
Robust Subspace Approximation in a Stream

Roie Levin1

roiel@cs.cmu.edu
Anish Sevekari2

asevekar@andrew.cmu.edu

David P. Woodruff1

dwoodruf@cs.cmu.edu
1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213

2 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

December 4, 2018

Abstract
We study robust subspace estimation in the streaming and distributed settings. Given a set of n data

points {ai}ni=1 in Rd and an integer k, we wish to find a linear subspace S of dimension k for which∑
i M(dist(S, ai)) is minimized, where dist(S, x) := miny∈S ∥x− y∥2, and M(·) is some loss function.

When M is the identity function, S gives a subspace that is more robust to outliers than that provided
by the truncated SVD. Though the problem is NP-hard, it is approximable within a (1 + ϵ) factor in
polynomial time when k and ϵ are constant. We give the first sublinear approximation algorithm for this
problem in the turnstile streaming and arbitrary partition distributed models, achieving the same time
guarantees as in the offline case. Our algorithm is the first based entirely on oblivious dimensionality
reduction, and significantly simplifies prior methods for this problem, which held in neither the streaming
nor distributed models.

1 Introduction

A fundamental problem in large-scale machine learning is that of subspace approximation. Given a set of n
data points {ai}ni=1 in Rd and an integer k, we wish to find a linear subspace S of dimension k for which∑

iM(dist(S, ai)) is minimized, where dist(S, x) := miny∈S ∥x− y∥2, and M(·) is some loss function.
When M(·) = (·)2, this is the well-studied least squares subspace approximation problem. The minimizer
in this case can be computed exactly by computing the truncated SVD of the data matrix.
Otherwise M is often chosen from (·)p for some p ≥ 0, or from a class of functions called M -estimators,
with the goal of providing a more robust estimate than least squares in the face of outliers. Indeed, for p < 2,
since one is not squaring the distances to the subspace, one is placing less emphasis on outliers and therefore
capturing more of the remaining data points. For example, when M is the identity function, we are finding
a subspace so as to minimize the sum of distances to it, which could arguably be more natural than finding a
subspace so as to minimize the sum of squared distances. We can write this problem in the following form:

min
S dim k

∑
i

dist(S, ai) = min
X rank k

∑
i

∥(A−AX)i∗∥2

where A is the matrix in which the i-th row is the vector ai. This is the form of robust subspace approxima-
tion that we study in this work. We will be interested in the approximate version of the problem for which

1

the goal is to output a k-dimensional subspace S′ for which with high probability,∑
i

dist(S′, ai) ≤ (1 + ϵ)
∑
i

dist(S, ai) (1)

The particular form with M equal to the identity was introduced to the machine learning community by
Ding et al. [11], though these authors employed heuristic solutions. The series of work in [8],[16] and
[9, 13, 21, 6] shows that if M(·) = | · |p for p ̸= 2, there is no algorithm that outputs a (1 + 1/ poly(d))
approximation to this problem unless P = NP. However, [6] also show that for any p there is an algorithm
that runs in O(nnz(A) + (n+ d) poly(k/ϵ) + exp(poly(k/ϵ)) time and outputs a k-dimensional subspace
whose cost is within a (1+ϵ) factor of the optimal solution cost. This provides a considerable computational
savings since in most applications k ≪ d ≪ n. Their work builds upon techniques developed in [14] and
[12] which give O

(
nd · poly(k/ϵ) + exp

(
(k/ϵ)O(p)

))
time algorithms for the p ≥ 1 case. These in turn

build on the weak coreset construction of [10]. In other related work [7] give algorithms for performing
regression with a variety of M -estimator loss functions.

Our Contributions. We give the first sketching-based solution to this problem. Namely, we show it
suffices to compute Z·A, where Z is a poly(log(nd)kϵ−1)×n random matrix with entries chosen obliviously
to the entries of A. The matrix Z is a block matrix with blocks consisting of independent Gaussian entries,
while other blocks consist of independent Cauchy random variables, and yet other blocks are sparse matrices
with non-zero entries in {−1, 1}. Previously such sketching-based solutions were known only for M(·) =
(·)2. Prior algorithms [9, 13, 21, 6] also could not be implemented as single-shot sketching algorithms
since they require first making a pass over the data to obtain a crude approximation, and then using (often
adaptive) sampling methods in future passes to refine to a (1 + ϵ)-approximation. Our sketching-based
algorithm, achieving O(nnz(A)+ (n+ d) poly(log(nd)k/ϵ)+ exp(poly(kϵ−1)) time, matches the running
time of previous algorithms and has considerable benefits as described below.
Streaming Model. Since Z is linear and oblivious, one can maintain Z · A in the presence of insertions and
deletions to the entries of A. Indeed, given the update Ai,j ← Ai,j +∆ for some ∆ ∈ R, we simply update
the j-th column ZAj in our sketch to ZAj + ∆ · Z · ei, where ei is the i-th standard unit vector. Also,
the entries of Z can be represented with limited independence, and so Z can be stored with a short random
seed. Consequently, we obtain the first algorithm with dpoly(log(nd)kϵ−1) memory for this problem in
the standard turnstile data stream model [20]. In this model, A ∈ Rn×d is initially the zero matrix, and we
receive a stream of updates to A where the i-th update is of the form (xi, yi, ci), which means that Axi,yi

should be incremented by ci. We are allowed one pass over the stream, and should output a rank-k matrix X ′

which is a (1+ϵ) approximation to the robust subspace estimation problem, namely
∑

i ∥(A−AX ′)i∗∥2 ≤
(1+ ϵ)minX rank k

∑
i ∥(A−AX)i∗∥2 . The space complexity of the algorithm is the total number of words

required to store this information during the stream. Here, each word is O(log(nd)) bits. Our algorithm
achieves dpoly(log(nd)kϵ−1) memory, and so only logarithmically depends on n. This is comparable to
the memory of streaming algorithms when M(·) = (·)2 [4, 15], which is the only prior case for which
streaming algorithms were known.
Distributed Model. Since our algorithm maintains Z ·A for an oblivious linear sketch Z, it is parallelizable,
and can be used to solve the problem in the distributed setting in which there are s machines holding
A1, A2, . . . , As, respectively, and A =

∑s
i=1A

i. This is called the arbitrary partition model [18]. In this
model, we can solve the problem in one round with s ·dpoly(log(nd)kϵ−1) communication by having each
machine agree upon (a short seed describing) Z, and sending ZAi to a central coordinator who computes
and runs our algorithm on Z · A =

∑
i ZAi. The arbitrary partition model is stronger than the so-called

2

row partition model, in which the points (rows of A) are partitioned across machines. For example, if each
machine corresponds to a shop, the rows of A correspond to customers, the columns of A correspond to
items, and Ai

c,d indicates how many times customer c purchased item d at shop i, then the row partition
model requires customers to make purchases at a single shop. In contrast, in the arbitrary partition model,
customers can purchase items at multiple shops.

2 Notation and Terminology

For a matrix A, let Ai∗ denote the i-th row of A, and A∗j denote the j-th column of A.
Definition 2.1 (∥·∥2,1, ∥·∥1,2, ∥·∥1,1, ∥·∥med,1, ∥·∥F). For a matrix A ∈ Rn×m, let:

∥A∥2,1 ≡
∑
i

∥Ai∗∥2 ∥A∥1,2 ≡ ∥A
⊺∥2,1 =

∑
j

∥A∗j∥2

∥A∥F ≡
√∑

i

∥Ai∗∥22 ∥A∥1,1 ≡
∑
i

∥Ai∗∥1 ∥A∥med,1 ≡
∑
j

∥A∗j∥med

where ∥·∥med denotes the function that takes the median of absolute values.
Definition 2.2 (X∗, ∆∗). Let:

∆∗ ≡ min
X rank k

∥A−AX∥2,1 X∗ ≡ argmin
X rank k

∥A−AX∥2,1

Definition 2.3 ((α, β)-coreset). For a matrix A ∈ Rn×d and a target rank k, W is an (α, β)-coreset if its
row space is an α-dimensional subspace of Rd that contains a β-approximation to X∗. Formally:

argmin
X rank k

∥A−AXW∥2,1 ≤ β∆∗

Definition 2.4 (Count-Sketch Matrix). A random matrix S ∈ Rr×t is a Count-Sketch matrix if it is con-
structed via the following procedure. For each of the t columns S∗i, we first independently choose a uni-
formly random row h(i) ∈ {1, 2, ..., r}. Then, we choose a uniformly random element of {−1, 1} denoted
σ(i). We set Sh(i),i = σ(i) and set Sj,i = 0 for all j ̸= i.

For the applications of Count-Sketch matrices in this paper, it suffices to use O(1)-wise instead of full
independence for the hash and sign functions. Thus these can be stored in O(1) space, and multiplication
SA can be computed in nnz(A) time. For more background on such sketching matrices, we refer the reader
to the monograph [25].
We also use the following notation: [n] denotes the set {1, 2, 3, · · ·n}. [[E]] denotes the indicator function
for event E. nnz(A) denotes the number of non-zero entries of A. A− denotes the pseudoinverse of A. I
denotes the identity matrix.

