
A Several Variants of IS- and WIS-based Estimators

Denote by �t = �

t
/

PT
t=0 �

t for notation simplicity. Define

w0:T (⌧ ) :=
TY

t=0

⇡(at|st)
⇡0(at|st) .

Then we have the following two key formulas, which derive the trajectory-wise, and step-wise
importance sampling (IS) estimators, respectively.

R

T
⇡ = E⌧⇠p⇡0

"
TX

t=0

w0:T (⌧ )�trt

#
(Trajectory-wise) (19)

= E⌧⇠p⇡0

"
TX

t=0

w0:t(⌧ )�trt

#
(Step-wise) (20)

where the only difference of (19) and (20) is that (20) replaces the w0:T in (19) with w0:t,
yielding smaller variance without changing the expectation. This is made possible because
w0:t = E⌧⇠p⇡0

[w0:T (⌧ ) | ⌧ 0:t]. Therefore, step-wise estimator can be viewed as Rao-backwellizing
each term w0:T (⌧ )�trt in (19) by conditioning on ⌧ 0:t.

Given a set of m observed trajectories ⌧ i
= {sit, ait, rit}Tt=0, 8i = 1, . . . ,m, drawn from p⇡0 . The

trajectory-wise and step-wise estimators are

Trajectory-wise: ˆ

R

T
⇡ =

1

ZT

TX

t=0

mX

i=1

�tw
i
0:T r

i
t , Step-wise: ˆ

R

T
⇡ =

TX

t=0

mX

i=1

1

Zt
�tw

i
0:tr

i
t ,

where w

i
0:t = w0:t(⌧ i

) and Zt is a normalization constant of the importance weights: when
Zt = m, 8t, the corresponding estimators (called Trajectory-wise IS and Step-wise IS, respectively)
provide unbiased estimates of RT

⇡ ; when Zt =
Pm

i=1 w
i
0:t, the corresponding estimators are weighted

(or self-normalized) importance sampling (called Trajectory-wise WIS and Step-wise WIS, respec-
tively), which introduce bias but often have lower variance. It has been shown that the Step-wise WIS
often performs the best among all these variants [30, 22].

In comparison, our method can be viewed as a further Rao-backwellization of the step-wise estimators.
Define

wt:t(at, st) = E⌧⇠p⇡0
[w0:T (⌧ ) | (st, at)] = d⇡(st)

d⇡0(st)

⇡(at|st)
⇡0(at|st) .

Then we have

R

T
⇡ = E⌧⇠p⇡0

"
TX

t=0

wt:t(at, st)�trt

#
(Our method), (21)

where we replace w0:t in (20) with wt:t, based on Rao-backwellization conditioning on (st, at). This
gives an empirical estimator:

Our method: ˆ

R

T
⇡ =

TX

t=0

mX

i=1

1

Zt
�tw

i
t:tr

i
t,

where w

i
t:t = wt:t(a

i
t, s

i
t) and Zt = m or Zt =

Pm
i=1 w

i
t:t. Comparing this with the trajectory-wise

and step-wise estimators, it is easy to expect that it yields smaller variance, when ignoring the
estimation error of wt:t.

B A motivating example

Here we provide an example when w0:T is exponential on the trajectory length T , yielding high
variance in trajectory-wise and step-wise estimators in long horizon problems, while the variance of
our stationary density ratio based importance weight wt:t stays to be a constant as T increases.
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The MDP has n states: S = {0, 1, . . . , n� 1}, arranged on a
circle (see the figure on the right), where n is an odd number.
There are two actions, left (L) and right (R). The left action
moves the agent from the current state counterclockwise to the
next state, and the right action has the opposite (clockwise)
effect. The deterministic reward is 0 if taking action L and 1

otherwise. In summary, we have for any s and a that

T (s

0|s, L) = I(s0 = s� 1 mod n)

T (s

0|s,R) = I(s0 = s+ 1 mod n)

r(s, a) = I(a = R) .

Suppose we are given two policies. The behavior policy ⇡0 and target policy ⇡ choose action R with
probability ⇢ and 1� ⇢, respectively. We focus on the average reward (� = 1) here.

