
A Proof Sketch

Before providing complete proofs of our main results we provide a brief proof sketch to motivate the
approach.

A.1 Stochastic Setting with Exact Subsolver

Recall that at iteration t of Algorithm 1, a stochastic cubic submodel mt is constructed around the
current iterate xt with the form given in the following Equation, mt(x) = f(xt) + (x� xt)>gt +
1
2 (x� xt)>Bt(x� xt) +

⇢
6kx� xtk

3
, where gt and Bt are the averaged stochastic gradients and

Hessians.

In this setting, gt and Bt are the averaged gradient and Hessian with sample sizes n1 and n2,
respectively. To ensure the stochastic cubic submodel approximates the exact cubic submodel well,
we need large enough sample sizes so that both gt and Bt are close to the exact gradient and Hessian
at xt up to some tolerance:
Lemma 2. For any fixed small constants c1, c2, we can pick gradient and Hessian mini-batch sizes
n1 = Õ

⇣
max

⇣
M1
✏ ,

�2
1

✏2

⌘⌘
and n2 = Õ

⇣
max

⇣
M2p
⇢✏ ,

�2
2

⇢✏

⌘⌘
so that with probability 1� �

0,

kgt �rf(xt)k  c1 · ✏, (8)

8v, k(Bt �r
2
f(xt))vk  c2 ·

p
⇢✏kvk. (9)

We need to ensure that the random vectors/matrices concentrate along an arbitrary direction (depend-
ing on gt and Bt). In order to guarantee the uniform concentration in Lemma 2, we can directly
apply results from matrix concentration to obtain the desired result [Tropp et al., 2015].

Let �?
t = argmin� mt(xt +�), i.e. xt +�?

t is a global minimizer of the cubic submodel mt. If
we use an exact oracle solver, we have xt+1 = xt +�?

t . In order to show Claim 1 and Claim 2, one
important quantity to study is the decrease in the cubic submodel mt:
Lemma 3. Let mt and �?

t be defined as above. Then for all t,

mt(xt +�?
t )�mt(xt)  �

1

12
⇢k�?

t k
3
.

Lemma 3 implies that in order to prove submodel mt has sufficient function value decrease, we only
need to lower bound the norm of optimal solution, i.e. k�?

t k.

Proof sketch for claim 1: Our strategy is to lower bound the norm of �?
t when xt+1 = xt +�?

t is
not an ✏-second-order stationary point. In the non-stochastic setting, Nesterov and Polyak [2006]
prove

k�?
t k �

1

2
max

(r
1

⇢
krf(xt+1)k,

1

⇢
�min(r

2
f(xt+1))

)
,

which gives the desired result. In the stochastic setting, a similar statement holds up to some tolerance:

Lemma 4. Under the setting of Lemma 2 with sufficiently small constants c1, c2,

k�?
t k �

1

2
max

(r
1

⇢

⇣
krf(xt +�?

t )k �
✏

4

⌘
,
1

⇢

✓
�min(r

2
f(xt +�?

t ))�

p
⇢✏

4

◆)
.

That is, when xt+1 is not an ✏-second-order stationary point, we have k�?
t k � ⌦(

q
✏
⇢ ). In other

words, we have sufficient movement. It follows by Lemma 3 that we have sufficient cubic submodel
descent.

Proof sketch for claim 2: In the non-stochastic case, mt(x) is by construction an upper bound on
f(x). Together with the fact f(xt) = mt(xt), we have:

f(xt+1)� f(xt)  mt(xt+1)�mt(xt),
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showing Claim 2 is always true. For the stochastic case, this inequality may no longer be true. Instead,
under the setting of Lemma 2, via Lemma 3, we can upper bound the function decrease with an
additional error term:

f(xt+1)�f(xt) 
1

2
[mt(xt+1)�mt(xt)] + c

s
✏3

⇢
,

for some sufficiently small constant c. Then when mt(xt+1) � mt(xt)  �4c
p

✏3/⇢, we have
f(xt+1)� f(xt) 

1
4 [mt(xt+1)�mt(xt)]  �c

p
✏3/⇢, which proves Claim 2.

Finally, for an approximate cubic subsolver, the story becomes more elaborate. Claim 1 is only
“approximately” true, while Claim 2 still holds but for more complicated reasons.

B Proof of Main Results

In this section, we give formal proofs of Theorems 1 and Corollary 1. We start by providing proofs of
several useful auxiliary lemmas.
Remark 2. It suffices to assume that ✏  `2

⇢ for the following analysis, since otherwise every point
x satisfies the second-order condition �min(r2

f(x)) � �
p
⇢✏ trivially by the Lipschitz-gradient

assumption.