3 Algorithm Overview

At a high level we follow the framework put forth in [6] which gives the first input sparsity time algo-
rithm for the robust subspace approximation problem. In their work Clarkson and Woodruff first find a
crude (poly(k),K)-coreset for the problem. They then use a non-adaptive implementation of a residual

3

sampling technique from [10] to improve the approximation quality but increase the dimension, yielding
a (K poly(k), 1 + ϵ)-coreset. From here they further use dimension reducing sketches to reduce to an in-
stance with parameters that depend only polynomially on k/ϵ. Finally they pay a cost exponential only in
poly(k/ϵ) to solve the small problem via a black box algorithm of [3].
There are several major obstacles to directly porting this technique to the streaming setting. For one, the
construction of the crude approximation subspace uses leverage score sampling matrices which are non-
oblivious and thus not usable in 1-pass turnstile model algorithms. We circumvent this difficulty in Section
4.1 by showing that if T is a sparse poly(k) × n matrix of Cauchy random variables, the row span of TA
contains a rank-k matrix which is a log(d) poly(k) approximation to the best rank-k matrix under the ∥·∥2,1
norm.
Second, the residual sampling step requires sampling rows of A with respect to probabilities proportional
to their distance to the crude approximation (in our case TA). This is challenging because one does not
know TA until the end of the stream, much less the distances of rows of A to TA. We handle this in
Section 4.2 using a row-sampling data structure of [1, 22, 24], which for a matrix B maintains a sketch
HB in a stream from which one can extract samples of rows of B according to probabilities given by their
norms. By linearity, it suffices to maintain HA and TA in parallel in the stream, and apply the sample
extraction procedure to HA · (I − PTA), where PTA = (TA)⊺(TA(TA)⊺)−1TA is the projection onto the
rowspace of TA. Unfortunately, the extraction procedure only returns noisy perturbations of the original
rows which majorly invalidates the analysis in [6] of the residual sampling. In Section 4.2 we give an
analysis of non-adaptive noisy residual sampling which we name BOOTSTRAPCORESET. This gives a
procedure for transforming our poly(k)-dimensional space containing a poly(k) log(d) approximation into
a poly(k) log(d)-dimensional space containing a 3/2 factor approximation.
Third, requiring the initial crude approximation to be oblivious yields a coarser log(d) poly(k) initial ap-
proximation than the constant factor approximation of [6]. Thus the dimension of the subspace after residual
sampling is poly(k) log(d). Applying dimension reduction techniques reduces the problem to an instance
with poly(k) rows and log(d) poly(k) columns. Here the black box algorithm of [3] would take time dpoly(k)

which is no longer fixed parameter tractable as desired. Our key insight is that finding the best rank-k matrix
under the Frobenius norm, which can be done efficiently, is a

√
log d(log log d) poly(k) approximation to

the ∥·∥2,1 norm minimizer. From here we can repeat the residual sampling argument which this time yields
a small instance with poly(k) rows by

√
log d(log log d) poly(k/ϵ) columns. Sublogarithmic in d makes all

the difference and now enumerating can be done in time (n + d) poly(k/ϵ) + exp(poly(k/ϵ). All this is
done in parallel in a single pass of the stream.
Lastly, the sketching techniques applied after the residual sampling are not oblivious in [6]. We instead use
an obvlious median based embedding in Section 5.1, and show that we can still use the black box algorithm
of [3] to find the minimizer under the ∥·∥med,1 norm in Section 5.2.
We present our results as two algorithms for the robust subspace approximation problem. The first runs in
fully polynomial time but gives a coarse approximation guarantee, which corresponds to stopping before
repeating the residual sampling a second time. The second algorithm captures the entire procedure, and uses
the first as a subroutine.

4

Algorithm 1 COARSEAPPROX

Input: A ∈ Rn×d as a stream
Output: X ∈ Rd×d such that ∥A−AX∥2,1 ≤

√
log d(log log d) poly(k)∆∗

1: T ∈ Rpoly(k)×n ← Sparse Cauchy matrix // as in Thm. 4.1
2: C1 ∈ Rpoly(k)×n ← Sparse Cauchy matrix // as in Thm. 4.4
3: S1 ∈ Rlog d·poly(k)×d ← Count Sketch composed with Gaussian // as in Thm. 4.3
4: R1 ∈ Rpoly(k)×d ← Count Sketch matrix // as in Thm. 4.3
5: G1 ∈ Rlog d·poly(k)×log d·poly(k) ← Gaussian matrix // as in Thm. 4.4
6: Compute TA online
7: Compute C1A online
8: U⊺

1 ∈ Rlog d poly(k)×d ← BOOTSTRAPCORESET(A, TA, 1/2) // as in Alg. 3
9: X̂ ∈ Rpoly(k)×log d poly(k) ← argminX rank k ∥C1(A−AR⊺

1XU⊺
1)S

⊺
1G1∥F // as in Fact 4.2

10: return R⊺
1X̂U⊺

Theorem 3.1 (Coarse Approximation in Polynomial Time). Given a matrix A ∈ Rn×d, Algorithm 1 with
constant probability computes a rank k matrix X ∈ Rd×d such that:

∥A−AX∥2,1 ≤
√
log d(log log d) · poly(k) · ∥A−AX∗∥2,1

that runs in time O(nnz(A))+d poly(k log(nd)). Furthermore, it can be implemented as a one-pass stream-
ing algorithm with space O (d poly(k log(nd))) and time per update O(poly(log(nd)k)).

Proof Sketch We show the following are true in subsequent sections:
1. The row span of TA is a (poly(k), log d ·poly(k))-coreset for A (Section 4.1) with probability 24/25.
2. BOOTSTRAPCORESET(A, TA, 1/2) is a (log d · poly(k), 3/2)-coreset with probability 49/50 (Sec-

tion 4.2).
3. If:

X̂ = argmin
X rank k

∥C1AS
⊺
1G1 − C1AR

⊺
1XU⊺

1S
⊺
1G1∥F

then with probability 47/50:∥∥∥A−AR⊺
1X̂U⊺

1

∥∥∥
2,1
≤ poly(k)

√
log d log log d ·∆∗

(Sections 4.3 and 4.4, with ϵ = 1/2).
By a union bound, with probability 88/100 all the statements above hold, and the theorem is proved. BOOT-
STRAPCORESET requires dpoly(k log(nd)) space and time. Left matrix multiplications by Sparse Cauchy
matrices TA and C1A can be done in O(nnz(A)) time (see Section J of [23] for a full description of Sparse
Cauchy matrices). Computing remaining matrix products and X̂ requires time dpoly(k log d).

5

Algorithm 2 (1 + ϵ)-APPROX

Input: A ∈ Rn×d as a stream
Output: X ∈ Rd×d such that ∥A−AX∥2,1 ≤ (1 + ϵ)∆∗

1: X̂ ∈ Rpoly(k)×log d poly(k) ← COARSEAPPROX(A) // as in Thm. 3.1
2: C2 ∈ R

√
log d(log log d) poly(k/ϵ)×n ← Cauchy matrix // as in Thm. 5.1

3: S2 ∈ R
√
log d(log log d)·poly(k/ϵ)×d ← Count Sketch composed with Gaussian // as in Thm. 4.3

4: R2 ∈ Rpoly(k/ϵ)×d ← Count Sketch matrix // as in Thm. 4.3
5: G2 ∈ R

√
log d(log log d)·poly(k/ϵ)×

√
log d(log log d)·poly(k/ϵ) ← Gaussian matrix // as in Thm. 5.1

6: Compute AR⊺
2 online

7: Compute AS⊺
2 online

8: Let V ∈ Rlog d poly(k)×k be such that X̂ = WV ⊺ is the rank-k decomposition of X̂
9: U⊺

2 ∈ Rpoly(k/ϵ)
√
log d log log d×d ← BOOTSTRAPCORESET(A, V ⊺U⊺

1 , ϵ
′) // as in Alg. 3, U1 as computed

during COARSEAPPROX in line 1.
10: X̂ ′ ∈ Rpoly(k/ϵ)×poly(k/ϵ)

√
log d log log d ← argminX rank k ∥C2(A−AR⊺

2XU⊺
2)S

⊺
2G2∥med,1 //

as in Thm. 5.2
11: return R⊺

2X̂
′U ′⊺

Theorem 3.2 ((1 + ϵ)-Approximation). Given a matrix A ∈ Rn×d, Algorithm 2 with constant probability
computes a rank k matrix X ∈ Rd×d such that:

∥A−AX∥2,1 ≤ (1 + ϵ) ∥A−AX∗∥2,1

that runs in time

O(nnz(A)) + (n+ d) poly

(
k log(nd)

ϵ

)
+ exp

(
poly

(
k

ϵ

))
Furthermore, it can be implemented as a one-pass streaming algorithm with space O

(
dpoly

(
k log(nd)

ϵ

))
and time per update O(poly(log(nd)k/ϵ)).

Proof Sketch We show the following are true in subsequent sections:
1. If V is such that X̂ = WV ⊺, then V ⊺ is a (poly(k),poly(k)

√
log d log log d)-coreset with probability

88/100 (Theorem 3.1).
2. BOOTSTRAPCORESET(A, V ⊺U⊺

1 , ϵ
′) is a (poly(k/ϵ′)

√
log d log log d, (1+ϵ′))-coreset with probabil-

ity 49/50 (Reusing Section 4.2).
3. If:

X̂ ′ ← argmin
X

∥C2(A−AR⊺
2XU⊺

2)S
⊺
2G2∥med,1

then with probability 19/20: ∥∥∥A−AR⊺
2X̂

′U⊺
2

∥∥∥
2,1
≤ (1 +O(ϵ′))∆∗

(Reusing Section 4.3 and Section 5.1).
4. A black box algorithm of [3] computes X̂ ′ to within (1 +O(ϵ′)) (Section 5.2).

