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Abstract

This supplementary article contains an appendix to our paper “Mean Field for
the Stochastic Blockmodel: Optimization Landscape and Convergence Issues”,
providing derivation of stationarity equations for the mean field log-likelihood and
the proofs of our main results.

1 The Variational principle and mean field

We start with the following simple observation:

logP (A;B, π) = log
∑
Z

P (A,Z;B, π) = log

(∑
Z

P (A,Z;B, π)

ψ(Z)
ψ(Z)

)
(Jensen)
≥

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z) ∀ψ prob. on Z.

In fact, equality holds for ψ∗(Z) = P (Z|A;B, π). Therefore, if Ψ denotes the set of all probability
measures on Z , then

logP (A;B, π) = max
ψ∈Ψ

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z). (A.1)

The crucial idea from variational inference is to replace the set Ψ above by some easy-to-deal-with
subclass Ψ0 to get a lower bound on the log-likelihood.

logP (A;B, π) ≥ max
ψ∈Ψ0⊂Ψ

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z). (A.2)

Also the optimal ψ? ∈ Ψ0 is a potential candidate for an estimate of P (Z|A;B, π). Estimating
P (Z|A;B, π) is profitable since then we can obtain an estimate of the community membership
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matrix by setting Zia = 1 for the ith agent where

a = arg max
b
P (Zib = 1|A;B, π). (A.3)

The goal now has become optimizing the lower bound in (A.2).

2 Derivation of stationarity equations

∂`

∂ψi
= 4t

∑
j:j 6=i

(ψj −
1

2
)(Aij − λ)− log

(
ψi

1− ψi

)
,

∂`

∂p
=

1

2

∑
i,j:i 6=j

(ψiψj + (1− ψi)(1− ψj))
(
Aij

(
1

p
+

1

1− p

)
− 1

1− p

)
,

∂`

∂q
=

1

2

∑
i,j:i6=j

(ψi(1− ψj) + (1− ψi)ψj)
(
Aij

(
1

q
+

1

1− q

)
− 1

1− q

)
. (A.4)

Therefore

∂2`

∂ψj∂ψi
= 4t(Aij − λ)(1− δij)−

1

ψi(1− ψi)
δij ,

∂2`

∂ψi∂p
=

1

2

∑
j:j 6=i

(
1

2
− ψj

)(
Aij

(
1

p
+

1

1− p

)
− 1

1− p

)
,

∂2`

∂ψi∂q
=

1

2

∑
j:j 6=i

(
ψi −

1

2

)(
Aij

(
1

q
+

1

1− q

)
− 1

1− q

)
,

∂2`

∂p2
=

1

2

∑
i,j:i 6=j

(ψiψj + (1− ψi)(1− ψj))
(
Aij

(
− 1

p2
+

1

(1− p)2

)
− 1

(1− p)2

)
,

∂2`

∂q2
=

1

2

∑
i,j:i 6=j

(ψi(1− ψj) + (1− ψi)ψj)
(
Aij

(
− 1

q2
+

1

(1− q)2

)
− 1

(1− q)2

)
,

∂2`

∂q∂p
= 0. (A.5)

3 Proofs of main results

Proof of Proposition 3.1. For any a > b > 0, we have

a− b
a

< log

(
a

b

)
<
a− b
b

,

which can be proved using the inequality log(1 + x) < x for x > −1, x 6= 0. Therefore

p− q
p

< log

(
p

q

)
<
p− q
q

, and
p− q
1− q

< log

(
1− q
1− p

)
<
p− q
1− p

.

So
(p− q)(1 + p− q)

2(1− q)p
< t =

1

2

(
log

(
p

q

)
+ log

(
1− q
1− p

))
<

(p− q)(1− p+ q)

2(1− p)q
,

and

q =

p−q
1−q

p−q
q + p−q

1−q
< λ =

log( 1−q
1−p )

log(pq ) + log( 1−q
1−p )

<

p−q
1−p

p−q
p + p−q

1−p
= p.