Claim #1. Stationary density ratio wt:t stays constant as t ! 1. First, note that the MDP is
ergodic under either policy, as n is odd. Since ⇡0 and ⇡ are symmetric, their stationary distributions
are identical, that is, d⇡(s)/d⇡0(s) = 1. In fact, both d⇡ = d⇡0 are uniform over S . Therefore,

wt:t(s,R) =
d⇡(s)⇡(R|s)
d⇡0(s)⇡0(R|s) =

⇡(R|s)
⇡0(R|s) =

⇢

1� ⇢

,

and similarly wt:t(s, L) = (1� ⇢)/⇢. Both ratios are independent of the trajectory length, and have
zero variance.

Claim #2. Variance of trajectory-wise IS weight w0:T grows exponentially in T .

Proposition 8. Under the setting above, let ⌧ = {st, at, rt}0tT be a trajectory drawn from the
behavior policy ⇡0, we have

varp⇡0
[w0:T (⌧ )] = A

T+1
⇢ � 1,

varp⇡0

⇥
w0:T (⌧ )R

T
(⌧ )

⇤
= B⇢,TA

T�1
⇢ � (1� ⇢)

2
,

where

A⇢ :=

⇢

3
+ (1� ⇢)

3

(1� ⇢)⇢

, B⇢,T =

(1� ⇢)⇢

T + 1

+

(1� ⇢)

4

⇢

.

Obviously, A⇢ > 1 for ⇢ 6= 1/2 and A⇢ = 1 for ⇢ = 1/2, and B⇢,T > 0 for large enough
T . Therefore, the variance of both the trajectory-wise importance weights and the corresponding
estimator grow exponentially in the order of AT

⇢ .

Remark When ⇢ = 1/2, it reduces to the on-policy case of ⇡ = ⇡0, for which we can show that
varp⇡0

[w0:T (⌧ )] = 0 (since w0:T (⌧ ) = 1), and varp⇡0

⇥
w0:T (⌧ )RT

(⌧ )
⇤
= 1/(4(T + 1)).

Proof. From the definition of the setting, it is easy to show that

R

T
(⌧ ) =

F (⌧ )

T + 1

, w0:T (⌧ ) =
TY

t=0

⇡(at|st)
⇡0(at|st) =

✓
1� ⇢

⇢

◆2F (⌧ )�(T+1)

where

F (⌧ ) =
TX

t=0

I(at = R).

Under policy ⇡0, F (⌧ ) follows a Binomial distribution Binomial(T + 1, ⇢). The first order moments
can be easily calculated as follows

E⌧⇠p⇡0
[w0:T (⌧ )] = 1, E⌧⇠p⇡0

[w0:T (⌧ )R
T
(⌧ )] = E⌧⇠p⇡ [R

T
(⌧ )] = 1� ⇢.
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It remains to calculate the second order moments. We achieve this by leveraging the moment-
generating function (MGF) of Binomial distribution:

�(�) := E⌧⇠p⇡0
[exp(�F (⌧ ))] = (1� ⇢+ ⇢ exp(�))

T+1
, 8� 2 R. (22)

It will turn out be useful to consider the derivatives of �(�):

�

0
(�) = E⌧⇠p⇡0

[exp(�F (⌧ ))F (⌧ )]

= (T + 1)(1� ⇢+ ⇢ exp(�))

T
⇢ exp(�),

and

�

00
(�) = E⌧⇠p⇡0

[exp(�F (⌧ ))F (⌧ )2]

= (T + 1)(1� ⇢+ ⇢ exp(�))

T�1
(1� ⇢+ (T + 1)⇢ exp(�))⇢ exp(�).

(23)

For convenience, define C = (1� ⇢)/⇢, and we have

E⌧⇠p⇡0
[w0:T (⌧ )

2
] = E⌧⇠p⇡0

[(C

2F (⌧ )�(T+1)
)

2
]

= �(4 logC) · C�2(T+1)

=

⇥
(1� ⇢+ ⇢C

4
)C

�2
⇤T+1

= A

T+1
⇢ ,

where we use the fact that (1� ⇢+ ⇢C

4
)C

�2
=

⇢3+(1�⇢)3

(1�⇢)⇢ = A⇢. Similarly, we have

E⌧⇠p⇡0

⇥
w⇡/⇡0

(⌧ )2R(⌧ )2
⇤

= E⌧⇠p⇡0

h
C

4F (⌧ )�2(T+1)
F (⌧)