B.1 Set-Up and Notation

Here we remind the reader of the relevant notation and provide further background from Nesterov
and Polyak [2006] on the cubic-regularized Newton method. We denote the stochastic gradient as

gt =
1

|S1|

X

⇠i2S1

rf(xt, ⇠i)

and the stochastic Hessian as

Bt =
1

|S2|

X

⇠i2S2

r
2
f(xt, ⇠i),

both for iteration t. We draw a sufficient number of samples |S1| and |S2| so that the concentration
conditions

kgt �rf(xt)k  c1 · ✏,

8v, k(Bt �r
2
f(xt))vk  c2 ·

p
⇢✏kvk.

are satisfied for sufficiently small c1, c2 (see Lemma 2 for more details). The cubic-regularized
Newton subproblem is to minimize

mt(y) = f(xt) + (y � xt)
>gt +

1

2
(y � xt)

>Bt(y � xt) +
⇢

6
ky � xtk

3
. (10)

We denote the global optimizer of mt(·) as xt +�?
t , that is �?

t = argminz mk(z+ xk).

As shown in Nesterov and Polyak [2006] a global optimum of Equation (10) satisfies:

gt +Bt�
?
t +

⇢

2
k�?

t k�
?
t = 0. (11)

Bt +
⇢

2
k�?

t kI ⌫ 0. (12)

Equation (11) is the first-order stationary condition, while Equation (12) follows from a duality
argument. In practice, we will not be able to directly compute �?

t so will instead use a Cubic-
Subsolver routine which must satisfy:
Condition 1. For any fixed, small constant c3, c4, Cubic-Subsolver(g,B[·], ✏) terminates within
T (✏) gradient iterations (which may depend on c3, c4), and returns a � satisfying at least one of the
following:

1. max{m̃(�), f(xt +�)� f(xt)}  �⌦(
p
✏3/⇢). (Case 1)

2. k�k  k�?
k + c4

q
✏
⇢ and, if k�?

k �
1
2

p
✏/⇢, then m̃(�)  m̃(�?) + c3

12 · ⇢k�?
k
3.

(Case 2)
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B.2 Auxiliary Lemmas

We begin by providing the proof of several useful auxiliary lemmas. First we provide the proof of
Lemma 2 which characterize the concentration conditions.
Lemma 2. For any fixed small constants c1, c2, we can pick gradient and Hessian mini-batch sizes
n1 = Õ

⇣
max

⇣
M1
✏ ,

�2
1

✏2

⌘⌘
and n2 = Õ

⇣
max

⇣
M2p
⇢✏ ,

�2
2

⇢✏

⌘⌘
so that with probability 1� �

0,

kgt �rf(xt)k  c1 · ✏, (8)

8v, k(Bt �r
2
f(xt))vk  c2 ·

p
⇢✏kvk. (9)

Proof. We can use the matrix Bernstein inequality from Tropp et al. [2015] to control both the
fluctuations in the stochastic gradients and stochastic Hessians under Assumption 2.

Recall that the spectral norm of a vector is equivalent to its vector norm. So the matrix variance of
the centered gradients g̃ = 1

n1

Pn1

i=1

⇣
r̃f(x, ⇠i)

⌘
= 1

n1

Pn1

i=1 (rf(x, ⇠i)�rf(x)) is:

v[g̃] =
1

n2
1

max

(�����E
"

n1X

i=1

r̃f(x, ⇠i)r̃f(x, ⇠i)
>

#�����,

�����E
"

n1X

i=1

r̃f(x, ⇠i)
>
r̃f(x, ⇠i)

#�����

)


�
2
1

n1

using the triangle inequality and Jensen’s inequality. A direct application of the matrix Bernstein
inequality gives:

P [kg �rf(x)k � t]  2d exp

✓
�

t
2
/2

v[g̃] +M1/(3n1)

◆
 2d exp

✓
�
3n1

8
min

⇢
t

M1
,
t
2

�2
1

�◆
=)

kg �rf(x)k  t with probability 1� �
0 for n1 � max

✓
M1

t
,
�
2
1

t2

◆
8

3
log

2d

�0

Taking t = c1✏ gives the result.

The matrix variance of the centered Hessians B̃ = 1
n2

Pn2

i=1

⇣
r̃

2
f(x, ⇠i)

⌘
=

1
n2

Pn2

i=1

�
r

2
f(x, ⇠i)�r

2
f(x)

�
, which are symmetric, is:

v[B̃] =
1

n2
2

�����

n2X

i=1

E
⇣

r̃
2
f(x, ⇠i)

⌘2�
����� 

�
2
2

n2
(13)

once again using the triangle inequality and Jensen’s inequality. Another application of the matrix
Bernstein inequality gives that:

P[
��B�r

2
f(x))

�� � t]  2d exp

✓
�
3n2

8
min{

t

M2
,
t
2

�2
2

}

◆
=)

��B�r
2
f(x))

��  t with probability 1� �
0 for n2 � max(

M2

t
,
�
2
2

t2
)
8

3
log

2d

�0

Taking t = c2
p
⇢✏ ensures that the stochastic Hessian-vector products are controlled uniformly over

v:
��(B�r

2
f(x))v

��  c2 ·
p
⇢✏kvk

using n2 samples with probability 1� �
0.