This completes the proof.
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3.1 Proofs of results in Section 3.1

Proof of Proposition 3.2. That ψ = 1
21 is a stationary point is obvious from the stationarity equations

(A.4). The eigenvalues of −4I + 4tM , the Hessian at 1
21, are hi = −4 + 4tνi. We have ν1 =

nα+ − (p − λ) = Θ(n), and hence so is h1. Also, p − λ > 0, so that ν3 < 0, and hence h3 < 0.
Thus we have two eigenvalues of the opposite sign.

Proof of Theorem 3.3. From (5), we have

ψ
(s+1)
i = g(na(s)

σi
+ b

(s)
i ) = g(na(s)

σi
) + δ

(s)
i ,

where |δ(s)
i | = O(exp(−n|a(s)

σi |)), where we have used the fact that

g(nx+ y)− g(nx) = g(nx)g(nx+ y)(ey − 1) exp(−(nx+ y)).

Writing as a vector, we have

ψ(s+1) = g(na
(s)
+1)1C1 + g(na

(s)
−1)1C2 + δ(s), (A.6)

where ‖δ(s)‖∞ = maxi |δ(s)
i | = O(exp(−nmin{|a(s)

+1|, |a
(s)
−1|})). Note that by our assumption,

‖δ(0)‖∞ = O(exp(−nmin{|a(s)
+1|, |a

(s)
−1|})) = o(1). Now

ζ
(s+1)
1 =

〈ψ(s+1), u1〉
n

=
g(na

(s)
+1) + g(na

(s)
−1)

2
+O(‖δ(s)‖∞),

and

ζ
(s+1)
2 =

〈ψ(s+1), u2〉
n

=
g(na

(s)
+1)− g(na

(s)
−1)

2
+O(‖δ(s)‖∞).

Note that g(na
(s)
±1) = 1{a(s)±1>0} +O(‖δ(s)‖∞). Now, using (A.6),we have

‖ψ(s+1) − `(ψ(0))‖22
n

=
‖(g(na

(s)
+1)− 1{a(0)+1>0})1C1 + (g(na

(s)
−1)− 1{a(0)−1>0})1C2 + δ(s)‖2

n

≤
2(‖(g(na

(s)
+1)− 1{a(0)+1>0})1C1‖

2
2 + ‖(g(na

(s)
−1)− 1{a(0)−1>0})1C2‖

2
2 + ‖δ(s)‖2)

n

≤ |g(na
(s)
+1)− 1{a(0)+1>0}|

2 + |g(na
(s)
−1)− 1{a(0)−1>0}|

2 + 2‖δ(s)‖2∞

= |1{a(s)+1>0} − 1{a(0)+1>0}|
2 + |1{a(s)+1>0} − 1{a(0)−1>0}|

2 +O(‖δ(s)‖2∞). (A.7)

From the above representation and our assumption on n|a(0)
±1|, the bound for s = 1 follows. We will

now consider the four different cases of different signs of a(s)
±1.

Case 1: a(s)
1 > 0, a

(s)
−1 > 0. In this case g(na

(s)
1 ) = g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (1, 0) +O(‖δ(s)‖∞).

This implies that
a

(s+1)
±1 = 2tα+ +O(‖δ(s)‖∞).

If α+ > 0, a(s+1)
±1 have the same sign as a(s)

±1. Otherwise, if α+ < 0, both of them become
negative (and we thus have to go to Case 2 below). Note that, here and in the subsequent cases,
we are using that fact that ‖δ(s)‖∞ = o(1), for s = 0, by our assumption and it stays the same
for s ≥ 1 because of relations like the above (that is a(1)

±1 = −2tα+ + o(1), so that ‖δ(1)‖∞ =

exp(−nmin{|a(1)
+1|, |a

(1)
−1|}) = O(exp(−Cntα+)) = o(1), and so on).
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Case 2: a(s)
1 < 0, a

(s)
−1 < 0. In this case 1− g(na

(s)
1 ) = 1− g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (0, 0) +O(‖δ(s)‖∞).

This implies that
a

(s+1)
±1 = −2tα+ +O(‖δ(s)‖∞).

If α+ > 0, a(s+1)
±1 have the same sign as a(s)

±1. Otherwise, if α+ < 0, both of them become positive
(and we thus have to go to Case 1 above).