2
i
/(T + 1)

2

= �

00
(4 logC)C

�2(T+1)
/(T + 1)

2

= ((1� ⇢+ ⇢C

4
)C

�2
)

T�1
(C/(T + 1) + ⇢C

4
)⇢

2

= B⇢,TA
T�1
⇢

where we use the fact that B⇢,T = (C/(T + 1) + ⇢C

4
)⇢

2. It is then straightforward to calculate the
variance from here.

Claim #3. Variance of trajectory-wise WIS weight grows exponentially in T . Although
weighted-IS (WIS) often improves over IS estimators by using self-normalized weights, it can-
not eliminate the exponential dependence on the trajectory length. Here, we calculate the asymptotic
variance of trajectory-wise WIS using delta method [28, Chapter 9].

Proposition 9. Let ˆ

Rn,wis be the trajectory-wise WIS estimator of R⇡ based on n copies of indepen-
dent trajectories drawn from ⇡0, we have

Ep⇡0
[(

ˆ

Rn,wis �R⇡)
2
] =

1

n

D⇢,TA
T
⇢ + o

✓
1

n

◆
,

where D⇢,A = B⇢,TA
�1
⇢ � 2(1� ⇢)

3
/⇢ + (1�⇢)

2
A⇢, with A⇢ and B⇢,T defined in Proposition 8.

Proof. The asymptotic mean square error (MSE) of a self-normalized importance sampling estimator
can be estimated using the delta method [28, Chapter 9]:

Ep⇡0
[(

ˆ

Rn,wis �R⇡)
2
]

=

1

n

E⌧⇠p⇡0

⇥
w⇡/⇡0

(⌧ )2(R(⌧ )�R⇡)
2
⇤

+ o

✓
1

n

◆
.

Note that

E⌧⇠p⇡0

⇥
w⇡/⇡0

(⌧ )2(R(⌧ )�R⇡)
2
⇤

= E⌧⇠p⇡0

⇥
w⇡/⇡0

(⌧ )2R(⌧ )2
⇤� 2R⇡E⌧⇠p⇡0

[w⇡/⇡0
(⌧ )2R(⌧ )] +R

2
⇡E⌧⇠p⇡0

⇥
w⇡/⇡0

(⌧ )2
⇤
,
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where the first and third terms have been calculated in the proof of Proposition 8. We just need to
calculate the cross term:

E⌧⇠p⇡0
[w⇡/⇡0

(⌧ )2R(⌧ )] = E⌧⇠p⇡0

h
C

4F (⌧ )�2(T+1)
F (⌧)

i
/(T + 1)

= �

0
(4 logC)C

�2(T+1)
/(T + 1)

=

⇥
(1� ⇢+ ⇢C

4
)C

�2
⇤T

⇢C

2

= (1� ⇢)

2
/⇢A

T
⇢ .

Therefore,

E⌧⇠p⇡0

⇥
w⇡/⇡0

(⌧ )2(R(⌧ )�R⇡)
2
⇤
= B⇢,TA

T�1
⇢ � 2R⇡(1� ⇢)

2
/⇢A

T
⇢ + R

2
⇡A

T+1
⇢

= D⇢,TA
T
⇢ ,

where

D⇢,T := B⇢,TA
�1
⇢ � 2R⇡(1� ⇢)

2
/⇢ + R

2
⇡A⇢

= B⇢,TA
�1
⇢ � 2(1� ⇢)

3
/⇢ + (1� ⇢)

2
A⇢.

We used R⇡ = 1� ⇢ here.

C Proofs

Reproducing Kernel Hilbert Space (RKHS) We start with a brief, informal introduction of
RKHS. A symmetric function k(s, s

0
) is called positive definite if all matrices of form [k(si, sj)]ij

are positive definite for any {si} ✓ S . Related to every positive definite kernel k(s, s0) is an unique
RKHS H which is the closure of functions of form f(s) =

P
i aik(s, si), 8ai 2 R, si 2 S , equipped

with a norm and inner product defined as

hf, giH =

X

ij

aibjk(si, sj), kfk2H =

X

ij

aiajk(si, sj),

where we assume g(x) =

P
i bik(s, si). A simple yet important fact that our proof will leverage is

that

kfkH = max

g2F
hf, giH, where F = {g 2 H : kgkH  1}.