Next we show Lemma 3 which will relate the change in the cubic function value to the norm k�?
t k.

Lemma 3. Let mt and �?
t be defined as above. Then for all t,

mt(xt +�?
t )�mt(xt)  �

1

12
⇢k�?

t k
3
.
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Proof. Using the global optimality conditions for Equation (10) from Nesterov and Polyak [2006],
we have the global optimum xt +�?

t , satisfies:

gt +Bt(�
?
t ) +

⇢

2
k�?

t k(�
?
t ) = 0

Bt +
⇢

2
k�?

t kI ⌫ 0.

Together these conditions also imply that:

(�?
t )

>gt + (�?
t )

>Bt(�
?
t ) +

⇢

2
k�?

t k
3 = 0

(�?
t )

>Bt(�
?
t ) +

⇢

2
k�?

t k
3
� 0.

Now immediately from the definition of stochastic cubic submodel model and the aforementioned
conditions we have that:

f(xt)�mt(xt +�?
t ) = �(�?

t )
>gt �

1

2
(�?

t )
>Bt(�

?
t )�

⇢

6
kxt +�?

t k
3

=
1

2
(�?

t )
>Bt(�

?
t ) +

1

3
⇢k�?

t k
3

�
1

12
⇢k�?

t k
3

An identical statement appears as Lemma 10 in Nesterov and Polyak [2006], so this is merely restated
here for completeness.

Thus to guarantee sufficient descent it suffices to lower bound the k�?
t k. We now prove Lemma 4,

which guarantees the sufficient “movement" for the exact update: k�?
t k. In particular this will allow

us to show that when xt +�?
t is not an ✏-second-order stationary point then k�?

t k �
1
2

q
✏
⇢ .

Lemma 4. Under the setting of Lemma 2 with sufficiently small constants c1, c2,

k�?
t k �

1

2
max

(r
1

⇢

⇣
krf(xt +�?

t )k �
✏

4

⌘
,
1

⇢

✓
�min(r

2
f(xt +�?

t ))�

p
⇢✏

4

◆)
.

Proof. As a consequence of the global optimality condition, given in Equation (11), we have that:

kgt +Bt(�
?
t )k =

⇢

2
k�?

t k
2
. (14)

Moreover, from the Hessian-Lipschitz condition it follows that:
��rf(xt +�?

t )�rf(xt)�r
2
f(xt)(�

?
t )
�� 

⇢

2
k�?

t k
2
. (15)

Combining the concentration assumptions with Equation (14) and Inequality (15), we obtain:

krf(xt +�?
t )k =

��rf(xt +�?
t )�rf(xt)�r

2
f(xt)(�

?
t )
��+

��rf(xt) +r
2
f(xt)(�

?
t )
��


��rf(xt +�?

t )�rf(xt)�r
2
f(xt)(�

?
t )
��+ kgt +Bt(�

?
t )k

+ kgt �rf(xt)k+
��(Bt �r

2
f(xt))�

?
t

��

 ⇢k�?
t k

2 + c1✏+ c2
p
⇢✏k�?

t k. (16)

An application of the Fenchel-Young inequality to the final term in Equation (16) then yields:

krf(xt +�?
t )k  ⇢(1 +

c2

2
)k�?

t k
2 + (c1 +

c2

2
)✏ =)

1

⇢(1 + c2
2 )

⇣
krf(xt +�?

t )k � (c1 +
c2

2
)✏
⌘
 k�?

t k
2
,

which lower bounds k�?
t k with respect to the gradient at xt. For the corresponding Hessian lower

bound we first utilize the Hessian Lipschitz condition:

r
2
f(xt +�?

t ) ⌫ r
2
f(xt)� ⇢k�?

t kI

14



⌫ Bt � c2
p
⇢✏I � ⇢k�?

t kI

⌫ �c2
p
⇢✏I �

3

2
⇢k�?

t kI,

followed by the concentration condition and the optimality condition (12). This immediately implies

k�?
t kI ⌫ �

2

3⇢

�
r

2
f(xt +�?

t ) + c2
p
⇢✏I
�

=)

k�?
t k � �

2

3⇢
�min(r

2
f(xt +�?

t ))�
2c2
3
p
⇢

p
✏

Combining we obtain that:

k�?
t k � max

(s
1

⇢(1 + c2
2 )

⇣
krf(xt +�?

t )k � (c1 +
c2

2
)✏
⌘
,�

2

3⇢
�n(r

2
f(xt +�?

t ))�
2c2
3
p
⇢

p
✏

)
.

