yt ≡ 1. By symmetry we have,

∂αy
`(pt) = xtyt (∂yt`(pt)− ∂xt

`(pt)) = −∂αx
`(pt) (53)
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8.5 The Mean Normalized Entropy

In this section we provide the technical calculation details of the mean normalized entropy, referred
to in section 3.2.2. The normalized entropy of forcaster (i, j) is calculated at the end of the search as
following,

H̄
(i,j)
T = − 1

ln (N)

N∑
i=1

u
(i,j)
T,i ln

(
u
(i,j)
T,i

)
(54)

The mean is taken over all the forecasters in a normal cell, i.e.

H̄T =
1

|I| · |J |
∑
i∈I

∑
j∈J

H̄
(i,j)
T (55)

where I and J are the sets of indices i and j respectively.

9 Detailed Experiments Setting

9.1 Classification Datasets Details

In this section we will describe the additional datasets that were used for transferability tests in
section 4.3

CINIC-10: [8] is an extension of CIFAR-10 by ImageNet images, down-sampled to match the image
size of CIFAR-10. It has 270, 000 images of 10 classes, i.e. it has larger train and test sets than those
of CIFAR-10.

CIFAR-100: [42] A natural image classification dataset, containing 100 classes with 600 images per
class. The image size is 32x32 and the train-test split is 50, 000:10, 000 images respectively.

FREIBURG: [19] A groceries classification dataset consisting of 5000 images of size 256x256,
divided into 25 categories. It has imbalanced class sizes ranging from 97 to 370 images per class.
Images were taken in various aspect ratios and padded to squares.

SVHN: [28] A dataset containing real-world images of digits and numbers in natural scenes. It
consists of 600, 000 images of size 32x32, divided into 10 classes. The dataset can be thought of as a
real-world alternative to MNIST, with an order of magnitude more images and significantly harder
real-world scenarios.

FMNIST: [47] A clothes classification dataset with a 60, 000:10, 000 train-test split. Each example
is a grayscale image of size 28x28, associated with a label from 10 classes of clothes. It is intended
to serve as a direct drop-in replacement for the original MNIST dataset as a benchmark for machine
learning algorithms.

9.2 CIFAR-10 XNAS Search details

Data pre-processing. We apply the following:

• Centrally padding the training images to a size of 40x40.
• Randomly cropping back to the size of 32x32.
• Randomly flipping the training images horizontally.
• Auto augment.
• Standardizing the train and validation sets to be of a zero-mean and a unit variance.

Operations and cells. We select from the operations mentioned in 4.1, used with stride 1 on normal
cells, and with stride 2 on reduction cells in edges connected to the two previous cells. Other edges in
reduction cells are used with stride 1. Convolutional layers are padded so that the spatial resolution
is kept. The operations are applied in the order of ReLU-Conv-BN. Following [29],[33], depthwise
separable convolutions are always applied twice. The cell’s output is a 1x1 convolutional layer
applied on all of the cells’ four intermediate nodes’ outputs concatenated, such that the number of
channels is preserved. In CIFAR-10, the search lasts up to 0.3 days on NVIDIA GTX 1080Ti GPU.
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9.3 Train Details

CIFAR-10. The training architecture consists of stacking up 20 cells: 18 normal cells and 2 reduction
cells, located at the 1/3 and 2/3 of the total network depth respectively. For the three architectures
XNAS-Small, XNAS-Medium and XNAS-Large, the normal cells start with 36, 44 and 50 channels
respectively, where we double the number of channels after each reduction cell. We trained the
network for 1500 epochs using a batch size of 96 and SGD optimizer with nesterov-momentum of
0.9. Our learning rate regime was composed of 5 cycles of power cosine annealing learning rate [17],
with amplitude decay factor of 0.5 per cycle and initial value of 0.025. For regularization we used
cutout [9] with a length of 16, scheduled drop-path [22] of 0.2, auxiliary towers [39] after the last
reduction cell with a weight of 0.4, label smoothing [40] of 0.1, AutoAugment [7] and weight decay
of 3 · 10−4.