A key property of RKHS is the so called reproducing property, which says

f(s) = hf(·), k(s, ·)iH, and hence k(s, s

0
) = hk(s, ·), k(s0, ·)iH.

In our proof, we will consider functions of form f(s) = Es0⇠d[w(s
0
)k(s, s

0
)] for some function w

and distribution d, for which one can show that

max

g2F
hf, giH = kfkH = Es,s0⇠d[w(s)w(s

0
)k(s, s

0
)]

1/2
;

this can be proved using the reproducing property as follows

kfk2H = hf, fiH = hEs⇠d[w(s)k(·, s)], Es0⇠d[w(s
0
)k(·, s0)]iH

= Es,s0⇠d[w(s)w(s
0
)hk(·, s), k(·, s0)iH]

= Es,s0⇠d[w(s)w(s
0
)k(s, s

0
)].

For more introduction to RKHS, see [32, 3, 24], to name only a few.

Proof of Theorem 1. Note that d⇡0(s, a|s0) = d⇡0 (s)⇡0(a|s)T (s0|s,a)
d⇡0 (s

0) . Therefore, (9) is equivalent to

w(s

0
) = E(s,a)|s0⇠⇡0


w(s)

⇡(a|s)
⇡0(a|s)

���� s
0
�
=

X

s,a

d⇡0(s)⇡0(a|s)T (s

0|s, a)
d⇡0(s

0
)

w(s)

⇡(a|s)
⇡0(a|s)

=

1

d⇡0(s
0
)

X

s,a

T (s

0|s, a)⇡(a|s)d⇡0(s)w(s), 8s0.
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Denote g(s) := d⇡0(s)w(s). Since d⇡0(s
0
) > 0 for all s0, we find that (9) is equivalent to

g(s

0
) =

X

s,a

T (s

0|s, a)⇡(a|s)g(s), 8s0. (24)

This implies that g(s) is invariant under Markov transition T (s

0|s, a)⇡(a|s). Because d⇡(s) is
the unique stationary distribution under the same Markov transition, (24) holds if and only if
g(s) / d⇡(s), or equivalently, w(s) / w⇡/⇡0

(s). This completes the proof.

Proof of Theorem 2. By the reproducing property of RKHS, we have f(s) = hf(·), k(s, ·)iiH. This
gives L(w, f) = hf,�⇤iH, where �

⇤
(·) = E⇡0 [�(w; s̄, ā, s̄

0
)k(s̄

0
, ·)]. The results then follow by

max

f
L(w, f)

2
= max

f2F
hf,�⇤i2H = k�⇤k2H = E⇡0 [�(w; s, a, s

0
)�(w; s̄, ā, s̄

0
)k(s

0
, s̄

0
)] .

Proof of Lemma 3. Assume � 2 (0, 1). The definition in (4) gives d⇡(s) = (1� �)

P1
t=0 �

t
d⇡,t(s).

Therefore,

d⇡(s
0
) = (1� �)

1X

t=0

�

t
d⇡,t(s

0
)

= (1� �)d0(s
0
) + (1� �)

1X

t=1

�

t
d⇡,t(s

0
)

= (1� �)d0(s
0
) + (1� �)�

1X

t=0

�

t
d⇡,t+1(s

0
)

= (1� �)d0(s
0
) + (1� �)�

1X

t=0

�

t
X

s

T ⇡(s
0|s)d⇡,t(s) // d⇡,t+1(s

0) =
X

s,a

T⇡(s0|s)d⇡,t(s)

= (1� �)d0(s
0
) + �

X

s

T ⇡(s
0|s)

 
(1� �)

1X

t=0

�

t
d⇡,t(s)

!

= (1� �)d0(s
0
) + �

X

s

T ⇡(s
0|s)d⇡(s)

= (1� �)d0(s
0
) + �

X

s,a

T (s

0|s, a)⇡(a|s)d⇡(s) .

Multiplying both sides by f(s

0
) and summing over s0, we get

X

s0

d⇡(s
0
)f(s

0
) = (1� �)

X

s0

d0(s
0
)f(s

0
) + �

X

s,a,s0

T (s

0|s, a)⇡(a|s)d⇡(s)f(s0) .