We consider the case of large gradient and large Hessian in turn (one of which must hold since
xt +�?

t is not an ✏-second-order stationary point). There exist c1, c2 in the following so that we can
obtain:

• If krf(xt +�?
t )k > ✏, then we have that

k�?
t k >

s
1

⇢(1 + c2
2 )

⇣
krf(xt +�?

t )k � (c1 +
c2

2
)✏
⌘
�

s
1� c1 �

c2
2

1 + c2
2

r
✏

⇢
>

1

2

r
✏

⇢
.

(17)

• If ��n(r2
f(xt + �?

t )) >
p
⇢✏, then we have that k�?

t k >
2
3

q
✏
⇢ �

2c2
3

q
✏
⇢ = 2

3 (1 �

c2)
q

✏
⇢ >

1
2

q
✏
⇢ .

We can similarly check the lower bounds directly stated are true. Choosing c1 = 1
200 and c2 = 1

200
will verify these inequalities for example.

B.3 Proof of Claim 1

Here we provide a proof of statement equivalent to Claim 1 in the full, non-stochastic setting with
approximate model minimization. We focus on the case when the Cubic-Subsolver routine executes
Case 2, since the result is vacuously true when the routine executes Case 1. Our first lemma will
both help show sufficient descent and provide a stopping condition for Algorithm 1. For context,
recall that when xt +�?

t is not an ✏-second-order stationary point then k�?
t k �

1
2

q
✏
⇢ by Lemma 4.

Lemma 5. If the routine Cubic-Subsolver uses Case 2, and if k�?
t k �

1
2

q
✏
⇢ , then it will return a

point � satisfying mt(xt +�t)  mt(xt)�
1�c3
12 ⇢k�?

t k
3


1�c3
96

q
✏3

⇢ .

Proof. In the case when k�?
t k �

1
2

q
✏
⇢ , by the definition of the routine Cubic-Subsolver we can

ensure that mt(xt +�t)  mt(xt +�?
t ) +

c3
12⇢k�

?
t k

3 for arbitarily small c3 using T (✏) iterations.
We can now combine the aforementioned display with Lemma 3 (recalling that mt(xt) = f(xt)) to
conclude that:

mt(xt +�t)  mt(xt +�?
t ) +

c3

12
⇢k�?

t k
3

mt(xt +�?
t )  mt(xt)�

⇢

12
k�?

t k
3 =) (18)

mt(xt +�t)  mt(xt)� (
1� c3

12
)⇢k�?

t k
3
 mt(xt)�

(1� c3)

96

s
✏3

⇢
. (19)

for suitable choice of c3 which can be made arbitarily small.
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Claim 1. Assume we are in the setting of Lemma 2 with sufficiently small constants c1, c2. If � is the
output of the routine Cubic-Subsolver when executing Case 2 and if xt+�?

t is not an ✏-second-order
stationary point of f , then mt(xt +�t)�mt(xt)  �

1�c3
96

q
✏3

⇢ .

Proof. This is an immediate consequence of Lemmas 4 and 5.

If we do not observe sufficient descent in the cubic submodel (which is not possible in Case 1 by
definition) then as a consequence of Claim 1 and Lemma 5 we can conclude that k�?

t k 
1
2

q
✏
⇢ and

that xt +�?
t is an ✏-second-order stationary point. However, we cannot compute �?

t directly. So
instead we use a final gradient descent loop in Algorithm 3, to ensure the final point returned in this
scenario will be an ✏-second-order stationary point up to a rescaling.
Lemma 6. Assume we are in the setting of Lemma 2 with sufficiently small constants c1, c2. If
xt+�?

t is an ✏-second-order stationary point of f , and k�?
t k 

1
2

q
✏
⇢ , then Algorithm 3 will output

a point � such that xt+1 = xt +� is a 4✏-second-order stationary point of f .

Proof. Since xt +�?
t is an ✏-second order stationary point of f , by gradient smoothness and the

concentration conditions we have that kgtk  krf(xt +�?
t )k + `k�?

t k + kgt �rf(xt)k 

(1 + c1)✏ +
1
2

q
✏
⇢`  ( 32 + 1 + c1)

`2

⇢ 
19
16

`2

⇢ for sufficiently small c1. Then we can verify the

step-size choice ⌘ = 1
20` and initialization at � = 0 (in the centered coordinates) for the routine

Cubic-FinalSubsolver verifies Assumptions A and B3 in Carmon and Duchi [2016]. So, by Corollary
2.5 in Carmon and Duchi [2016]—which states the norms of the gradient descent iterates, k�k, are
non-decreasing and satisfy k�k  k�?

t k—we have that k���?
t k  2k�?

t k 

q
✏
⇢ .