Case 3: a(s)
1 > 0, a

(s)
−1 < 0. In this case g(na

(s)
1 ) = 1− g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (

1

2
,

1

2
) +O(‖δ(s)‖∞).

This implies that
a

(s+1)
±1 = ±2tα− +O(‖δ(s)‖∞).

Since α− > 0, a(s+1)
±1 have the same sign as a(s)

±1.

Case 4: a(s)
1 < 0, a

(s)
−1 > 0. In this case 1− g(na

(s)
1 ) = g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (

1

2
,−1

2
) +O(‖δ(s)‖∞).

This implies that
a

(s+1)
±1 = ∓2tα− +O(‖δ(s)‖∞).

Since α− > 0, a(s+1)
±1 have the same sign as a(s)

±1.

Note that, in the case α+ = 0, a(s)
±1 = ±4tζ

(s)
2 α−, so that a(s)

±1 have opposite signs and we land in
Cases 3 or 4.

We conclude that, if α+ ≥ 0, then we stay in the same case where we began, and otherwise if α+ < 0
we have a cycling behavior between Cases 1 and 2. Now the desired conclusion follows from the
bound (A.7).

In the proof above, we can allow sparser graphs, with p, q � 1
n . More explicitly, let p = ρna, q =

ρnb, with a > b > 0 and ρn � 1
n . Then, t = Ω(1), and α+ ≤ p−q = ρn(a−b), α− = (p−q)/2 =

ρn(a− b)/2. So, we do have nt|α±| → ∞.

Proof of Theorem 3.4. We begin by noting that M̂ −M = A − E(A|Z) := A − P̃ . For the first
iteration, we rewrite the sample iterations (7) as

ξ̂(1) = 4tM

(
ψ(0) − 1

2
1

)
+ 4t(M̂ −M)

(
ψ(0) − 1

2
1

)
= ξ(1) + 4t(A− P̃ )

(
ψ(0) − 1

2
1

)
︸ ︷︷ ︸

=:nr(0)

.

Therefore, similar to the population case, we have

ψ̂
(1)
i = g(na(0)

σi
+ b

(0)
i + nr

(0)
i ).

Note that

r
(0)
i =

4t

n

∑
j 6=i

(Aij − P̃ij |Zi, Zj)(ψ(0)
j −

1

2
). (A.8)

Assume that ψ(0) is independent of A. Since our probability statements will be with respect to
the randomness in A, we may assume that ψ(0) is fixed. Let Yij = (Aij − P̃ij)(ψ(0)

j − 1
2 ). Then
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the Yij are independent random variables for j 6= i, and E(Yij) = 0. Also, |Yij | ≤ |ψ(0)
j − 1

2 | ≤
‖ψ(0) − 1

2‖∞ = ∆, say, and EY 2
ij = (ψ

(0)
j − 1

2 )2Var(Aij) = O(ρn(ψ
(0)
j − 1

2 )2). So, by Bernstein’s
inequality,

P(
1

n

∑
j 6=i

Yij > ε) ≤ exp

( − 1
2n

2ε2∑
j 6=i EY 2

ij + 1
3∆nε

)

≤ exp

( − 1
2n

2ε2

Cρn‖ψ(0) − 1
2‖

2
2 + 1

3∆nε

)
≤ exp

( − 1
2n

2ε2

Cnρn∆2 + 1
3∆nε

)
. (A.9)

It follows from here that nr(0)
i = O(

√
nρn∆ log n) with high probability, if

√
nρn = Ω(log n).

In fact, by taking a suitably large constant in the big “Oh”, we can show, via a union bound, that
maxi nr

(0)
i = O(

√
nρn∆ log n) with high probability.

Now, from our assumption n|a(0)
±1| � max{√nρn‖ψ(0) − 1

2‖∞ log n, 1}, it follows that na(0)
σi �

nr
(0)
i + b

(0)
i with high probability, simultaneously for all i. Thus, similar to the population case, we

can write
ψ̂(1) = g(na

(0)
+1)1C1 + g(na

(0)
−1)1C2 + δ̂(0),

where ‖δ̂(0)‖∞ = O(exp(−nmin{|a(0)
+1|, |a

(0)
−1|})) = o(1), with high probability. After this the

proof proceeds like the the proof of Theorem 3.3, and so we omit it.