By a union bound, with probability 81/100 all the statements above hold. Setting ϵ′ appropriately small as a
function of ϵ, the theorem is proved.

6

COARSEAPPROX and BOOTSTRAPCORESET together require dpoly(k log(nd)/ϵ) space and O(nnz(A))+
dpoly(k log(nd)/ϵ) time. Right multiplication by the sketching matrices AS⊺

2 and AR⊺
2 can be done in

time nnz(A). Computing remaining matrix products and X̂ ′ requires time (n + d) poly(log(d)k/ϵ) +
exp(poly(k/ϵ)) (See end of Section 5.2 for details on this last bound).

We give further proofs and details of these theorems in subsequent sections.

4 Coarse Approximation

4.1 Initial Coreset Construction

We construct a (poly(k), log d · poly(k))-coreset which will serve as our starting point.
Theorem 4.1. If T ∈ Rpoly(k)×n is a sparse Cauchy matrix, then the row space of TA contains a k
dimensional subspace with corresponding projection matrix X ′ such that with probability 24/25:∥∥A−AX ′∥∥

2,1
≤ log d · poly(k) min

X rank k
∥A−AX∥2,1 = log d · poly(k) ·∆∗

Proof. In order to deal with the awkward ∥·∥2,1 norm, we make use of a well known theorem due to Dvoret-
zky to convert it into an entrywise 1-norm.

Fact 4.1 (Dvoretzky’s Theorem (Special Case), Section 3.3 of [17]). There exists an appropriately scaled

Gaussian Matrix G ∈ Rd× d log(1/ϵ)

ϵ2 such that w.h.p. the following holds for all y ∈ Rd simultaneously

∥y⊺G∥1 ∈ (1± ϵ) ∥y⊺∥2

Applying this to all rows at once: ∥AX −A∥2,1 ∈ (1± ϵ) ∥AXG−AG∥1,1.
We also use some existing machinery for input sparsity time ℓ1 subspace embeddings.

Fact 4.1.1 (Theorem 4 from [19]). For any given D ∈ Rs×t, let Π ∈ Rr×s be a random Sparse Cauchy
matrix with r = O(t5 log5 t) defined as follows: Π = SC where S ∈ Rr×s has each column uniformly and
independently chosen from the r standard basis vectors in Rr, and where C ∈ Rs×s is a diagonal matrix
with diagonal entries chosen independently from the standard Cauchy distribution. Then with probability
99/100 simultaneously for all x ∈ Rt:

1

O(t2 log2 t)
· ∥Dx∥1 ≤ ∥ΠDx∥1 ≤ O(t log t) · ∥Dx∥1

Fact 4.1.2 (Lemma D.25 from [23]). If Π ∈ Rr×s is a Sparse Cauchy matrix as defined above, and B ∈
Rs×t is a fixed matrix, then with probability at least 99/100:

∥ΠB∥1 ≤ O(log(rt)) ∥B∥1

Finally, we also need a couple of structural lemmas which we state here without proof:

Lemma 4.1.1 (Lemma 29 from [6]). For a fixed (B,D) pair such that B ∈ Rr×s, D ∈ Rr×t, if S ∈
Rs/poly(ϵ)×r is a CountSketch Matrix composed with a matrix of i.i.d. Gaussians (for background on such
sketching matrices, we refer the reader to the monograph [25]), then with probability 99/100 both of the
properties below hold:

7

1. ∥S(BX −D)∥1,2 ≥ (1− ϵ) ∥BX −D∥1,2 for any X .

2. If X∗ = argminX rank k ∥BX −D∥1,2, then ∥S(BX∗ −D)∥1,2 ≤ (1 + ϵ) ∥BX∗ −D∥1,2.

Clarkson and Woodruff [6] call such an S a lopsided embedding for (B,D) with respect to the (1, 2)-norm.

Lemma 4.1.2 (Lemma 31 from [6]). If R is a lopsided embedding for (A⊺
k, A

⊺), then:

min
X rank k

∥AR⊺X −A∥2,1 ≤ (1 + 3ϵ)∆∗

Let X ′ = argminX ∥TAR⊺X − TA∥2,1, R⊺ ∈ Rd×poly(k) as in the lemma above and ϵ = O(1).
Define E1 to be the event that the condition in Dvoretzky’s theorem is satisfied, E2 to be the event that
Fact 4.1.1 holds for D = AR⊺, E3 to be the event that Fact 4.1.2 holds for B = AR⊺X∗G − AG, and E4

to be the event that R satisfies Lemma 4.1.2.
E1 holds w.h.p., E2, E3, E4 each separately hold with probability 99/100 (for a suitable choice of K). By
a union bound, they all hold simultaneously with probability at least 24/25. Conditioned on this happening:∥∥AR⊺X ′ −A

∥∥
2,1
≤ ∥AR⊺X∗ −A∥2,1 +

∥∥AR⊺(X∗ −X ′)
∥∥
2,1

(1)

≤ ∥AR⊺X∗ −A∥2,1 + poly(k) ·
∥∥TAR⊺(X∗ −X ′)G

∥∥
1,1

(2)

≤ poly(k)
(
∥AR⊺X∗ −A∥2,1 + ∥T (AR

⊺X∗ −A)G∥1,1 +
∥∥T (AR⊺X ′ −A)G

∥∥
1,1

)
(3)

≤ poly(k)
(
∥AR⊺X∗ −A∥2,1 + 2 ∥T (AR⊺X∗ −A)G∥1,1

)
(4)

≤ poly(k)
(
∥AR⊺X∗ −A∥2,1 +O(log d) ∥(AR⊺X∗ −A)G∥1,1

)
(5)

≤ log d · poly(k) ∥AR⊺X∗ −A∥2,1 (6)

(1) and (3) hold by the triangle inequality, (2) since E1 and E2 hold, (4) by E1 again and since X ′ is the
minimizer of the expression ∥TAR⊺X − TA∥2,1, (5) since E3 holds, and (6) by E1 again.
X ′ lies in the rowspace of TA, since otherwise there is a rank-k projection Z onto the rows of TA with
∥TAX ′Z − TAZ∥2,1 = ∥TAX ′Z − TA∥2,1 smaller than ∥TAX ′ − TA∥2,1. Since E4 holds,

∥AR⊺X∗ −A∥2,1 ≤ O(1)∆∗

and thus the rowspace of TA contains a log d · poly(k) approximation.

Thus the rowspace of TA with T as in Theorem 4.1 above is a (poly(k), log d · poly(k))-coreset for A.

4.2 Bootstrapping a Coreset

Given a poor coreset Q for A, we now show how to leverage known results about residual sampling from
[10] and [6] to obtain a better coreset of slightly larger dimension.
Theorem 4.2. Given Q, an (α, β)-coreset for A, with probability 49/50 BOOTSTRAPCORESET returns
an (α+ β poly(k/ϵ), (1 + ϵ))-coreset for A. Furthermore BOOTSTRAPCORESET runs in space and time
O(dpoly(β log(nd)k/ϵ)), with poly(β log(nd)k/ϵ) time per update in the streaming setting.

8

Algorithm 3 BOOTSTRAPCORESET

Input: A ∈ Rn×d, Q ∈ Rα×d (α, β)-coreset, ϵ ∈ (0, 1)
Output: U ∈ R(α+β poly(k/ϵ))×d (α+ β poly(k/ϵ), (1 + ϵ))-coresets

1: Compute HA online // as in Lem. 4.2.2
2: P ← β poly(k/ϵ) samples of rows of A(I −Q) according to P(HA(I −Q)) // as in Lem. 4.2.2

3: U⊺ ← Orthonormal basis for RowSpan
([

Q
P

])
4: return U⊺

Proof. Consider the following idealized noisy sampling process that samples rows of a matrix B. Sample a
row Bi of B with probability ∥Bi∥2

∥B∥2,1
and add an arbitrary noise vector Ei such that ∥Ei∥2 ≤ ν ∥Bi∥2, where

we fix the parameter ν = ϵ
100kβ . Supposing we had such a process P∗(B), we can prove the following

lemma.

Lemma 4.2.1. Suppose Q is an (α, β)-coreset for A, and P is a noisy subset of rows of the residual
A(I − Q) of size β(poly k/ϵ) each sampled according to P∗(A(I − Q)). Then with probability 99/100,
RowSpan(Q) ∪ RowSpan(P) is an (α + β poly(k/ϵ)) dimensional subspace containing a k-dimensional
subspace with corresponding projection matrix X ′ such that:∥∥A−AX ′∥∥

2,1
≤ (1 + ϵ)∆∗

Proof. Our theorem is identical to Theorem 45 from [6], which is in turn an adaptation of Theorem 9 from
[10], except that our sampling procedure produces noisy samples instead of actual rows of A(I − Q). We
highlight the difference between our proof and the originals, and refer the reader to the sources for a full
description.
Let Hℓ denote the span of the rows of Q adjoined with ℓ samples fromP∗(A(I−Q)). The analysis considers
k + 1 phases during the construction of Hℓ, where phase j is defined such that there exists a subspace Xj

with:
(i) the dimension of RowSpan(Xj) ∩Hℓ ≥ j.