We first show that ��min(r2
f(xt+1)) .

p
⇢✏. Since f is ⇢-Hessian-Lipschitz we have that:

r
2
f(xt+1) ⌫ r

2
f(xt +�?

t )� ⇢2k�?
t kI ⌫ �2

p
⇢✏I.

We now show that krf(xt+1)k . ✏ and thus also small. Once again using that f is ⇢-Hessian-
Lipschitz (Lemma 1 in Nesterov and Polyak [2006]) we have that:

��rf(xt+1)�rf(xt)�r
2
f(xt)�

�� 
⇢

2
k�k

2


⇢

2
k�?

t k
2


✏

8
.

Now, by the termination condition in Algorithm 3 we have that
��g +B�+ ⇢

2k�k�
�� <

✏
2 . So,

kg +B�k <
✏

2
+

⇢

2
k�k

2


5

8
✏.

Using gradient/Hessian concentration with the previous displays we also obtain that:
krf(xt+1)k � kg �rf(xt)k �

��(B�r
2
f(xt))�

��� kg +B�k 
��rf(xt+1)�rf(xt)�r

2
f(xt)�

��

=) krf(xt+1)k 

✓
c1 +

c2

2
+

5

8
+

1

8

◆
✏  ✏,

for sufficiently small c1 and c2.

Let us now bound the iteration complexity of this step. From our previous argument we have
that kgtk  (1 + c1)✏ +

`
2
p
⇢

p
✏. Similarly, the concentration conditions imply kBt�?

t k  (` +

c2
p
⇢✏)k�?

t k. Thus we have that mt(xt) �mt(xt +�?
t ) = ((1 + c1)✏ +

`
2
p
⇢

p
✏)k�?

t k +
1
2 (` +

c2
p
⇢✏)k�?

t k
2 + ⇢

6k�
?
t k

3


3`
⇢ ✏ +

�
1+c1+4c2

8 + 1
48

�q
✏3

⇢  O(1) · ✏`
⇢ since c1, c2 are numerical

constants that can be made arbitrarily small.

So by the standard analysis of gradient descent for smooth functions, see Nesterov [2013] for example,
we have that Algorithm 3 will terminate in at most  d

mt(xt)�mt(xt+�?
t )

⌘(✏/2)2 e  O(1) · ( `
2

⇢✏ ) iterations.

This will take at most Õ(max( M1p
⇢✏ ,

�2
2
✏ ) · `

2

⇢✏ ) Hessian-vector products and Õ(max(M1
✏ ,

�2
1

✏2 )) gradient
evaluations which will be subleading in the overall complexity.

3See Appendix Section C.2 for more details.
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B.4 Proof of Claim 2

We now prove our main descent lemma equivalent to Claim 2—this will show that if the cubic
submodel has a large decrease, then the underlying true function must also have large decrease. As
before we focus on the case when the Cubic-Subsolver routine executes Case 2 since the result is
vacuously true in Case 1.
Claim 2. Assume we are in the setting of Lemma 2 with sufficiently small constants c1, c2. If
the Cubic-Subsolver routine uses Case 2, and if mt(xt + �t) � mt(xt)  �( 1�c3

96 )
q

✏3

⇢ , then

f(xt +�t)� f(xt)  �
�
1�c3�c5

96

�q
✏3

⇢ .

Proof. Using that f is ⇢-Hessian Lipschitz (and hence admits a cubic majorizer by Lemma 1 in
Nesterov and Polyak [2006] for example) as well as the concentration conditions we have that:

f(xt +�t)  f(xt) +rf(xt)
>�t +
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3
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2
)c4
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⇢
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since by the definition the Cubic-Subsolver routine, when we use Case 2 we have that k�tk 

k�?
t k + c4

q
✏
⇢ . We now consider two different situations – when k�?

t k �
1
2

q
✏
⇢ and when

k�?
t k 

1
2

q
✏
⇢ .

First, if k�?
t k �

1
2

q
✏
⇢ then by Lemma 5 we may assume the stronger guarantee that mt(xt+�t)�

mt(xt)  �( 1�c3
12 )⇢k�?

t k
3. So by considering the above display in Equation (20) we can conclude

that:
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since the numerical constants c1, c2, c3 can be made arbitrarily small.