Let us consider the case with s = 2 and we will show nr
(1)
i can be bounded in a general way. Now

ξ(2) = 4t(A− λ(J − I))(ψ̂(1) − 1/2)

= 4tM(ψ̂(1) − 1/2) + nr(1)

= 4tM(ψ̂(1) − 1/2) + 4t(A− P̃ )(ψ̂(1) − `(ψ(0)))︸ ︷︷ ︸
R1

+ 4t(A− P̃ )(`(ψ(0))− 1

2
1)︸ ︷︷ ︸

R2

.

Now the analysis of the first term follows from Theorem 3.3. It is also easy to see maxi |R2,i| =

OP (
√
nρn), since `(ψ(0)) ∈ {1C1 ,1C2 ,1,0, 1

21}. For R1,

max
i
|R1,i| ≤ ‖R1‖2 ≤ ‖A− P̃‖op‖ψ̂(1) − ˜̀(ψ(0))‖2

= OP (
√
nρn)

√
n ·O(exp(−Θ(nmin{|a(0)

+1|, |a
(0)
−1|}))) = oP (1),

under our assumption that n|a(0)
±1| � max{√nρn‖ψ(0) − 1

2‖∞ log n, 1}. Hence maxi |nr(1)
i | =

OP (
√
nρn), and na(1)

σi � nr
(1)
i + b

(1)
i with high probability, simultaneously for all i. The same

analysis as in the s = 1 case follows.

The case for general s can be proved by induction using the same decomposition of nr(s), replacing
`(ψ(0)) with a more general ˜̀(ψ(0)) ∈ {`(ψ(0)),0,1} depending on the signs of a(0)

+1, a
(0)
−1, α+ as

described in Theorem 3.3 for s ≥ 2.

Proof of Corollary 3.5. From Theorem 3.3, it follows that, when α+ > 0,

M(S1) ≥M({ψ(0) | a(0)
+1 > 0, a

(0)
−1 > 0, na

(0)
±1 � 1}

= M({ψ(0) | a(0)
+1 �

1

n
, a

(0)
−1 �

1

n
})

≥M({ψ(0) | a(0)
+1 >

1

nγ
, a

(0)
−1 >

1

nγ
}),

for any 0 < γ < 1 and so on for the other other limit points.
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More explicitly,

{ψ(0) | a(0)
+1 >

1

nγ
, a

(0)
−1 >

1

nγ
} = {ψ(0) | (ζ(0)

1 − 1

2
)α+ + ζ

(0)
2 α− >

1

4tnγ
,

(ζ
(0)
1 − 1

2
)α+ − ζ(0)

2 α− >
1

4tnγ
}

= Hγ
+ ∩H

γ
− ∩ [0, 1]n,

All in all, we have
M(S1) ≥ lim

γ↑1
M(Hγ

+ ∩H
γ
− ∩ [0, 1]n).

This completes the proof.

3.2 Proofs of results in Section 3.2

Proof of Proposition 3.6. That the described point is a stationary point is easy to verify, because of
the presence of the (ψi − 1

2 ) terms in the stationarity equations (A.4). Now, from (A.5), we see that
the Hessian matrix at ( 1

21,
1>A1
n(n−1) ,

1>A1
n(n−1) ,

1
2 ) is given by

H =

−4I 0 0

0> − n(n−1)
4â(1−â) 0

0> 0 − n(n−1)
4â(1−â)

 ,

where â = 1>A1
n(n−1) . Clearly, H is negative definite. This completes the proof.

Proof of Lemma 3.1. First note that conditioning on the true labels Z, E(A|Z) = P̃ . For the update
of p(1), we have

p(1) =
ψT P̃ψ + (1− ψ)T P̃ (1− ψ)

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)

+
ψT (A− P̃ )ψ + (1− ψ)T (A− P̃ )(1− ψ)

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)
,

where the first term can be written as
ψT (p+q2 u1u

T
1 + p−q

2 u2u
T
2 − pI)ψ + (1− ψ)T (p+q2 u1u

T
1 + p−q

2 u2u
T
2 − pI)(1− ψ)

ψT (u1uT1 − I)ψ + (1− ψ)T (u1uT1 − I)(1− ψ)

=
p+q

2 n2(ζ2
1 + (1− ζ1)2) + n2(p− q)ζ2

2 − px
ζ2
1n

2 + (1− ζ1)2n2 − x

=
p+ q

2
+

(p− q)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2

,

where x = ψTψ + (1 − ψ)T (1 − ψ) ≥ n2/4. The second term can be bounded by noting
E(ψT (A− P̃ )ψ) = 0 and Var(ψT (A− P̃ )ψ) ≤ 2n(n− 1)p. By Chebyshev’s inequality, ψT (A−
P̃ )ψ = OP (

√
ρnn).