(ii) and letting δ = ϵ/2k we have: ∥A(I −Xj)∥2,1 ≤ (1 + δ)j minX rank k ∥A−AX∥2,1
In other words, the cost of the solution Xj slowly gets worse with j, but Hℓ recovers more of it. Note that
in phase k, ∥A(I −Xk)∥2,1 ≤ (1 + ϵ)minX rank k ∥A−AX∥2,1, and furthermore Xk ⊆ Hℓ.
Let Yℓ denote the rank-k projection whose row space is that of Xj , but rotated about the intersection
RowSpan(Xj) ∩ Hℓ such that it also contains the vector in Hℓ realizing the smallest nonzero principle
angle with Xj . Note that Yℓ satisfies condition (i) for some j′ > j, so it remains to show that with high
probability, with a small number of new samples, condition (ii) is also satisfied. In particular, we show that
if condition (ii) is violated, and thus if:

∥A(I − Yℓ)∥2,1 > (1 + δ) ∥A(I −Xj)∥2,1 (1)

then with probability greater than δ/5K we sample a witness noisy-row Âℓ′∗ with the property:∥∥∥Âℓ′∗(I − Yℓ)
∥∥∥
2
≥ (1 + δ/2)

∥∥∥Âℓ′∗(I −Xj)
∥∥∥
2

(2)

9

By the Angle Drop Lemma (Lemma 13 of [10]), this witness implies that the smallest nonzero principle
angle between Xj and Hℓ (and so Yℓ) decreases. By the analysis of Theorem 9 of [10], once the angle is
small enough, Yℓ will satisfy (ii). We now prove this fact.
By the assumption on P∗, Eℓ′ satisfies ∥Eℓ′∥2 ≤ ν ∥Aℓ′∗(I −Q)∥2. Recall we set the noise parameter
ν = ϵ

100kβ = δ
50β .

Let W denote the set of indices of witness noisy rows, in other words the set of all i such that Âi satisfies
(2). It suffices to show that: ∑

i∈W
∥Ai∗(I −Q)∥2 ≥

δ

5β
∥A(I −Q)∥2,1 (3)

Suppose that (3) is false. Let X̃ℓ be the matrix projecting onto Hℓ.∥∥∥Âi∗(I − Yℓ)
∥∥∥
2
≤
∥∥∥Âi∗(I − X̃ℓ)

∥∥∥
2
+
∥∥∥Âi∗X̃ℓ(I − Yℓ)

∥∥∥
2

(4)

≤
∥∥∥Âi∗(I − X̃ℓ)

∥∥∥
2
+
∥∥∥Âi∗X̃ℓ(I −Xj)

∥∥∥
2

(5)

≤ 2
∥∥∥Âi∗(I − X̃ℓ)

∥∥∥
2
+
∥∥∥Âi∗(I −Xj)

∥∥∥
2

(6)

≤ 2
∥∥∥Âi∗(I −Q)

∥∥∥
2
+
∥∥∥Âi∗(I −Xj)

∥∥∥
2

(7)

(4) and (6) follow from the triangle inequality, (5) since the definitions of Xj , Yℓ and Hℓ imply that all
elements of Hℓ are closer to RowSpan(Yℓ) than to RowSpan(Xj), and (7) since RowSpan(Q) ⊆ Hℓ.

For i /∈ W , by definition
∥∥∥Âi∗(I − Yℓ)

∥∥∥
2
< (1 + δ/2)

∥∥∥Âi∗(I −Xj)
∥∥∥
2
. Combining both the bounds we

have that for all i;∥∥∥Âi∗(I − Yℓ)
∥∥∥
2
≤ (1 + δ/2)

∥∥∥Âi∗(I −Xj)
∥∥∥
2
+ [[i ∈W]] · 2 ·

∥∥∥Âi∗(I −Q)
∥∥∥
2

Summing over all i,∥∥∥Â(I − Yℓ)
∥∥∥
2,1
≤ (1 + δ/2)

∥∥∥Â(I −Xj)
∥∥∥
2,1

+ 2
∥∥∥ÂW∗(I −Q)

∥∥∥
2

By triangle inequality:

∥A(I − Yℓ)∥2,1 − ∥E(I − Yℓ)∥2,1 ≤

[
(1 + δ/2) ∥A(I −Xj)∥2,1 + 2 ∥AW∗(I −Q)∥2,1
+(1 + δ/2) ∥E(I −Xj)∥2,1 + 2 ∥E(I −Q)∥2,1

]
Finally, rearranging:

∥A(I − Yℓ)∥2,1 ≤
(
1 +

δ

2

)
∥A(I −Xj)∥2,1 +

2δ

5β
· β ∥A(I −Xj)∥2,1 + 5 ∥E∥2,1 (8)

≤
(
1 +

9δ

10
+ 5νβ

)
∥A(I −Xj)∥2,1 (9)

≤ (1 + δ) ∥A(I −Xj)∥2,1

10

Which contradicts our assumption that (1) held. (8) follows from the assumption that (3) is false and the fact
that ∥A(I −Q)∥2,1 ≤ β ∥A(I −Xj)∥2,1 and (9) since ∥E∥2,1 ≤ ν ∥A(I −Q)∥2,1.
Note that this proof goes through for any error matrix E satisfying ∥Ei∥ ≤ ν ∥Ai∥ for all i. Also, as written
in [6], the proof guarantees success with constant probability. We can repeat the sampling a constant number
of times, keep all samples, and guarantee success with probability 99/100.

It remains to show that we can sample from P∗ in a stream.

Lemma 4.2.2. Let B ∈ Rn×d be a matrix, and let δ, ν ∈ (0, 1) be given. Also let s be a given integer. Then
there is an oblivious sketching matrix H ∈ Rpoly(s/(δν))×n and a sampling process P , such that P(HB)
returns a collection of s′ = O(s) distinct row indices i1, . . . , is′ ∈ [n] and approximations B̃ij = Bij +Eij

with ∥Eij∥2 ≤ ν · ∥Bij∥2 for j = 1, . . . , s. With probability 1 − δ over the choice of H , the probability
an index i appears in the sampled set {i1, . . . , is′} is at least the probability that i appears in a set of s
samples without replacement from the distribution

(
∥B1,∗∥2
∥B∥2,1 , . . .

∥Bn,∗∥2
∥B∥2,1

)
. Furthermore the multiplication

HB and sampling process P can be done in nnz(B) + d · poly(s/(δν)) time, and can be implemented in
the streaming model with d · poly(s/(δν)) bits of space.

The theorem builds on the work of [1], [22] and [24].

Proof. We will show that with probability O(1) · δ′, we produce a set of 1−O(1) · s samples such that the
probability a noisy row B̃i = Bi + Ei with ∥Ei∥2 ≤ ν ∥Bi∥2 appears in this set is at least ∥Bi∥2

∥B∥2,1
. Fixing

δ′ = δ/O(1) will give the claim.

Algorithm 4 H-SKETCH

Input: B ∈ Rn×d

Output: HB ∈ Rdpoly
(

s log(nd)

νδ′

)
×d

1: for level j ∈ [ℓ] do

2: Hj,∗ ← new hash table with w = O

((
s logn
νδ′

)15)
buckets and independent hash function

hj ∈ ([n]→ [w]) (each bucket stores a d dimensional vector).
3: Sample a set Jj ⊂ [n] where each i ∈ [n] is included with probability pj =

1
2j

.
4: for v ∈ [w] do
5: Hj,v =

∑
i∈Jj [[hj(i) = v]] ·εj(i) ·Bi∗ where εj(i) are 2-wise ind. uniform±1 random variables.

6: end for
7: end for

8: return


H(1)

H(2)

...
H(ℓ)



Before describing the algorithm we define a number of parameters.
- M is an estimate for ∥B∥2,1 such that ∥B∥2,1 ≤ M ≤ O(1) ∥B∥2,1 (we show in Appendix A.2 that we

can calculate such an M with high probability).
- Setting Tj = M/2j , define Sj = {i ∈ [n] | ∥Bi∥2 ∈ (Tj , 2Tj]} to be the jth level set of B.

11

- Define sj = |Sj | to be the number of rows in level j.
- For convenience, we also use the notation S≥j =

∪
j′≥j Sj′ and S≤j =

∪
j′≤j Sj′ .

- Let ℓ = 4 log(n/δ) be the set of levels we consider in our sketch.

- Define a level j ∈ [ℓ] to be important if sj ≥ δ′2j

ℓs . Informally, j is an important level if the set of rows in
in level j contribute a significant fraction of ∥B∥2,1.

- Let J ⊂ [ℓ] denote the set of all important levels.
Observe that for any level j we have sj ≤ 2j . It will suffice to consider only levels j ∈ [ℓ], since
s ≤ n implies that these rows necessarily capture a (1 − δ′/s) fraction of the mass of B. By defini-
tion, the idealized process sampling from the distribution

(
∥B1,∗∥2
∥B∥2,1 , . . .