Now, if k�?
t k 

1
2

q
✏
⇢ , we directly use the assumption that mt(xt+�t)�mt(xt)  �( 1�c3

96 )
q

✏3

⇢ .
Combining with the display in in Equation (20) we can conclude that:
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since the numerical constants c1, c2, c3 can be made arbitrarily small. Indeed, recall that c1 is the
gradient concentration constant, c2 is the Hessian-vector product concentration constant, and c3 is the
tolerance of the Cubic-Subsolver routine when using Case 2. Thus, in both situations, we have that:

f(xt +�t)� f(xt) 
1� c3 � c5

96

s
✏3

⇢
, (21)

denoting c5 = 48c1� 48c2c4� 96c1c4� 60c2c24 for notational convenience (which can also be made
arbitrarily small for sufficiently small c1, c2).

B.5 Proof of Theorem 1

We now prove the correctness of Algorithm 1. We assume, as usual, the underlying function f(x)
possesses a lower bound f

⇤.
Theorem 1. There exists an absolute constant c such that if f(x) satisfies Assumptions 1, 2,
CubicSubsolver satisfies Condition 1 with c, n1 � max(M1

c✏ ,
�2
1

c2✏2 ) log
⇣

d
p
⇢�f

✏1.5�c

⌘
, and n2 �

max( M2
c
p
⇢✏ ,

�2
2

c2⇢✏ ) log
⇣

d
p
⇢�f

✏1.5�c

⌘
, then for all � > 0 and �f � f(x0) � f

⇤, Algorithm 1 will out-
put an ✏-second-order stationary point of f with probability at least 1� � within

Õ

✓p
⇢�f

✏1.5

✓
max

✓
M1

✏
,
�
2
1

✏2

◆
+max

✓
M2
p
⇢✏

,
�
2
2

⇢✏

◆
· T (✏)

◆◆
(5)

total stochastic gradient and Hessian-vector product evaluations.

Proof. For notational convenience let Case 1 of the routine Cubic Subsolver satisfy:

max{f(xt +�t)� f(xt),mt(xt +�t)�mt(xt)}  �K1

s
✏3

⇢
.

and use K2 = 1�c3
96 to denote the descent constant of the cubic submodel in the assumption of Claim

2. Further, let Kprog = min{ 1�c3�c5
96 ,K1} which we will use as the progress constant corresponding

to descent in the underlying function f . Without loss of generality, we assume that �K1  �K2 for
convenience in the proof. If �K1 � �K2, we can simply rescale the descent constant corresponding
to Case 2 for the cubic submodel, 1�c3

96 , to be equal to �K1, which will require shrinking c1, c2

proportionally to ensure that the rescaled version of the function descent constant, 1�c3�c5
96 , is

positive.

Now, we choose c1, c2, c3 so that K2 > 0, Kprog > 0, and Lemma 4 holds in the aforementioned
form. For the correctness of Algorithm 1 we choose the numerical constant in Line 7 as K2 – so
the “if statement” checks the condition �m = mt(xt+1) �mt(xt) � �K2

q
✏03

⇢ . Here we use a
rescaled ✏

0 = 1
4✏ for the duration of the proof.

At each iteration the event that the setting of Lemma 2 hold has probability greater then 1 � 2�0.
Conditioned on this event let the routine Cubic-Subsolver have a further probability of at most �0 of
failure. We now proceed with our analysis deterministically conditioned on the event E – that at each
iteration the concentration conditions hold and the routine Cubic-Subsolver succeeds – which has
probability greater then 1� 3�0Touter � 1� � by a union bound for �0 = �

3Touter
.

Let us now bound the iteration complexity of Algorithm 1 as Touter. We cannot have the “if statement”
in Line 7 fail indefinitely. At a given iteration, if the routine Cubic-Subsolver outputs a point � that
satisfies

mt(xt +�t)�mt(xt)  �K2

s
✏03

⇢
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then by Claim 2 and the definition of Case 1 of the Cubic-Subsolver we also have that:

f(xt +�t)� f(xt)  �Kprog

s
✏03

⇢
.

Note if the Cubic-Subsolver uses Case 1 in this iteration then we will vacuously achieve descent
in both the underlying function f , and descent in the cubic submodel greater �K1

q
✏03

⇢ . Since

�K1

q
✏03

⇢  �K2

q
✏03

⇢ by assumption, the algorithm will not terminate early at this iteration. Since

the function f is bounded below by f
⇤, the event mt(xt+�t)�mt(xt)  �K2

q
✏03

⇢ which implies

f(xt+1)� f(xt)  �Kprog

q
✏03

⇢ can happen at most Touter = d

p
⇢(f(x0)�f⇤)
Kprog✏01.5

e times.