This is because

Eψ,A[ψT (A− P̃ )ψ] = EψEA[ψT (A− P̃ )ψ
∣∣∣ψ] = 0,

and

Varψ,A[ψT (A− P̃ )ψ] = EVar(ψT (A− P̃ )ψ
∣∣∣ψ) + Var(E[ψT (A− P̃ )ψ

∣∣∣ψ])

= EVar(ψT (A− P̃ )ψ
∣∣∣ψ)

= 4E
∑
i<j

ψiψjVar(Aij) ≤ 2n(n− 1)p.

6



(1− ψ)T (A− P̃ )(1− ψ) can be handled similarly, and

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)

=

(∑
i

ψi

)2

+

(
n−

∑
i

ψi

)2

− ψTψ − (1− ψ)T (1− ψ)

≥n2/2− 2n,

since the first two terms are minimized at
∑
i ψi = n/2.

The result for q(1) is proved analogously.

Proof of Proposition 3.7. Let ψ = ζ1u1 + ζ2u2 +w, w ∈ span{u1, u2}⊥, be a stationary point. We
will consider the population version of all the updates and replace A with E(A|Z) := P̃ and ρn → 0.
By Lemma 3.1,

p̃ =
p+ q

2
+

(p− q)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2︸ ︷︷ ︸

ε′1

,

q̃ =
p+ q

2
− (p− q)(ζ2

2 + y/2n2)

2ζ1(1− ζ1)− y/n2︸ ︷︷ ︸
ε′2

. (A.10)

In this case, the update equation (4) becomes

ξ = 4t̃(P̃ − λ̃(J − I))(ψ(s) − 1

2
1)

= 4t̃n

((
ζ1 −

1

2

)(
p+ q

2
− λ̃
)
u1 +

p− q
2

ζ2u2

)
+ 4t̃(λ̃− p)

(
ψ − 1

2
1

)
:= nã+ b̃ (A.11)

where λ̃ and t̃ are defined in terms of p̃ and q̃. Since ψ is a stationary point, the above update gives
ψ = g(ξ).

We consider the following cases.

Case 1: ζ2
2 = Ω(1). Since ζ1(1− ζ1) ≥ ζ2

2 , it is easy to see that (A.10) implies that p̃ > p+q
2 > q̃,

thus p̃− q̃ = Ω(ρn), t̃ = Ω(1), p̃ < λ̃ < q̃. It follows then b̃i = O(ρn), and |ãi| = Ω(ρn) for i ∈ C1
or i ∈ C2 (or both). In any of these cases, ‖w‖ = O(ρn

√
n) = o(

√
n).

Case 2: ζ2 = o(1). Note that ψT (1−ψ) ≥ 0 implies that ζ1(1− ζ1)− ‖w‖
2

n ≥ ζ2
2 . If ‖w‖2 = o(n),

we are done. If ‖w‖2 = Ω(n), ζ1(1 − ζ1) = Ω(1). In this case, p̃ = p+q
2 + O(ρnζ

2
2 ), and

similarly for q̃. It follows then that t̃ = O(ζ2
2 ) = o(1), λ̃ = p+q

2 + o(ρn) (we defer the details
to (A.14)- (A.18)). Also note that b̃i = O(ρnζ

2
2 ). When n|ãi| � b̃i, g(ξi) = g(nãi) + o(1). Since

g(nã) ∈ span{u1, u2}, this implies that ‖w‖ = o(
√
n). When n|ãi| � b̃i, ξi = o(1), and so we have

‖w‖ = o(
√
n) again.