Recall that (s, a, s

0
) ⇠ d⇡ denotes sampling from the joint distribution of d⇡(s, a, s

0
) =

d⇡(s)T (s

0
, a|s)⇡(a|s). Note that under this joint distribution, the marginal distribution of s

0 is
different from d⇡(s).1

The above equation is equivalent to

Es0⇠d⇡ [f(s
0
)] = (1� �)Es0⇠d0 [f(s

0
)] + �E(s,a,s0)⇠d⇡

[f(s

0
)] .

For notation, changing the dummy variable s

0 in Es0⇠d⇡ [·] and Es0⇠d0 [·] to s gives

Es⇠d⇡ [f(s)] = (1� �)Es⇠d0 [f(s)] + �E(s,a,s0)⇠d⇡
[f(s

0
)].

Therefore,
E(s,a,s0)⇠d⇡

[�f(s

0
)� f(s)] + (1� �)Es⇠d0 [f(s)] = 0 .

1This is different from the average reward case, in which d⇡(s) is the stationary distribution of T ⇡ .
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Proof of Theorem 4. Define

�(g, s

0
) := �

X

s

T ⇡(s
0|s)g(s)� g(s

0
) + (1� �)d0(s

0
),

where g is any function. Then by assumption, we have g(s) = d⇡(s) if and only if �(g, s0) = 0 for
any s

0. Replacing d⇡ with d⇡0 and f(s) with w(s)f(s) in (14) gives

E(s,a,s0)⇠d⇡0
[w(s)f(s)� �w(s

0
)f(s

0
)] = (1� �)Es⇠d0 [w(s)f(s)] .

Plugging it into the definition of L(w, f) in (15), we get

L(w, f)

= �E(s,a,s0)⇠d⇡0
[(�⇡/⇡0

(a|s)w(s)� w(s

0
))f(s

0
)] + (1� �)Es⇠d0 [(1� w(s))f(s)]

= �E(s,a,s0)⇠d⇡0
[(�⇡/⇡0

(a|s)w(s)f(s0)]� Es⇠d⇡0
[w(s)f(s)] + (1� �)Es⇠d0 [f(s)] (25)

= �E(s,a,s0)⇠d⇡
[w⇡/⇡0

(s)

�1
w(s)f(s

0
)]� Es⇠d⇡ [w⇡/⇡0

(s)

�1
w(s)f(s)] + (1� �)Es⇠d0 [f(s)]

=

X

s0

�(g, s

0
)f(s

0
) ,

where we have defined g(s) := d⇡(s)w⇡/⇡0
(s)

�1
w(s). Therefore, L(w, f) = 0 for 8f is equivalent

to �(g, s

0
) = 0 for 8s0, which is in turn equivalent to g(s) = d⇡(s). Therefore, we have w(s) =

w⇡/⇡0
(s) when 0 < � < 1, and g(s) / d⇡(s), or equivalently, w(s) / w⇡/⇡0

(s), when � = 1.

Proof of Lemma 5. Note that

⇧f(s) = f(s)� �E(s0,a)|s⇠d⇡
[f(s

0
)]

= f(s)� �E(s0,a)|s⇠d⇡0
[�⇡/⇡0

(a|s)f(s0)] .

Following the proof of Theorem 4 up to (25), we have

L(w, f)

= �E(s,a,s0)⇠d⇡0
[(�⇡/⇡0

(a|s)w(s)� w(s

0
))f(s

0
)] + (1� �)Es⇠d0 [(1� w(s))f(s)]

= �E(s,a,s0)⇠d⇡0
[(�⇡/⇡0

(a|s)w(s)f(s0)]� Es⇠d⇡0
[w(s)f(s)] + (1� �)Es⇠d0 [f(s)]

= �Es⇠d⇡0

h
w(s)

⇣
f(s)� �E(s0,a)|s⇠d⇡0

[�⇡/⇡0
(a|s)f(s0)]

⌘i
+ (1� �)Es⇠d0 [f(s)]

= �Es⇠d⇡0
[w(s)⇧f(s)] + (1� �)Es⇠d0 [f(s)] .