∥Bn,∗∥2
∥B∥2,1

)
will sample a level j ∈ [ℓ]

with probability 1 − δ′/s, and by a union bound all s samples come from such a level with probability
1 − δ′. Similarly, the idealized process will take a single sample from an important level with probabil-
ity (1−

∑
j∈[ℓ] Tjsj/ ∥B∥2,1) ≥ 1− δ′/s, meaning it only every samples from important levels also with

probability 1− δ′.
The main idea of the sketch is the following. For every level j, we subsample every row of B independently
at random with probability proportional to 2−j , and then hash the subsampled rows independently at random
into buckets (each bucket is a vector that is the sum of the vectors assigned to it). Doing so guarantees that
with high enough probability, for every important level j, there is a nearby level k such that with high
probability at least one row from j is sampled in level k. Furthermore, all sufficiently heavy rows in level
k hash to different buckets, and all light rows contribute at most νTj to any one bucket. In particular, this
means that if any bucket in important level k has norm in the range ((1 − ν)Tj , (2 + ν)Tj], that bucket is
of the form B̃i = Bi + Ei where Bi is a row of B and Ei has small norm. We defer formal descriptions of
these guarantees to Appendix A.1.
Next we argue that we can use the sketch from Algorithm 4 to produce samples from the idealized process
with high enough probability. The general idea of the sampling algorithm SAMPLER is the following. Par-
tition the rows of B by assigning each row to one of t = 100s3 pieces uniformly at random: B(1), B(2),
..., B(t). We can bound the probability that any two out of s samples from the idealized process come from
the same piece by

(
s
2

)
· δ′

100s3
≤ δ′ so we can condition on this being the case. Sketch each piece using

H-SKETCH to obtain: H(1), H(2), ..., H(t). Let ℓ(p), s(p)j , M (p), T (p)
j denote the quantities ℓ, sj , M and Tj

respectively for piece B(p). Using Lemma A.4.1, with constant probability we can calculate simultaneously
for all p an O(1) estimate b̃p for

∥∥B(p)
∥∥
2,1

. Using Lemma A.3, we can also calculate simultaneously for all

j ∈ [ℓ(p)] a O(1) estimate s̃
(p)
j for s(p)j . Now repeat the following until we have generated s′ samples.

Sample a piece with probability proportional to b̃p, and within that piece sample a level j with probability
proportional to s̃jTj . Examine level j of the output of Algorithm 4. If at least one bucket of this level has a
norm that is in the target range (Tj , 2Tj], then output a uniform random choice of such a bucket. We show
that this process generates samples with probabilities sufficiently close to those of the idealized process.
Let Ci be the event that noisy row B̃i = Bi + Ei is extracted on line 7. Let Gp be the event that piece p
is sampled on line 9. Let Dj be the event that level j is sampled on line 10. Finally let E denote the event
that any noisy row of the form Bi + Ei with ∥Ei∥2 ≤ ν ∥Bi∥2 is extracted at all in iteration z. We wish to
understand the probability of Ci:

P [Ci] = P
[
Ci | E ∧Dj′ ∧Gp′

]
· P
[
E | Dj′ ∧Gp′

]
· P
[
Dj′ | Gp′

]
· P
[
Gp′
]

12

Algorithm 5 SAMPLER

Input: HB ∈ Rd poly
(

s log(nd)

νδ′

)
×d

Output: Bi1 , . . . , Bis′ samples

1: Partition rows of B uniformly at random into t = 100s3/δ′ pieces: B(1), B(2), ..., B(t).
2: for p ∈ [t] do
3: H(p) ← H-SKETCH(B(p)), computed online.
4: Calculate estimates b̃p ∈

[∥∥B(p)
∥∥
2,1

, O(1) ·
∥∥B(p)

∥∥
2,1

]
// as in Lemma A.4.1.

5: For all j ∈ [ℓ(p)], calculate estimates s̃(p)j ∈
[
s
(p)
j , O(1) · s(p)j

]
// as in Lemma A.3.

6: Set M (p) = b̃p.
7: end for
8: F ← ∅
9: while |F | < s′ do

10: Sample a piece p′ ∈ [t] with probability
b̃p′∑
p b̃p

(without replacement).

11: Sample a level j′ ∈ [ℓ] in B(p′) with probability
s̃
(p′)
j′ T

(p′)
j′∑

j s̃
(p′)
j T

(p′)
j

.

12: Let k = max
(
0, j′ − 2 log

(
s logn
δ′ν

))
.

13: if at least one bucket v of H(p′)
k has

∥∥∥H(p′)
k,v

∥∥∥
2
∈ ((1− ν)Tj′ , (2 + ν)Tj′) then

14: F ← F ∪
{

uniform random H
(p′)
k,v′ such that

∥∥∥H(p′)
k,v′

∥∥∥
2
∈ ((1− ν)Tj′ , (2 + ν)Tj′)

}
15: end if
16: end while
17: return F

We have straightforward bounds on the last two probabilities:

P [Gp] =
b̃p′∑
p b̃p

= Θ(1)

∥∥B(p)
∥∥
2,1

∥B∥2,1

P
[
Dj′ | Gp

]
=

s̃
(p)
j′ T

(p)
j′∑

j s̃
(p)
j T

(p)
j

= Θ(1) ·
s
(p)
j′ ∥Bi∥2∥∥B(p)

∥∥
2,1

Now we can also lower bound P [E | Dj ∧Gp]. E will not hold if either:
(i) a noisy row B̃ is sampled but B̃ cannot be written Bi + Ei with ∥Ei∥2 ≤ ν.

(ii) no row is sampled at all.
If Lemmas A.1 and A.2 hold (i) will not occur. If Lemmas A.1 and Corollary A.1 hold (ii) will not occur.
All these hold individually with probability at least 1 − O(1)/ log n, so E holds with probability at least
1−O(1)/ log n. Finally, since conditioned on E ∧Dj′ ∧Gp′ we pick any row in level j′ from piece p′ with
the same probability i.e. 1/s(p)j . Putting all of this together, we get that:

P [Ci] = Θ(1) · 1

s
(p)
j′

·
s
(p)
j′ ∥Bi∥2∥∥B(p)

∥∥
2,1

·

∥∥B(p)
∥∥
2,1

∥B∥2,1
= Θ(1)

∥Bi∥2
∥B∥2,1

13

To conclude, the sampling procedure samples noisy rows Bi such that i is sampled with probability at most
a multiplicative constant from its probability under the distribution

(
∥B1∥2
∥B∥2,1 , . . .

∥Bn∥2
∥B∥2,1

)
. Sampling O(s)

times guarantees that each row appears in the sampled set with at least the probability it would appear in s
samples of the idealized process.
Finally note that H-SKETCH, and the ∥·∥2,1-norm estimation procedure of Lemma A.4.1, can be imple-
mented as oblivious linear sketches. Since no two distinct pieces share any rows in common, all matrix
multiplications can be done in nnz(B) + d · poly(s/(δν)) time. Furthermore they can be implemented in
the streaming model with d · poly(s/(δν)) bits of space.

Setting b = log(nd), δ = 1/100, ν = ϵ
100kβ and s = β poly(k/ϵ), it follows that P contains β poly(k/ϵ)

samples from P∗(A(I − Q)) with probability 99/100. By Lemma 4.2.1 and a union bound, the projec-
tion matrix of RowSpan(Q) ∪ RowSpan(P) is an (α+ β poly(k/ϵ), (1 + ϵ))-coreset for A with proba-
bility 49/50. BOOTSTRAPCORESET takes total time O(nnz(A)) + O(dpoly(β log(nd)k/ϵ)) and space
O(dpoly(β log(nd)k/ϵ)).

Note that in our main algorithm we cannot compute the projection A(I − Q) until the after the stream is
finished. Fortunately, since H is oblivious, we can right multiply HA by (I −Q) once Q is available, and
only then perform the sampling procedure P .

4.3 Right Dimension Reduction

We show how to reduce the right dimension of our problem. This result is used in both Algorithm 1 and
Algorithm 2.
Theorem 4.3. If U⊺ is an (α, β)-coreset, S ∈ Rα·poly(k/ϵ)×d is a CountSketch matrix composed with a
matrix of i.i.d. Gaussians, and R ∈ Rd×poly(k/ϵ) is a CountSketch matrix, then with probability 49/50, if
X ′ = argminX ∥AS⊺ −AR⊺XU⊺S⊺∥2,1 then:∥∥A−AR⊺X ′U⊺∥∥

2,1
≤ (1 +O(ϵ)) min

X rank k
∥A−AXU⊺∥2,1

Proof. Here we apply reasoning similar to that at the bottom of page 32 from [6]. We need a couple of
lemmas from [6].

