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In this document we give the detailed back-propagation of the proposed versatile convolution filters
and summarize the feed-forward and back-propagation procedure in Alg. 1. In addition, we provide
the single image super-resolution experiments using original convolution filters and the proposed
versatile convolution filters, respectively.

1 Back Propagation for Spatial Versatile Convolution Filters

A novel convolution operation was proposed in Section 2.1 in the main body, which extracts s-
dimensional features in every location in the input data x. Thus, the conventional back-propagation
scheme should be adjusted accordingly.

The convolution operation in CNNs can be reformulated as the matrix multiplication, and the input
data x of a given sample is usually divided into several overlapping areas in practice. Dividing the
input data x into k = H ′×W ′ areas (the size of each area is d×d×c) and vectorizing them, we have
X = [vec(x1), ..., vec(xk)] ∈ Rd2c×k. Similarly, we reformulate the output feature map y and its
corresponding convolution filter f as Y = vec(y) ∈ Rk×1 and F = vec(f) ∈ Rd2c×1, respectively.
Thus, the conventional convolution (Fcn. 1 in the main body) can be rewritten as:

Y = X>F + b. (1)

Denote the gradient for the output data Y is ∂L/∂Y , gradients of X and F can be calculated
according to the back-propagation strategy:

∂L
∂X

= F

(
∂L
∂Y

)>
,

∂L
∂F

= X

(
∂L
∂Y

)
, (2)

where L is the loss function of the entire neural network. Similarly, the matrix form of the proposed
versatile convolution is

Y = [X>(F1) + b1, ..., X
>(Fs) + bs],

s.t. s =ddi/2e, Fi = vec(Mi ◦ f),
(3)

where Y = [Y1, ..., Ys] ∈ Rk×s is the output consists of versatile feature maps. We can regard each
sub feature map in Y as the output of an individual convolution filter, gradients of input data and
convolution filters are
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There are several zeros in Fi when i > 1, and weights corresponding to these positions in the entire
F do not participate the calculation in Fcn. 3, but the above function will generate a dense vector
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Algorithm 1 Feed-Forward and Back-Propagation of the Spaital Versatile Convolution Filter.
Input: A convolutional layer with n convolution filters [f1, .., fn], bias terms [b1, .., bn], input data

x, the loss function L, and the learning rate η.
1: Calculate s = ddi/2e, and generate s masks {M}si=1 according to Fcn. 3 in the main body;
2: Convert x into a matrix: X ← [vec(x1), ..., vec(xk)];
3: Feed Foward:
4: for i = 1 to s do
5: Fi ← [vec(Mi ◦ f1), ..., vec(Mi ◦ fn)];
6: Obtain feature maps Yi ← X>Fi + bi;
7: end for
8: Back Propagation:
9: for i = 1 to s do

10: Calculate the gradient of feature maps ∂L/∂Ys;

11: ∂L/∂Xi ← Fi
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)
;

12: end for
13: Aggregate gradients of X and F :

∂L/∂X = 1
s

∑s
i=1 ∂L/∂Xi, ∂L/∂F = 1

s

∑s
i=1[∂L/∂Fi ◦ vec(Mi)];

14: Calculate new filters F̂ ← F − η∂L/∂F , and update [f1, ..., fn] accordingly;
Output: Feature maps Y ← [Y1, ..., Ym] and filters F .

∂L/∂Fi. Thus gradients of these weights should be discarded. The gradient of the entire convolution
filter is
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In addition, both convolution filters F and input data X are utilized multiple times in the proposed
method, and their gradients are aggregated from different scales, which is s× larger than those in
the conventional CNNs. Therefore, we divide them by the number of scales s to avoid the gradient
explosion in practice, and filters will be updated according to the learning rate η, i.e. F = F−∂L/∂F .
Alg. 1 provides the detailed back-propagation procedure of the proposed versatile convolution filter.

2 Image Super-resolution Experiments

The superiority of the proposed method was demonstrated in the main body of this paper under the
visual recognition experiments. Actually, convolution neural networks can be utilized to solve a large
variety of real-world applications such as image denoising, visual segmentation, and image style
translation. To evaluate the generalization ability of the proposed versatile convolution operation, we
then applied it on the single image super-resolution problem. The image super-resolution task receives
a low-resolution image and then outputs its high-resolution estimation. Different from conventional
CNNs for visual classification and detection which exploits convolution filters for extracting powerful
features, filters in these models are employed for making output images clear and visually pleasant.
Therefore, it is very meaningful to investigate the performance of the proposed versatile convolution
filters on this task.

We selected VDSR (Very Deep CNN for Image Super-resolution [2]) as the baseline model for
conducting the image super-resolution task. The baseline model contains 22 convolutional layers
with a number of 3 × 3 convolution filters, which trained on a benchmark dataset consists of 291
images. Each image in this dataset is first divided into several patches and then augmented with some
commonly used strategies (i.e. rotation and flip) to form the training set. Although the VDSR model
utilizes a relatively small dataset, but shows better performance than that of SRCNN [1] trained on
the ILSVRC dataset due to it contains more covolutional layers.

Similar to experiments in the main body, a new model using the proposed spatial versatile filters
and another model using the proposed channel versatile filters were established, respectively. Then,
the baseline VDSR model and the two new models were trained on the dataset using the same
setting (e.g. learning rate, number of epochs) used in [2], respectively. Images in the dataset were
downscaled by 2× and 4× in order to train models for processing images with different resolutions.

2



Ground-truth VDSR Versatile-VDSR Versatile v2-VDSR

Baby (×4) PSNR = 33.40dB PSNR = 33.45dB PSNR = 33.43dB

Butterfly (×2) PSNR = 34.45dB PSNR = 34.61dB PSNR = 34.47dB

Figure 1: Image super-resolution results of the baseline VDSR model and the proposed versatile
filters, where the top line are results of the Baby (×4) image, and the bottom line are results of the
Butterfly (×2) image.

Detailed results are shown in Table 1. PSNR values were calculated by comparing output images and
ground-truth high-resolution images and FLOPs were calculated using 256× 256 images.

Table 1: Statistics for versatile filters on VDSR.

Model Memory FLOPs PSNR (×2) PSNR (×4)
VDSR [2] 2.82MB 48.39× 109 37.53dB 31.35 dB

Versatile-VDSR 1.41MB 26.90× 109 37.64dB 31.41 dB
Versatile v2-VDSR 0.69MB 26.46× 109 37.58dB 31.37 dB

It can be found in Table 1 that, memory usage and computational complexity of networks using
the proposed versatile convolution operation have been reduced significantly, and PSNR values of
Versatile-VDSR with the same amount of feature maps are higher than those of the baseline model,
while the memory usage of this model is only about 1.41MB. Compared with the baseline model,
MS-VDSR achieved a 1.99× compression ratio and a 1.79× speed-up ratio. In addition, the memory
usage of the Versatile v2-VDSR model is only about 1.41MB with the similar performance to that of
the original model.

Fig. 1 illustrates some visualization results of the baseline model and the proposed method. Results
generated by networks using the proposed versatile convolution filters are better than those of the
baseline model since we can provide the same amount feature maps with multi-scale information,
which is able to make the estimation smooth in every scale.
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