Since L(w⇡/⇡0
, f) = 0, we have

L(w, f) = L(w, f)� L(w⇡/⇡0
, f)

= Es⇠d⇡0
[(w⇡/⇡0

(s)� w(s))⇧f(s)] .

Lemma 10. For any function g(s), define ḡ = Es⇠d⇡ [g(s)] and

fg(s) =

8
>><

>>:

E⌧⇠p⇡ [

P1
t=0 �

t
g(st) | s0 = s] when 0 < � < 1,

lim

T!1
E⌧⇠p⇡ [

TX

t=0

g(st)� ḡ | s0 = s] when � = 1,

(26)

assuming the limits above exist. Then, when 0 < � < 1, f = fg is the unique solution of g = ⇧f ;
when � = 1 and T ⇡ is irreducible, all the solutions of g � ḡ = ⇧f satisfies f = fg + constant.
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Proof of Lemma 10. Consider first the discounted case � 2 (0, 1), we have

⇧fg(s) = fg(s)� �E(s0,a)|s⇠d⇡
[fg(s

0
)]

= E[
1X

t=0

�

t
g(st) | s0 = s]� �E(s0,a)|s⇠d⇡

"
E[

1X

t=0

�

t
g(st) | s0 = s]

#

= E[
1X

t=0

�

t
g(st) | s0 = s]� E[

1X

t=0

�

t+1
g(st+1) | s0 = s]]

= E[g(s0) | s0 = s]

= g(s) .

For the uniqueness, assume g = ⇧f1 and g = ⇧f2, and �f = f1 � f2, then ⇧�f = 0, where

�f(s) = �

X

s0

T ⇡(s
0|s)�f(s0).

If 0 < � < 1, we have

k�fk1 =

������
X

s0

T ⇡(s
0|s)�f(s0)

�����
1

 � k�fk1 ,

which implies k�fk1 = 0.

For the average reward case � = 1, we have

⇧fg(s) = fg(s)� E(s0,a)|s⇠d⇡
[fg(s

0
)]

= lim

T!1
E[

TX

t=0

(g(st)� ḡ) | s0 = s]� E(s0,a)|s⇠d⇡
[E[

TX

t=0

(g(st)� ḡ) | s0 = s]]

= lim

T!1
E[

TX

t=0

(g(st)� ḡ) | s0 = s]� E[
TX

t=0

(g(st+1)� ḡ) | s0 = s]

= E[g(s0)� ḡ | s0 = s]

= g(s)� ḡ .

For the uniqueness, assume g = ⇧f1 and g = ⇧f2, and �f = f1 � f2, then �f =P
s0 T ⇡(s

0|s)�f(s0), which implies �f =

P
s0 T

n
⇡(s

0|s)�f(s0), where T n
⇡ is the n-step transition

probability function. If �f is not a constant, there must exists a state s̃ such that �f(s̃) < k�fk1.
Since T ⇡ is irreducible, there exists a n > 0 such that T n

⇡(s̃|s) > 0. Therefore,

k�fk1 =

������
T n

⇡(s̃|s)�f(s̃) +
X

s0 6=s̃

T n
⇡(s

0|s)�f(s0)
������
1

< k�fk1 ,

which is contradictory. Therefore, �f must be a constant. In fact, functions that satisfies �f =P
s0 T ⇡(s

0|s)�f(s0) is called harmonic [17, Lemma 1.16].

Proof of Theorem 6. By taking fg such that g(s) = 1(s = s̃), we have

L(w, fg) = Es⇠d⇡0
[(w⇡/⇡0

(s)� w(s))g(s)] = d⇡(s̃)� w(s̃)d⇡0(s̃).

We just need to calculate fg , following Lemma 10.