Thus in the Touter iterations of Algorithm 1 it must be the case that there is at least one iteration T , for
which

mT (xT +�T )�mT (xT ) � �K2

s
✏03

⇢
.

By the definition of the Cubic-Subsolver procedure and assumption that �K1  �K2, it must be
the case at iteration T the routine Cubic-Subsolver used Case 2. Now by appealing to Claim 1 and
Lemma 5 we must have that k�?

T k 
1
2

q
✏0

⇢ and that xT +�?
T is an ✏

0-second-order stationary point
of f . As we can see in Line 7 of Algorithm 1, at iteration T the “if statement” will be true. Hence
Algorithm 1 will run the final gradient descent loop (Algorithm 3) at iteration T , return the final
point and proceed to exit via the break statement. Since the hypotheses of Lemma 6 are satisfied4

at iteration T , Algorithm 3 will return a final point that is an ✏-second-order stationary point of f
as desired. We can verify the global constant c = min{Kprog

8 , c1, c2} satisfies the conditions of the
theorem.

Remark 3. We can also now do a careful count of the complexity of Algorithm 1. First, note at each
outer iteration of Algorithm 1 we require n1 � max

⇣
M1
c1✏

,
�2
1

c21✏
2

⌘
8
3 log

2d
�0 samples to approximate

the gradient and and n2 � max( M2
c2

p
⇢✏ ,

�2
2

c22⇢✏
) 83 log

2d
�0 to approximate the Hessian. The union bound

stipulates we should take �
0(✏) = �

3Touter
to control the total failure probability of Algorithm 1. Then

as we can see in the Proof of Theorem 1, Algorithm 1 will terminate in at most

Touter = d
8Kprog

p
⇢(f(x0)� f

⇤)

✏3/2
e (22)

iterations. The inner iteration complexity of the Cubic-Subsolver routine is T (✏). The routine
only requires computing the gradient vector once, but recomputes Hessian-vector products at each
iteration.

So the gradient complexity becomes

TG . T (✏)⇥

p
⇢(f(x0)� f

⇤)
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⇥max
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◆
for ✏ 

�
2
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c1M1
.

Note that Õ hides logarithmic factors since �
0(✏) = �

3Touter
.

The total complexity of Hessian-vector product evaluations is:

THV . Kprog
p
⇢(f(x0)� f
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⇥max(
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c22M
2
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.

4We can also see with this rescaled ✏0 the step-size requirement in Lemma 6 will be satisfied.
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Finally, recall the proof of Lemma 6 which shows total complexity of the final gradient descent
loop, in Algorithm 3, will be subleading in overall gradient and Hessian-vector product complexity.
As before, we can verify the global constant c = min{Kprog

8 , c1, c2} satisfies the conditions of the
Theorem 1.

C Gradient Descent as a Cubic Subsolver

Here we provide the proofs of Lemma 1 and Corollary 1. In particular, we show Algorithm 2 is
a Cubic-Subsolver routine satisfying Condition 1. We break the analysis into two cases showing
that whenever kgk �

`2

⇢ taking a Cauchy step satisfies the conditions of a Case 1 procedure, and

when kgk 
`2

⇢ , running gradient descent on the cubic submodel satisfies the conditions of a Case 2

procedure. Showing the latter relies on Theorem 3.2 from Carmon and Duchi [2016].

C.1 Cauchy Step in Algorithm 2

First, we argue that when the stochastic gradients are large – kgtk �
`2

⇢ – the Cauchy step achieves
sufficient descent in both f and m̃. Thus the Cauchy step will satisfy Equation 1 of Condition 1, so it
satisfies the conditions of a Case 1 procedure. As before, m̃(�) = �>g + 1

2�
>B[�] + ⇢

6k�k
3,

refers to stochastic cubic submodel in centered coordinates.

First, recall several useful results: the Cauchy radius is the magnitude of the global minimizer
in the subspace spanned by g (which is analytically tractable for this cubic submodel). Namely
Rc = argmin⌘2Rd m̃

⇣
�⌘

g
kgk

⌘
and a short computation shows that
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Lemma 7. Assume we are in the setting of Lemma 2 with sufficiently small constants c1, c2. If
kgk �

`2

⇢ , the Cauchy step defined by taking � = �Rc
g
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20 . Thus, if Algorithm 2 takes a Cauchy step (when

kgk �
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⇢ ) it will satisfy the conditions of an Case 1 procedure.

Proof. We first lower bound the Cauchy radius
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⇢✏kgk  c2`kgk imply that g>Bg

kgk2  (1 + c2)`. So, combining with the
previous display we obtain:
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for sufficiently small c2. So,
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for sufficiently small c2.