Lemma 4.3.1 (Lemma 30 from [6]). If S is a lopsided embedding for (B,D), then if X ′′ has the property
that ∥SBX ′′ − SD∥1,2 ≤ κminX∈C ∥SBX − SD∥1,2 for some κ, then:∥∥BX ′′ −D

∥∥
1,2
≤ κ(1 + 3ϵ)min

X∈C
∥BX −D∥1,2

Lemma 4.3.2. If U ∈ Rd×α and R ∈ Rpoly(k/ϵ)×d is a CountSketch matrix, then with probability 99/100:

min
X rank k

∥A−AR⊺XU⊺∥2,1 ≤ (1 + 3ϵ) min
X rank k

∥A−AXU⊺∥2,1

Proof. Let V ∗ = argminV rank k ∥UV −A⊺∥1,2 and let V = V1V2 be its rank factorization. Applying
Lemmas 4.1.1 and 4.3.1, R is a lopsided embedding for (UV1, A

⊺) with probability 99/100. If Y =
argminY rank k ∥R(UV1Y −A⊺)∥1,2 then:

∥UV1Y −A⊺∥2,1 ≤ (1 + 3ϵ) ∥UV ∗ −A⊺∥1,2 ≤ (1 + 3ϵ) min
X rank k

∥A−AXU⊺∥2,1

14

But Y = (RUV1)
−RA⊺, and taking transposes this means that:

min
X rank k

∥A−AR⊺XU⊺∥2,1 ≤
∥∥A−AR⊺((RUV1)

−)⊺V ⊺
1 U

⊺∥∥
2,1
≤ (1 + 3ϵ) min

X rank k
∥A−AXU⊺∥2,1

From the last lemma, a solution to minX rank k ∥A−AR⊺XU⊺∥2,1 will yield a (1 +O(ϵ))-approximate so-
lution to the problem minX rank k ∥A−AXU⊺∥2,1. Lemma 4.3.2 holds with probability 99/100. Applying
Lemma 4.1.1, with probability 99/100, S ∈ Rd×αpoly(k/ϵ) CountSketch composed with a Gaussian is a
lopsided embedding for (U,A⊺). Union bounding over these events, and applying Lemma 4.3.1 with C as
the set of matrices in RowSpan(RA⊺) proves the claim with probability 49/50.

4.4 Left Dimension Reduction

We show how to reduce the left dimension of our problem. Together with results from Section 4.3, this
preserves the solution to X∗ to within a coarse

√
log d log log d · poly(k/ϵ) factor.

Theorem 4.4. Suppose the matrices S1, R1 and U1 are as in Algorithm 1. If C1 ∈ Rpoly(k/ϵ)×n is a Sparse
Cauchy matrix, and G1 ∈ Rlog dpoly(k/ϵ)×log dpoly(k/ϵ) is a matrix of appropriately scaled i.i.d. Gaussians
(as in Fact 4.1), and

X̂ = argmin
X rank k

∥C1AS
⊺
1G1 − C1AR

⊺
1XU⊺

1S
⊺
1G1∥F

then with probability 24/25:
∥∥∥AS⊺

1 −AR⊺
1X̂U⊺

1S
⊺
1

∥∥∥
2,1
≤
√
log d log log d · poly(k/ϵ) ·∆∗

Proof. Define E1 to be the event that the condition in Dvoretzky’s theorem is satisfied, E2 to be the event
that Fact 4.1.1 holds for D = AR⊺

1, and E3 to be the event that Fact 4.1.2 holds for B = (AS⊺
1 −

AR⊺
1X

∗U⊺
1S

⊺
1)G1. E1 holds w.h.p., E2, E3 each separately hold with probability 99/100 (for a suitable

choice of K). By a union bound, they all hold simultaneously with probability at least 24/25. Conditioned
on this happening:

∥∥∥AS⊺
1 −AR⊺

1X̂U⊺
1S

⊺
1

∥∥∥
2,1
≤ ∥AS⊺

1 −AR⊺
1X

∗U⊺
1S

⊺
1∥2,1 +

∥∥∥AR(X∗ − X̂)U⊺
1S

⊺
1

∥∥∥
2,1

(1)

≤ ∥AS⊺
1 −AR⊺

1X
∗U⊺

1S
⊺
1∥2,1 + poly(k/ϵ)

∥∥∥CAR(X∗ − X̂)U⊺
1S

⊺
1G1

∥∥∥
1,1

(2)

≤ poly(k/ϵ)

 ∥AS⊺
1 −AR⊺

1X
∗U⊺

1S
⊺
1∥2,1 + ∥C(A−AR⊺

1X
∗U⊺

1)S
⊺
1G1∥1,1

+
∥∥∥C(A−AR⊺

1X̂U⊺
1)S

⊺
1G1

∥∥∥
1,1

 (3)

≤ poly(k/ϵ)

[
∥AS⊺

1 −AR⊺
1X

∗U⊺
1S

⊺
1∥2,1 + ∥C(AS⊺

1 −AR⊺
1X

∗U⊺
1S

⊺
1)G1∥1,1

+
√
log d

∥∥∥C(A−AR⊺
1X̂U⊺

1)S
⊺
1G1

∥∥∥
F

]
(4)

≤ poly(k/ϵ)
[
∥AS⊺

1 −AR⊺
1X

∗U⊺
1S

⊺
1∥2,1 +

√
log d ∥C(AS⊺

1 −AR⊺
1X

∗U⊺
1S

⊺
1)G1∥1,1

]
(5)

≤ poly(k/ϵ)

[
∥AS⊺

1 −AR⊺
1X

∗U⊺
1S

⊺
1∥2,1

+
√
log d log log d ∥(AS⊺

1 −AR⊺
1X

∗U⊺
1S

⊺
1)G1∥1,1

]
(6)

≤
√
log d log log d poly(k/ϵ) ∥AS⊺

1 −AR⊺
1X

∗U⊺
1S

⊺
1∥2,1 (7)

15

(1) and (3) hold by triangle inequality, (2) since E1 and E2 hold, (4) comes from the relationship between
the 1-norm and 2-norm, (5) since X̂ is the minimizer of the expression ∥C1(A− C1AR

⊺
1XU⊺

1)S
⊺
1G1∥F and

p-norms decrease with p, (6) since E3 holds, and (7) by E1 again.

The rank constrained Frobenius norm minimization problem above has a closed form solution.
Fact 4.2. For a matrix M , let UMΣMV ⊺

M be the SVD of M . Then:

argmin
X rank k

∥Y − ZXW∥F = Z−[UZU
⊺
ZY VWV ⊺

W]kW
−

5 (1 + ϵ)-Approximation

5.1 Left Dimension Reduction

The following median based embedding allows us to reduce the left dimension of our problem. Together
with results from Section 4.3, this preserves the solution to X∗ to within a (1 +O(ϵ)) factor.
Theorem 5.1. Suppose S2, R2 and U2 are as in Algorithm 2. If C2 ∈ R

√
log d log log d poly(k/ϵ)×n is a

Cauchy matrix, and G2 ∈ R
√
log d log log dpoly(k/ϵ)×

√
log d log log dpoly(k/ϵ) is a matrix of appropriately scaled

i.i.d. Gaussians (as in Fact 4.1), and:

X̂ ′ = argmin
X rank k

∥C2AS
⊺
2G2 − C2AR

⊺
2XU⊺

2S
⊺
2G2∥med,1

then with probability 99/100:∥∥∥AS⊺
2G2 −AR⊺

2X̂
′U⊺

2S
⊺
2G2

∥∥∥
1,1
≤ (1 + ϵ) min

X rank k
∥AS⊺

2G2 −AR⊺
2XU⊺

2S
⊺
2G2∥1,1

Proof. The following fact is known:

Fact 5.1 (Lemma F.1 from [2]). Let L be a t dimensional subspace of Rs. Let C ∈ Rm×s be a matrix with
m = O

(
1
ϵ2
t log t

ϵ

)
and i.i.d. standard Cauchy entries. With probability 99/100, for all x ∈ L we have

(1− ϵ) ∥x∥1 ≤ ∥Cx∥med ≤ (1 + ϵ) ∥x∥1

The theorem statement is simply the lemma applied to L = ColSpan ([AS⊺
2 | AR

⊺
2]).

5.2 Solving Small Instances

Given problems of the form X̂ = argminX rank k ∥Y − ZXW∥med,1, we leverage an algorithm for checking
the feasibility of a system of polynomial inequalities as a black box.
Lemma 5.1. [3] Given a set K = {β1, · · · , βs} of polynomials of degree d in k variables with coefficients
in R, the problem of deciding whether there exist X1, · · ·Xk ∈ R for which βi(X1, · · · , Xk) ≥ 0 for all
i ∈ [s] can be solved deterministically with (sd)O(k) arithmetic operations over R.
Theorem 5.2. Fix any ϵ ∈ (0, 1) and k ∈ [0,min(m1,m2)]. Let Y ∈ Rn×m′′

, Z ∈ Rn×m1 , and
W ∈ Rm2×m′′

be any matrices. Let C ∈ Rm′×n be a matrix of i.i.d. Cauchy random variables, and
G ∈ Rm′′×m′′ poly(1/ϵ) be a matrix of scaled i.i.d. Gaussian random variables. Then conditioned on C
satisfying Fact 5.1 for the adjoined matrix [Y, Z] and G satisfying the condition of Fact 4.1, a rank-k
projection matrix X can be found that minimizes ∥C(Y − ZXW)G∥med,1 up to a (1 + ϵ)-factor in time
poly(m′m′′/ϵ)O(mk)+(m′′+m′) poly(1/ϵ), where m = max(m1,m2).