Note that T t
⇡(s̃ | s) = E⌧⇠p⇡ [1(st = s̃) | s0 = s)]. When 0 < � < 1, we have

fg(s) = E⌧⇠p⇡

" 1X

t=0

�

t1(st = s̃)|s0 = s

#

=

1X

t=0

�

tT t
⇡(s̃|s).
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Algorithm 1 Main Algorithm (Average Reward Case)
Input: Transition data D = {st, at, s0t, rt}t from simulator from the behavior policy ⇡0; a
target policy ⇡ for which we want to estimate the expected reward. Denote by �⇡/⇡0

(a|s) =

⇡(a|s)/⇡0(a|s).
Initial the density ratio w(s) = w✓(s) to be a neural network parameterized by ✓.
for iteration = 1, 2, ... do

Randomly choose a batch M of size m from the transition data D, M ⇢ {1, . . . , n}.
Update the parameter ✓ by ✓  ✓ � ✏r✓

ˆ

D(w✓/zw✓ ), where

ˆ

D(w) =

1

|M|
X

i,j2M
�(w, si, ai, s

0
i)�(w, sj , aj , s

0
j)k(s

0
i, s

0
j),

and zw✓ is a normalization constant zw✓ =

1
|M|

P
i2M w✓(si).

end for
Output: Estimate the expected reward of ⇡ by ˆ

R⇡ =

Pn
i=1 viri/

Pn
i=1 vi, where vi =

w✓(si)�⇡/⇡0
(ai, si).

For the average reward case, note that ḡ = Es⇠d⇡ [1(s = s̃)] = d⇡(s̃), so

fg(s) = E⌧⇠p⇡

" 1X

t=0

1(st = s̃)� d⇡(s̃)|s0 = s

#

=

1X

t=0

(T t
⇡(s̃|s)� d⇡(s̃)).

Similarly, we take g(s) = 1(s = s̃)/d⇡0(s̃), and obtain bounds for
��
w⇡/⇡0

� w

��
1.

Proof of Theorem 7. Define r⇡(s) = Ea|s⇠⇡[r(s, a)] = Ea|s⇠⇡0
[�⇡/⇡0

(a|s)r(s, a)], then

R⇡[w] = Es⇠d⇡0
[w(s)�⇡/⇡0

(a|s)r(s, a)] = Es⇠d⇡0
[w(s)r⇡(s)].

We consider the average reward case first. Following the definition of the operator ⇧ in (17) and the
average reward Bellman equation, we have

⇧V

⇡
(s) = r⇡(s)�R⇡.

Following Lemma 10, we have

L(w, f) = Es⇠d⇡0
[(w(s)� w⇡/⇡0

(s))(r⇡(s)�R⇡(s))] = R⇡[w⇡/⇡0
]�R[w] = R⇡ �R⇡[w].

For the discounted case, following the definition of ⇧ and the discounted Bellman equation (2), we
have ⇧V⇡(s) = r⇡ , which gives

L(w, f) = Es⇠⇡0 [(w⇡/⇡0
(s)� w(s))r⇡(s)] = R⇡[w⇡/⇡0

]�R[w] = R⇡ �R⇡[w].

D Algorithm Details

Algorithm 1 summarizes our main algorithm for the average reward case, where we approximate the
mini-max loss function in (12) using empirical averaging of observed data.

The algorithm for the discounted case follows the same idea, but requires some modification due
to the additional term in (15). To handle it in a notionally convenient way, we find it is useful
to introduce a dummy transition pair {s�1, a�1, s

0
�1, r�1} at time t = �1, for which we define

s

0
�1 = s0, r�1 = 0 and �(w; s�1, a�1, s

0
�1) := 1�w(s0)f(s0). Related, we define an augmented

discounted visitation distribution via

˜

d⇡(s) = �d⇡,t(s) + (1� �)d⇡,�1(s) = (1� �)

1X

t=�1

�

t+1
d⇡,t(s). (27)
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Algorithm 2 Main Algorithm (Discounted Reward Case)
Input: Transition data D = {st, at, s0t, rt}t from the behavior policy ⇡0; a target policy ⇡ for which
we want to estimate the expected reward. Denote by �⇡/⇡0

(a|s) = ⇡(a|s)/⇡0(a|s). Discount
factor � 2 (0, 1].
Augment the data with dummy data {s�1, a�1, s

0
�1, r�1} for which r�1 = 0, s

0
�1 = s0 and

�(w; s�1, a�1, s
0
�1) := 1� w(s0)f(s0). Add them to D to form an augment dataset ˜D.