Proof of Lemma 3.2. Let a = (p+q)/2. By (5), define κ1 := 4t
(
ζ1 − 1

2

)
(a−λ) and κ2 = 4tζ2

p−q
2 .

Consider the initial distribution ψ(0)(i)
iid∼ fµ, where f is a distribution supported on (0, 1) with

mean µ. Note that we have the following:

ζ1 =
ψT1

n
= µ+OP (1/

√
n), (A.12)

ζ2 =
ψTu2

n
= OP (1/

√
n).
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Now using (10), recall that

p(1) =
p+ q

2
+

(p− q)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2︸ ︷︷ ︸

ε′1

+OP (
√
ρn/n)

︸ ︷︷ ︸
ε1

,

q(1) =
p+ q

2
− (p− q)(ζ2

2 + y/2n2)

2ζ1(1− ζ1)− y/n2︸ ︷︷ ︸
ε′2

−OP (
√
ρn/n)

︸ ︷︷ ︸
ε2

. (A.13)

This gives

ε1 = ε′1 +OP

(√
ρn

n

)
= OP

(ρn
n

)
+OP

(√
ρn

n

)
= OP

(√
ρn

n

)
,

ε2 = ε′2 +OP

(√
ρn

n

)
= OP

(√
ρn

n

)
.

We will use the following logarithmic inequalities for a > ε > 0:
2ε

a+ ε
≤ log

a+ ε

a− ε
≤ 2ε

a− ε
. (A.14)

Now we have

t =
1

2

(
log

(
a+ ε1
a− ε2

)
+ log

(
1− a+ ε2
1− a− ε1

))
,

2t ≥ ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a+ ε2
≥ (ε1 + ε2)

(a+ ε1)(1− a+ ε2)
,

2t ≤ (ε1 + ε2)

(a− ε2)(1− a− ε1)
. (A.15)

For λ, if ε1 + ε2 ≥ 0, we have

λ =
log 1−q(1)

1−p(1)

log p(1)

q(1)
+ log 1−q(1)

1−p(1)
≤ ε1 + ε2

1− a− ε1

/(
ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a− ε1

)
= a+ ε1. (A.16)

λ ≥ ε1 + ε2
1− a+ ε2

/(
ε1 + ε2
a− ε2

+
ε1 + ε2

1− a+ ε2

)
= a− ε2. (A.17)

If ε1 + ε2 ≤ 0,

λ =
log 1−q(1)

1−p(1)

log p(1)

q(1)
+ log 1−q(1)

1−p(1)
≥ ε1 + ε2

1− a− ε1

/(
ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a− ε1

)
= a+ ε1, (A.18)

λ ≤ ε1 + ε2
1− a+ ε2

/(
ε1 + ε2
a− ε2

+
ε1 + ε2

1− a+ ε2

)
= a− ε2.

Now we are ready to estimate ξi. We define:

κ1 = 4t(ζ1 −
1

2
)(a− λ) ≤

∣∣∣∣ 2(ε1 + ε2)

(a− ε2)(1− a− ε1)

(
µ− 1

2
+OP (1/

√
n)

)
max(|ε1|, |ε2|)

∣∣∣∣
≤ 4 max{ε21, ε22}
a(1− a) +OP (

√
ρn/n)

∣∣∣∣µ− 1

2
+OP (1/

√
n)

∣∣∣∣ = OP (1/n2),

κ2 = 4tζ2
(p− q)

2
≤
∣∣∣∣ 2(ε1 + ε2)

(a− ε2)(1− a− ε1)
(p− q)OP

(
1√
n

)∣∣∣∣
≤ 4 max(|ε1|, |ε2|)
a(1− a) +OP (

√
ρn/n)

(p− q)OP (1/
√
n) = OP (

√
ρn/n

3/2). (A.19)
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From (5) and adding the noise term from the sample version of the update,

ξ
(1)
i = n(κ1 + σiκ2) + b

(0)
i + nr

(0)
i , (A.20)

where maxi |b(0)
i | = t · OP (ρn) = OP (

√
ρn/n), since t = OP (1/(n

√
ρn)) by (A.15), and

maxi |nr(0)
i | = 4t ·OP (

√
nρn log n) = OP (log n/

√
n) if nρn � (log n)2, following the bound in

Eq (A.9)). Now applying the update for ψ, we have ψ(1)
i = g(ξ(1)) = 1

2 +OP (log n/
√
n) uniformly

for all i.