16

Proof. We write X = PQ, where P is m1 × k and Q is k ×m2, to ensure that X is rank ≤ k.
Guess a permutation πj for each column j of C(ZXW − Y)G and define constraints enforcing the permu-
tation. Since the (i, j)-th entry of the matrix is

∑
k,ℓ(CZ)ikXkℓ(WG)ℓj − (CY G)ij these constraints are

of the form ((C(ZXW − Y)G)πj(i)j)
2 ≤ ((C(ZXW − Y)G)πj(i+1)j)

2. Then define the median of the
j-th column to be:

Mj =
(
|(C(ZXW − Y)G)πj(⌊m′′/2⌋)j |+ |(C(ZXW − Y)G)πj(⌈m′′/2⌉)j |

)
/2

which can be expressed via polynomial constraints. Thus we have O(mk) + m′′ poly(1/ϵ) variables in
our polynomial inequality system, O(mk) variables to describe P and Q, and m′′ poly(1/ϵ) variables to
describe the column medians Mj . We have poly(m′m′′/ϵ) constraints, each involving polynomials of O(1)
degree. By Lemma 5.1, checking the feasibility of this system takes time poly(m′m′′/ϵ)O(mk)+m′′ poly(1/ϵ).
We can minimize the objective

∑
j Mj using binary search. This requires a lower bound on the objective

value, which we can get by noting from Fact 5.1 that:

min
X
∥CZXWG− CY G∥med,1 ≥ (1− ϵ)min

X
∥ZXW − Y ∥1,1 ≥ (1− ϵ)min

X
∥ZXW − Y ∥2,1

As in the proof of Theorem 51 in [6], when the solution is constrained to be rank k, the right hand side is
lower bounded by 1

poly(d)(σk+1(Y))1/2 (where σk+1(Y) is the k + 1st singular value of Y), which itself is

lower bounded by
(

1
exp(poly(m′m′′))

)k
. Thus we can do binary search in poly(m′m′′/ϵ) steps.

Finally, since there are m′′ ·m′! possible permutation guesses, the entire procedure takes time
poly(m′m′′/ϵ)O(mk)+(m′′+m′) poly(1/ϵ).

We remark that if, as we do in our algorithm, we set the all the parameters m, m′ and m′′ to be log log d
√
log d·

poly(k/ϵ), we can write the runtime of this step (Line 9 of Algorithm 2) as (n+d) poly(k/ϵ)+exp(poly(k/ϵ))).
If poly(k/ϵ) ≤

√
log d/(log log d)2, then this step is captured in the (n+d) poly(k/ϵ) term. Otherwise this

step is captured in the exp(poly(k/ϵ)) term.

6 Experiments

In this section we empirically demonstrate the effectiveness of COARSEAPPROX compared to the truncated
SVD. We experiment on synthetic and real world data sets. Since the algorithm is randomized, we run it 20
times and take the best performing run. For a fair comparison, we use an input sparsity time approximate
SVD as in [5].
For the synthetic data, we use two example matrices all of dimension 1000 × 100. In Figure 1a we use a
Rank-3 matrix with additional large outlier noise. First we sample U random 100× 3 matrix and V random
3× 10 matrix. Then we create a random sparse matrix W with each entry nonzero with probability 0.9999
and then scaled by a uniform random variable between 0 and 10000 · n. We use 10 · UV +W . In Figure
1b we create a simple Rank-2 matrix with a large outlier. The first row is n followed by all zeros. All
subsequent rows are 0 followed by all ones.

17

(a) Random Rank-3 Matrix Plus Large Outliers (b) Large Outlier Rank-2 Matrix

(c) Glass (d) E. Coli

Figure 1: Comparison of Algorithm 1 on synthetic and real world examples.

While the approximation guarantee of COARSEAPPROX is weak, we find that it performs well against the
SVD baseline in practice on our examples, namely when the data has large outliers rows. The second
example in particular serves as a good demonstration of the robustness of the (2,1)-norm to outliers in
comparison to the Frobenius norm. When k = 1, the truncated SVD which is the Frobenius norm minimizer
recovers the first row of large magnitude, whereas our algorithm recovers the subsequent rows. Note that
both our algorithm and the SVD recover the matrix exactly when k is greater than or equal to rank.
We have additionally compared our algorithm against the SVD on two real world datasets from the UCI
Machine Learning Repository: Glass is a 214×9 matrix representing attributes of glass samples, and E.Coli
is a 336×7 matrix representing attributes of various proteins. For this set of experiments, we use a heuristic
extension of our algorithm that performs well in practice. After running COARSEAPPROX, we iterate solving
Yt = minY ∥CAS⊺G− Y Zt−1∥1,1 and Zt = minZ ∥CAS⊺G− YtZ∥1,1 (via Iteratively Reweighted Least
Squares for speed). Finally we output the rank k Frobenius minimizer constrained to RowSpace(YtZt). In
Figure 1c we consistently outperform the SVD by between 5% and 15% for nearly all k, and nearly match
the SVD otherwise. In Figure 1d we are worse than the SVD by no more than 5% for k = 1 to 4, and
beat the SVD by up to 50% for k = 5 and 6. We have additionally implemented a greedy column selection
algorithm which performs worse than the SVD on all of our datasets.

18

Acknowledgements: We would like to thank Ainesh Bakshi for many helpful discussions. D. Woodruff
thanks partial support from the National Science Foundation under Grant No. CCF-1815840. Part of this
work was also done while D. Woodruff was visiting the Simons Institute for the Theory of Computing.

References

[1] Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient sketches for earth-
mover distance, with applications. 2009 50th Annual IEEE Symposium on Foundations of Computer
Science, pages 324–330, 2009.

[2] Arturs Backurs, Piotr Indyk, Ilya P. Razenshteyn, and David P. Woodruff. Nearly-optimal bounds for
sparse recovery in generic norms, with applications to k-median sketching. In SODA, 2016.

[3] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and algebraic com-
plexity of quantifier elimination. In J. ACM, 1994.

[4] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 205–214, 2009.

[5] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity
time. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13,
pages 81–90, New York, NY, USA, 2013. ACM.

[6] Kenneth L. Clarkson and David P. Woodruff. Input sparsity and hardness for robust subspace approx-
imation. 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 310–329,
2015.

[7] Kenneth L. Clarkson and David P. Woodruff. Sketching for m-estimators: A unified approach to robust
regression. In SODA, 2015.

[8] Amit Deshpande, Madhur Tulsiani, and Nisheeth K. Vishnoi. Algorithms and hardness for subspace
approximation. In SODA, 2011.

[9] Amit Deshpande and Kasturi R. Varadarajan. Sampling-based dimension reduction for subspace ap-
proximation. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pages 641–650, 2007.

[10] Amit Deshpande and Kasturi R. Varadarajan. Sampling-based dimension reduction for subspace ap-
proximation. In STOC, 2007.

[11] Chris H. Q. Ding, Ding Zhou, Xiaofeng He, and Hongyuan Zha. R1-pca: rotational invariant l1-norm
principal component analysis for robust subspace factorization. In ICML, 2006.

[12] Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In
STOC, 2011.

[13] Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P. Woodruff. Coresets and sketches
for high dimensional subspace approximation problems. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 630–649, 2010.

[14] Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P. Woodruff. Coresets and sketches
for high dimensional subspace approximation problems. In SODA, 2010.

19

[15] Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple
and deterministic matrix sketching. SIAM J. Comput., 45(5):1762–1792, 2016.

[16] Venkatesan Guruswami, Prasad Raghavendra, Rishi Saket, and Yi Wu. Bypassing ugc from some
optimal geometric inapproximability results. ACM Trans. Algorithms, 12:6:1–6:25, 2010.

[17] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proceedings of the
42Nd IEEE Symposium on Foundations of Computer Science, FOCS ’01, pages 10–, Washington, DC,
USA, 2001. IEEE Computer Society.

[18] Ravi Kannan, Santosh Vempala, and David P. Woodruff. Principal component analysis and higher
correlations for distributed data. In Proceedings of The 27th Conference on Learning Theory, COLT
2014, Barcelona, Spain, June 13-15, 2014, pages 1040–1057, 2014.

[19] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-sparsity time
and applications to robust linear regression. CoRR, abs/1210.3135, 2012.

[20] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[21] Nariankadu D. Shyamalkumar and Kasturi R. Varadarajan. Efficient subspace approximation algo-
rithms. Discrete & Computational Geometry, 47(1):44–63, 2012.

[22] Christian Sohler and David P. Woodruff. Subspace embeddings for the l1-norm with applications. In
STOC, 2011.

[23] Zhao Song, David P. Woodruff, and Peilin Zhong. Low rank approximation with entrywise l1-norm
error. CoRR, abs/1611.00898, 2016.

[24] Elad Verbin and Qin Zhang. Rademacher-sketch: A dimensionality-reducing embedding for sum-
product norms, with an application to earth-mover distance. In Proceedings of the 39th International
Colloquium Conference on Automata, Languages, and Programming - Volume Part I, ICALP’12, pages
834–845, Berlin, Heidelberg, 2012. Springer-Verlag.

[25] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in
Theoretical Computer Science, 10(1-2):1–157, 2014.

A Elided Proofs

A.1 H-SKETCH Guarantees

Note that in the proofs that follow, we require that our sketching matrices have small representations. For
each level j of each H-SKETCH, we can store the matrix as three different O(1)-wise independent hashes:

1. Pj : [n]→ {0, 1} determines whether the row is subsampled
2. hj : [n]→ [w] determines the bucket
3. εj : [n]→ ±1 determines the sign.

Since our sketching matrices are stored with small seeds and do not guarantee full independence of the
entries of the matrix, we cannot easily use Chernoff-Hoeffding bounds.
For ease of notation below, we define a parameter C = O(s lognδ′ν) with a sufficiently large constant.