ImageNet. Our training architecture starts with stem cells that reduce the input image resolution
from 224 to 56 (3 reductions), similar to [25]. We then stack 14 cells: 12 normal cells and 2 reduction
cells. The reduction cells are placed after the fourth and eighth normal cells. The normal cells start
with 46 channels, as the number of channels is doubled after each reduction cell. For each cell we
also add a SE layer [16]. We trained the network, with a batch size of 1280 for 250 epochs, with one
cycle of power cosine learning rate, weight decay of 10−4 and nesterov-momentum of 0.9. We add
an auxiliary loss after the last reduction cell with a weight of 0.4. During training, we normalize
the input image and crop it with a random cropping factor in the range of 0.08 to 1. In addition we
use auto-augment and horizontal flipping. During testing, we resize the input image to the size of
256x256 and applying a fixed central crop to the size of 224x224.

Additional datasets. Our additional classification datasets consist of CINIC-10 [8], CIFAR-100 [42],
FREIBURG [19], SVHN [28] and FashionMNIST [47]. Their training scheme was similar to the
one used for CIFAR-10, described at 9.3, with some minor adjustments and modifications. For the
FREIBURG dataset, we resized the original images from 256x256 to 96x96 and used a batch size
of 16. For CINIC-10, we trained the network for 800 epochs instead of 1500, since this dataset is
much larger then CIFAR-10. For Fashion-MNIST we edited the learned augmentations regime to fit
a dataset of grayscale images.

10 Evaluation Details

10.1 Cells Learned by XNAS

Figure 9 presents the cells learned by XNAS on CIFAR-10.

Figure 9: XNAS learned normal and reduction cells on CIFAR-10.
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Cell depth: When comparing the cell in Figure 9 to other reported NAS cells [29, 25, 33, 56, 50, 24],
it is clear visually that XNAS cell is "deeper" in some sense.

We wish to define a metrics for a cell "depth". A cell Ck contains four nodes. Each node can be
connected to the previous cell’s nodes or to the two previous cells’ outputs Ck−2, Ck−1. Let us index
the previous cells Ck−2, Ck−1 and the cell’s four nodes as 0, . . . , 5 respectively.

Define the depth of each connection in a cell as the index of the node (or previous cell) it came from.
A simple metric for a cell depth can be the average depth of its inner connections. Table 4 presents
the depth of XNAS and other NAS methods normal cells.

Cell Depth
SNAS [50] 0.625
PNAS [24] 0.5
Amoeba-A [33] 0.9
NASNet [56] 0.4
DARTS [25] 0.625
ASAP [29] 0.875
XNAS 1.375

Table 4: XNAS and other NAS methods normal cell Depth.

We can see from Table 4 that the XNAS cell is much deeper then a typical NAS cell. This observation
could provide a hint about the superior performance of the XNAS cell. Unlike most NAS methods,
that usually produce shallow cells, XNAS cell utilizes better the possible degree of freedom of a NAS
cell design, yielding a deeper and more complex architecture.

10.2 Flops and Inference Time

The number of flops and the inference time are also measured for the XNAS models:

CIFAR-10
Architecture

Test Error [%] Parameters [M] Flops [M] Inference Time [ms]

XNAS-Small 1.81 3.7 621 1.98
XNAS-Medium 1.73 5.6 905 1.99
XNAS-Large 1.60 7.2 1150 1.94

Table 5: Classification errors, number of parameters, number of flops and inference time per sample
of XNAS models on CIFAR-10. Test error refers to top-1 test error (%). XNAS Small, Medium and
Large refer to network architectures with XNAS cells and 36, 44 and 50 initial channels respectively.

ImageNet
Architecture

Test Error [%] Parameters [M] Flops [M] Inference Time [ms]

XNAS 23.9 5.2 590 1.49

Table 6: Transferability classification error, number of parameters, number of flops and inference
time per sample of XNAS models on ImageNet. Test error refers to top-1 test error (%). See the
model details in section 4.3.
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