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1 Overview

In this supplementary document, we present additional results to complement the paper. First,
we present an extension of our general framework to other classic non-local methods for image
restoration. Second, we provide visual results for the comparison of our NLRN and several competing
methods on image denoising and image super-resolution.

2 Extension of the General Framework to Other Classic Non-Local Methods

Besides the extension to WNNM and non-local means, which are discussed in Section 3.2 of the
main paper, we show the proposed non-local framework can be extended to collaborative filtering
methods, e.g., BM3D algorithm [1], as well as joint sparsity based methods, e.g., LSSC algorithm [6].
We follow the same notations in Section 3.2 of the main paper. Both BM3D and LSSC apply block
matching (BM) first before processing, and form N groups of similar patches into data matrices. The
index set of the matched patches for the i-th reference patch is denoted as Ci. The group of matched
patches for the i-th reference patch is denoted as XCi

.

Similar to WNNM [3], BM3D [1] also applies BM first to group similar patches based on their
Euclidean distances. The matched patches are then processed via Wiener filtering [1], and the
denoised results of the i-th group of patches are

ZCi = τ−1(diag(ω)τ(XCi)). (1)

Here τ(·) and τ−1(·) denote the forward and backward Wiener filtering applied to the groups of
matched patches, respectively. The diagonal matrix diag(ω) is formed by the empirical Wiener
coefficients ω. BM3D applies data pre-cleaning, using discrete cosine transform (DCT), to estimate
the original patch, and calculate the estimate of ω [1]. Since calculating ZCi

in (1) involves only
linear filtering, it can also be generalized using the proposed non-local framework. Unlike the
extension to WNNM, here

∑
j∈Ci

Φ(X)ji G(X)j corresponds to the denoised results via Wiener
filtering as shown in (1), of the i-th group of matched patches.

Different from BM3D and WNNM, LSSC learns a common dictionary D for all image patches, and
imposes joint sparsity [6] on each data matrix of matched patches XCi

, so that the correlation of the
matched patches are exploited by enforcing the same support of their sparse codes. Thus, the joint
sparse coding in LSSC [6] becomes

Âi = argminAi
‖Ai‖0,∞ s.t.

∥∥∥XT
Ci
−DAi

∥∥∥2
F
≤ ε |Ci| , ∀i , (2)

where the (0,∞) “norm” ‖·‖0,∞ counts the number of non-zero columns of each sparse code matrix
Ai [6], and |Ci| is the cardinality of Ci. The coefficient ε is a constant, which is used to upper bound
the sparse modeling errors. In general, the solution to (2) is NP-hard. To simplify the discussion, we
assume the dictionary to be unitary (which reduces the sparse coding problem to the transform-model
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sparse coding [10]), i.e., DTD = I and D ∈ Rk×k. Thus there exists a corresponding shrinkage
function η(·) for imposing joint sparsity on the sparse codes [6, 7], such that the denoised estimates

of the i-th patch group can be obtained as ZCi = Â
T

i D
T = η(XCi D )DT . Though joint sparse

coding projects all data onto a union of subspaces [6, 2, 10] which is a non-linear operation in
general, each data matrix XCi

is projected onto one particular subspace spanned by the selected
atoms corresponding to the non-zero columns in Âi, which is locally linear. For the i-th group of
patches, such a subspace projection corresponds to

∑
j∈Ci

Φ(X)ji G(X)j in the proposed general
framework.

3 Visual Results

We show the visual comparison of our NLRN and several competing methods: BM3D [1], WNNM [3],
and MemNet [9] for image denoising in Figure 1. Our method can recover more details from the
noisy measurement. The visual comparison of our NLRN and several recent methods: DRCN [4],
LapSRN [5], DRRN [8], and MemNet [9] for image super-resolution is displayed in Figure 2. Our
method is able to reconstruct sharper edges and produce fewer artifacts especially in the regions of
repetitive patterns.
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Ground truth

Noisy (18.75/0.3232) BM3D (29.13/0.8261) WNNM (29.30/0.8334)

MemNet (29.18/0.8223) NLRN (29.53/0.8369) Ground truth (PSNR/SSIM)

Ground truth

Noisy (19.49/0.5099) BM3D (28.95/0.9062) WNNM (30.44/0.9260)

MemNet (28.71/0.8906) NLRN (30.52/0.9267) Ground truth (PSNR/SSIM)

Ground truth

Noisy (19.39/0.4540) BM3D (27.20/0.8775) WNNM (28.86/0.8913)

MemNet (27.55/0.8807) NLRN (29.04/0.9044) Ground truth (PSNR/SSIM)

Ground truth

Noisy (19.06/0.3005) BM3D (29.61/0.8304) WNNM (30.59/0.8543)

MemNet (30.21/0.8517) NLRN (31.17/0.8727) Ground truth (PSNR/SSIM)

Ground truth

Noisy (18.88/0.3479) BM3D (28.82/0.9051) WNNM (28.38/0.9189)

MemNet (28.31/0.9112) NLRN (28.42/0.9308) Ground truth (PSNR/SSIM)

Figure 1: Qualitative comparison of image denoising results with noise level of 30. The zoom-in region in the
red bounding box is shown on the right. From top to bottom: 1) the image barbara. 2) image 004 in Urban100.
3) image 019 in Urban100. 4) image 033 in Urban100. 5) image 046 in Urban100.
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Ground truth HR

DRCN (26.82/0.9329) LapSRN (26.52/0.9316) DRRN (27.52/0.9434)

MemNet (27.78/0.9451) NLRN (28.46/0.9513) HR (PSNR/SSIM)

Ground truth HR

DRCN (20.95/0.7716) LapSRN (20.90/0.7722) DRRN (21.37/0.7874)

MemNet (21.35/0.7877) NLRN (21.92/0.8014) HR (PSNR/SSIM)

Ground truth HR

DRCN (30.18/0.8306) LapSRN (30.29/0.8388) DRRN (30.18/0.8306)

MemNet (29.25/0.8347) NLRN (31.19/0.8598) HR (PSNR/SSIM)

Ground truth HR

DRCN (20.71/0.7466) LapSRN (20.86/0.7524) DRRN (20.92/0.7666)

MemNet (21.06/0.7716) NLRN (21.41/0.7866) HR (PSNR/SSIM)

Ground truth HR

DRCN (23.99/0.6940) LapSRN (24.49/0.7247) DRRN (25.14/0.7469)

MemNet (25.19/0.7519) NLRN (25.97/0.7882) HR (PSNR/SSIM)

Figure 2: Qualitative comparison of image super-resolution results with ×4 upscaling. The zoom-in region in
the red bounding box is shown on the right. From top to bottom: 1) image 005 in Urban100. 2) image 019 in
Urban100. 3) image 044 in Urban100. 4) image 062 in Urban100. 5) image 099 in Urban100.
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