20

For any level j, we separate the rows of B into “light” and “heavy” rows with respect to j:

Sj
L = S≥j+log(C6)+1

Sj
H = S≤j+log(C6)

We first analyze the contribution of light and heavy elements to level j of the sketch.
Lemma A.1 (Noise from light elements is small). For any j ∈ [ℓ], with probability 1−O(1)/ log n:

max
v

∑
i∈Sj

L

[[i ∈ Ij]][[hj(i) = v]] · ∥Bi∥2 ≤
0.1 · ν · Tj

C2

Proof. Define the variables Zv
i = [[i ∈ Jj]] · [[hj(i) = v]] · εj(i) · ∥Bi∥2, where i ∈ Sj

L. For a fixed v, we
first study σ2, the second moment of

∑
i∈Sj

L
Zv
i .

σ2 = E

(∑
i

[[i ∈ Jj]] · [[hj(i) = v]] · εj(i) · ∥Bi∥2

)2
 (1)

=
∑

i,i′∈Sj
L

E
[
[[i ∈ Jj]][[i

′ ∈ Jj]] · [[hj(i) = v]][[hj(i
′) = v]]

]
· E
[
εj(i)εj(i

′)
]
· ∥Bi∥2 · ∥Bi′∥2 (2)

=
∑
i∈Sj

L

pj
w
· ∥Bi∥22 (3)

≤ pj
w

max
i

(∥Bi∥2) ·
∑
i

∥Bi∥2 (4)

≤
T 2
j

wC6
(5)

In step (2) we used the fact that the two variables [[i ∈ Jj]][[i
′ ∈ Jj]][[hj(i) = v]][[hj(i

′) = v]] and εj(i)εj(i
′)

are independent. In step (3), we used the 2-wise independence of εj and the fact that εj(i)εj(i′) = 1 if i = i′

and 0 otherwise. In step (5) we used the fact that pj
w ∥B∥2,1 ≤

M
w2j

=
Tj

w and:

∥Bi∥2 ≤ Tj+log(C6) = Tj/2
log(C6) =

Tj

C6

By Chebyshev’s inequality:

P

∑
i∈Sj

L

Zi ≥
0.1 · ν · Tj

C2

 ≤ O(1)

w log n

The desired bound follows by a union bound over the w buckets.

Lemma A.2 (Heavy Elements do not collide). For any level j ∈ [ℓ], with probability at least 1 − O(1)
logn no

two elements from Sj
H hash to the same bucket.

Proof. We can bound the expected number of samples:

E

∑
i∈Sj

H

[[i ∈ Ij]]

 ≤
j+log(C6)∑

j′=1

sj′

 · pj ≤ 2j+log(C6)+1 · 2−j = 2C6

21

Thus, by Markov’s bound,

P

∑
i∈Sj

H

[[i ∈ Jj]] > C7

 ≤ O(1)

log n

Thus, no more than C7 heavy elements are subsampled with high probability. Conditioned on this happening,
we can bound the probability that any two of them hash into the same bucket by:

w−1 ·
(
C7

2

)
≤ C14

w
≤ 1

log n

since we chose w = O(C15). The claim follows by a union bound over the two 1/ log n probability
events.

Lemma A.3 (Level estimates). For any important level j ∈ J , let ŝj be the number of buckets in H(k) with
norm in the interval [(1 − ν)Tj , (2 + ν)Tj], where k = max

(
0, j − logC2

)
. Let s̃j = 2ŝjp

−1
k . Then with

probability 1−O(1)/ log n it holds that s̃j ∈ [sj , 4sj].

Proof. By Lemma A.2, with probability 1−O(1)/ log n the rows in Sk
H do not collide, and by Lemma A.1,

with probability 1−O(1)/ log n the contribution of elements in Sk
L is less than 0.1νTk

C2 = 0.1νTj (due to the
relationship between j and k). Conditioned on this holding, ŝj = J j

k , where J j
k is the number of elements

of Sj subsampled in level k.
If k = 0, all rows of Sj are subsampled, pk = 1 and the claim is proved. Otherwise, we use a second

moment method. E
[
J j
k

]
= sjpk and additionally:

E
[∣∣∣J j

k

∣∣∣2] = E

∑
i∈Sj

[[i ∈ J j
k]]

2
=
∑

i,i′∈Sj

E
[
[[i ∈ J j

k]][[i
′ ∈ J j

k]]
]

=
∑
i∈Sj

E
[
[[i ∈ J j

k]]
]
+

∑
i ̸=i′∈Sj

E
[
[[i ∈ J j

k]][[i
′ ∈ J j

k]]
]

≤ sjpk + s2jp
2
k

Note that we only use the 2-wise independence of the subsampling function Pk. Thus
∣∣∣J j

k

∣∣∣ has variance

σ2 ≤ sjpk. Using Chebyshev’s inequality:

P
[∣∣∣∣∣∣J j

k

∣∣∣− sjpk

∣∣∣ ≥ sjpk
2

]
≤ 2

sjpk

Since sjpk ≥ log n, the claim follows from a union bounding guaranteeing that Lemmas A.1 and A.2 hold
together with the last event that the number of subsampled elements from Sj is within a factor of two of its
expectation.

Corollary A.1 (At least one element is sampled). For any important level j ∈ J , with probability at least
1−O(1)/ log n, at least one element of Sj is subsampled in Jk when k = max

(
0, j − logC2

)
.

22

A.2 High Probability ∥·∥2,1 Estimation

Lemma A.4. Given a matrix B ∈ Rn×d, there is an algorithm that with probability 1− 1/(50t) outputs an
estimate M such that ∥B∥2,1 ≤ M ≤ 20010 ∥B∥2,1. Furthermore this algorithm runs in time O(nnz(B) +
O(n + d)(poly log(ndt))) and can be implemented in the streaming model with d · poly(log(ndt)) bits of
space.

Proof. First we prove an intermediate result:

Lemma A.4.1. If S is a Count Sketch matrix with O(t2) rows, then with probability 1 − 1
100t , it holds that

∥B∥2,1 /2 ≤ ∥BS⊺∥2,1 ≤ 2 ∥B∥2,1.

Proof. For any fixed row i, if S has O(1/δ) rows, then with probability at least (1 − δ) it holds that
∥BiS

⊺∥2 ∈ (1 ± 0.5) ∥Bi∥2. For a proof of this, see e.g. Theorem 2.6 of [25] which shows that with
probability (1− δ), S is a (1± 0.5) subspace embedding for BT

i .
Let T be the set of rows i for which ∥BiS

⊺∥2 ̸∈ (1± 0.5) ∥Bi∥2,1. Then:

∥BS⊺∥2,1 =
∑
i∈T
∥BiS

⊺∥2 +
∑
i ̸∈T
∥BiS

⊺∥2

≤
∑
i∈T
∥BiS

⊺∥2 +
∑
i ̸∈T

3

2
∥Bi∥2

Since E
[∑

i∈T ∥BiS
⊺∥2
]
≤ δ ∥B∥2,1, by a Markov Bound:

P

[∑
i∈T
∥BS⊺∥2,1 ≥ (3/2 + γδ) ∥B∥2,1

]
≤ 1

γ

For a lower bound, let yi =

{
0 if i ∈ T

∥Bi∥2 /2 if i ̸∈ T
, and let zi = ∥Bi∥2 /2 − yi. Then E [

∑
i zi] ≤

δ∥B∥2,1
2 .

Note that ∥BS⊺∥2,1 ≥
∑

i ̸∈T
1
2 ∥Bi∥2 =

∑
i yi. Again by a Markov Bound:

P
[
∥BS⊺∥2,1 ≤ (1− γδ) ∥B∥2,1

]
≤ P

[∑
i

yi ≤ (1− γδ) ∥B∥2,1

]

= P

[∑
i

zi ≥ γδ ∥B∥2,1

]

≤ 1

γ

Setting γ = 100t and δ = 1/10000t2, the claim is proved.

Calculating BS⊺ in a stream normally requires Ω(n) bits of space which exceeds our desired space bound.
However we can remedy this with some lemmas from [24].
By Sections 4.1 and 4.2 of [24], for any matrix B′ with probability at least 0.9 it holds that:

2 ∥B′∥2,1
5

≤
∥∥H-SKETCH(B′)

∥∥
2,1
≤ 2001

∥∥B′∥∥
2,1

23

for sufficiently large ∥B′∥2,1. Consequently, if we repeat this O(log t) times and let M0 be the median of
these trials, then M0 achieves the same guarantee but with probability 1− 1/(100t).
Letting B′ = B would naively require time O(nnz(B′) · log t), which exceeds our desired time bounds.
However, using Lemma A.4.1, if we set B′ = BS⊺ where S is a Count Sketch matrix with O(t2) rows, we
get a similar constant factor guarantee. By a union bound over the event that M0 is a good estimator for
∥B′∥2,1 = ∥BS⊺∥2,1 and the event that ∥BS⊺∥2,1 is itself a good estimator for ∥B∥2,1, with probability
1− 1/(50t):

∥B∥2,1
5

≤M0 ≤ 4002 ∥B∥2,1

Note that we can afford to store O(log t) copies of H-SKETCH(BS⊺) in the stream. Outputting M = 5 ·M0

yields the claim.

24

	Introduction
	Notation and Terminology
	Algorithm Overview
	Coarse Approximation
	Initial Coreset Construction
	Bootstrapping a Coreset
	Right Dimension Reduction
	Left Dimension Reduction

	(1+)-Approximation
	Left Dimension Reduction
	Solving Small Instances

	Experiments
	Elided Proofs
	H-Sketch Guarantees
	High Probability "026B30D "026B30D 2,1 Estimation