Proof of Lemma 3.3. In this setting, we write p(1), q(1) as follows:

p(1) = p− (p− q)
ζ21+(1−ζ1)2

2 − ζ2
2

ζ2
1 + (1− ζ1)2 − x/n2

+OP (
√
ρn/n),

q(1) = q + (p− q)ζ1(1− ζ1)− ζ2
2 − y/n2

2ζ1(1− ζ1)− y/n2
+OP (

√
ρn/n). (A.21)

From the proof of Lemma 3.2, Equation A.13, and Equation A.21, we have: ε1, ε2 < p+q
2 .

Also note that ε1, ε2 = ΩP (−(p− q)ζ2
2 +
√
ρn/n). Hence, by the same argument as in Lemma 3.2,

|(p+ q)/2− λ| ≤ max(|ε1|, |ε2|) = p−q
2 +OP (1/n) by (A.21).

Finally we see that

t = Θ(
ε1 + ε2
ρn

) = Θ
(
(p− q)ζ2

2/ρn
)
.

In addition, condition (13) implies that ζ2
2 = ΩP (1), we see that t = ΩP (1) using (A.15).

Next, using (12) and A.19,

κ1 + κ2 = 4t

(
µ1 + µ2 − 1

2

(
p+ q

2
− λ
)

+
(µ1 − µ2)(p− q)

4
+OP (ρn/

√
n)

)
,

κ1 − κ2 = 4t

(
µ1 + µ2 − 1

2

(
p+ q

2
− λ
)
− (µ1 − µ2)(p− q)

4
+OP (ρn/

√
n)

)
.

In (A.20), b(0)
i is of smaller order than the other terms and it suffices to consider n(κ1 + σiκ2 + r

(0)
i ).

Since |r(0)
i | = OP

(√
ρn log2 n

n

)
(see proof of Theorem 3.4), for any pair i ∈ C1 and j ∈ C2 we

have
(κ1 + κ2 + r

(0)
i )(κ1 − κ2 + r

(0)
j )

≤(κ2
1 − κ2

2) +O
(

max(|r(0)
i |, |r

(0)
j |) max(|κ1|, |κ2|)

)
=(κ2

1 − κ2
2) +OP

(p− q)

√
ρn log2 n

n


=t2(p− q)2

(µ1 + µ2 − 1)2 − (µ1 − µ2)2 +OP

 1

p− q

√
ρn log2 n

n

 < 0.

Thus n(κ1 +κ2 +r
(0)
i ) and n(κ1−κ2 +r

(0)
j ), for i, j in different blocks, have opposite signs. We will

now check if n(κ1 + σiκ2 + r
(0)
i )→∞, and it suffices to lower bound n(|κ2| − |κ1| −maxi |r(0)

i |).

Since |µ1 − µ2| ≥ 2|µ1 + µ2 − 1|+OP

(√
ρn log2 n/n

p−q

)
,

n(|κ2| − |κ1| −max
i
|r(0)
i |) ≥ nt

|µ1 − µ2|(p− q)− |µ1 + µ2 − 1|(p− q)−OP

√ρn log2 n

n


≥ nct(p− q)|µ1 − µ2| = Θ

(
|µ1 − µ2|3n

(p− q)2

ρn

)
,
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for some constant c, so as long as |µ1 − µ2| ≥
(
ρn logn
n(p−q)2

)1/3

.

Thus κ1 + σiκ2 + r
(0)
i is growing to infinity with an order bounded below by ΩP (log n).

If n(κ1 + κ2 + r
(0)
i ) > 0, since ψ(1)

i = g(n(κ1 + σiκ2) + b
(0)
i + nr

(0)
i ), we have ψ(1) = 1C1 +

OP (exp(−Ω(log n))). The case κ1 + κ2 + r
(0)
i < 0 is similar.

10


	The Variational principle and mean field
	Derivation of stationarity equations
	Proofs of main results
	Proofs of results in Section 3.1
	Proofs of results in Section 3.2