Initial the density ratio w(s) = w✓(s) to be a neural network parameterized by ✓.
for iteration = 1, 2, ... do

Randomly choose a batch M ✓ {1, . . . , n} from the augmented transition data ˜D, by selecting
time t with probability proportional to �

t+1.
Update the parameter ✓ by ✓  ✓ � ✏r✓

ˆ

D(w✓/zw✓ ), where

ˆ

D(w) =

1

|M|
X

i,j2M
�(w, si, ai, s

0
i)�(w, sj , aj , s

0
j)k(s

0
i, s

0
j),

and zw✓ is a normalization constant zw✓ =

1
|M|

P
i2M w✓(si).

end for
Output: Estimate the expected reward of ⇡ by ˆ

R⇡ =

Pn
i=1 viri/

Pn
i=1 vi, where vi =

w✓(si)�⇡/⇡0
(ai, si).

Under this notation, the loss (15) of discounted case is rewritten into a form identical to the average
reward case:

L(w, f) = �E(s,a,s0)⇠d⇡0
[�(w; s, a, s

0
)f(s

0
)] + (1� �)Es⇠d0 [(1� w(s))f(s)]

= E(s,a,s0)⇠d̃⇡0
[�(w; s, a, s

0
)f(s

0
)].

Therefore, following Theorem 2, we have

max

f2F
L(w, f)

2
= Ed̃⇡0

[�(w; s, a, s

0
)�(w; s̄, ā, s̄

0
)k(s

0
, s̄

0
)] , (28)

when F is the ball of RKHS with kernel k(s0, s̄0).

We can further approximate the expectation Ed̃⇡0
[·] given a set of augmented trajectories ˜D =

{st, at, s0t, rt}Tt=�1. Following (27), this can be done by randomly drawing (with replacement) data
at time t with probability proportional to �

t. Let {st, at, s0t, rt}t2M be a subset of ˜D generated this
way, and the mini-max loss in (28) can be approximated by

max

f2F
L(w, f)

2 ⇡ 1

|M|
X

i,j2M
�(w, si, ai, s

0
i)�(w, sj , aj , s

0
j)k(s

0
i, s

0
j).

This equation is identical to the one in Algorithm 1 for the average case, but differs in the way
the minibatch M is generated: it includes the dummy transition at time t = �1 with probability
(1� �) and select time t with discounted probability �

t+1. See Algorithm 2 for the summary of the
procedure.

E Information on SUMO Traffic Simulator

We provide details of the SUMO traffic simulator and how we formulate it as a standard reinforcement
learning problem.

States for SUMO A states of a traffic should provide us with enough information to control the
traffic light. A complex way is an image-like representation of the traffic vehicle around the traffic
light intersection [41]. Here, to simplify the problem, we add lane detectors around traffic light
intersections, and count the total number of vehicles on each lane as states st. This should give us
enough, though not perfect, information to guide the traffic light agent to choose its action.
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Actions For a standard crossing intersection, its traffic light will have a program for 8 phases:
“Straight signal for North-South”, “Turn-left signal for North-south”, “Straight signal for East-West”,
“Turn-left signal for East-west” and their corresponding “yellow light” slow down signals. Here,
we simplify these 4 phases into actions at for each traffic light, where we let one big time step t in
reinforcement learning setting to be 6 real time steps in SUMO simulator. Within each big time step
t, we add a transition of 3 real time steps “yellow light” phase as a buffer to prevent vehicles for
“emergency stop” if our agent decides to change light status (at 6= aT ).

Rewards Our goal is to minimize the total travelling time for all vehicles. Thus, we could set the
negative of current aggregate total number of vehicles during the one big time step as reward rt. To
simplify, we can just consider 6 times the current total number of vehicle as a approximation of rt to
make our system simpler.

Policy We use linear policy with the final softmax layer as probability for each action. We train a
policy ⇡⇤ using Cross entropy(CE) method for 10 iterations and set it to be the target policy. And we
set the policies at the training iteration 6, 7, 8, 9 as behavior policies, which correspond to x-ticks 1-4
in Figure 4(c).

Other details To simulate on our given network, we also need to design route documents for a
vehicle to follow. Each route is a set of roads that connect any two exit nodes from the map. To make
simple but reasonable routes for the vehicle, we constrain our routes with at most one turn in the
network to avoid detours. We control each route with a fixed probability (different from each route)
every time step to generate a vehicle, to guarantee a randomized environment.
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