Now, at iteration t, using the ⇢-Hessian Lipschitz condition and concentration conditions we obtain:
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For sufficiently small c1, c2 the quadratic 1
12x

2
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2 x is minimized at x⇤ = 7

10 when restricted
to x �

7
10 . Since ⇢

`Rc �
7
10 for sufficiently small c1, c2 as in Equation (23), we can also conclude

that
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This establishes sufficient decrease with respect to the true function f . We can verify choosing
c1 = c2 = 1/200 satisfies all the inequalities in this section. Lastly, note the complexity of
computing the Cauchy step is in fact O(1).

C.2 Gradient Descent Loop in Algorithm 2

We now establish complexity of sufficient descent when we are using the gradient descent subsolver
from Carmon and Duchi [2016] to minimize the stochastic cubic submodel in Algorithm 2 in the
regime kgk 

`2

⇢ . Carmon and Duchi [2016] consider the gradient descent scheme5:

�t+1 = �t � ⌘rm̃(�t) (25)

for m̃(�) = g>� + 1
2�

>B� + ⇢
6

���3
��. Here we let the index t range over the iterates of the

gradient descent loop for a fixed cubic submodel. Defining � = kBk and R = �
⇢ +

q
(�⇢ )

2 + 2kgk
⇢

they make the following assumptions to show convergence:

• Assumption A: The step size for the gradient descent scheme satisfies

0 < ⌘ <
1

4(� + ⇢
2R)

. (26)

• Assumption B: The initialization for the gradient descent scheme �, satisfies � = �r
g

kgk ,
with 0  r  Rc.

Then, Theorem 3.2 in Carmon and Duchi [2016] (restated here for convenience) gives that:
Theorem 2 (Carmon and Duchi [2016]). Let q be uniformly distributed on the the unit sphere in
Rd. Then, the iterates �t generated by the gradient descent scheme in Equation (25) satisfying
Assumptions A and B obtained by replacing g ! g + �q for � = ⇢✏0

�+⇢k�?k ·
�̄
12 with �̄  1, satisfy
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with probability 1� �
0.

5Note there is also a factor of 2 difference used in the Hessian-Lipschitz constant in Carmon and Duchi
[2016]. Namely the 2⇢0 = ⇢ for every ⇢0 that appears in Carmon and Duchi [2016].
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Note that the iterates �t are iterates generated from the solving the perturbed cubic subproblem with
g ! g + �q—not from solving the original cubic subproblem. This step is necessary to avoid the
“hard case" of the non-convex quadratic problems. See Carmon and Duchi [2016] for more details.

To apply this bound we will never have access to k�?
k apriori. However, in the present we need

only to use this lemma to conclude sufficient descent when �? is not an ✏-second-order stationary
point and hence when k�k

?
�

1
2

q
✏
⇢ .

Lemma 8. Assume we are in the setting of Lemma 2 with sufficiently small constants c1, c2. Further,
assume that kgk 

`2

⇢ , and that we choose ⌘ = O( 1` ) in the gradient descent iterate scheme in

Equation (25) with perturbed gradient g̃ = g + �q for � = O(
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Proof. To show the first statement we simply invoke Theorem 3.2 of Carmon and Duchi [2016]
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Thus R = �
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⇢  2 `

⇢ for sufficiently small c1, c2, and c4. Accordingly, 1
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20` . We can similarly check this step size choice suffices for Lemma 6. Let us then choose ⌘ = 1

20`
to satisfy Assumption A and r = 0 in accordance with Assumption B from Carmon and Duchi
[2016].

Thus Theorem 3.2 from Carmon and Duchi [2016] shows that with probability at least 1 � �
0 the
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where we have used the bound k�?
k  O(1) · `

⇢ . We can see that k�?
k  O(1) · `

⇢ by appealing

to the first-order stationary condition in Equation (11), kgk 
`2

⇢ , and kB�?
k  (1 + c2)`k�?

k.
Combining these facts6 we have:
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for sufficiently small c2. This completes the proof of the first statement of the Lemma.

Note that we will eventually choose �
0
⇠ O( 1

✏1.5 ) for our final guarantee. However, this will only
contribute logarithmic dependence in ✏ to our upper bound.

We now show that the iterate
���T (✏)

��  k�?
k+c4

q
✏
⇢ . For notational convenience let us use

����̃?
���

to denote the norm of the global minima of the perturbed subproblem. Since our step size choice and
initialization satisfy Assumptions A and B then we can also apply Corollary 2.5 from Carmon and
Duchi [2016]. Corollary 2.5 states the norms k�tk are non-decreasing and satisfy k�tk 

����̃?
���.

So we immediately obtain
���T (✏)

�� 

����̃?
���. We can then use Lemma 4.6 from Carmon and Duchi

[2016] which relates the norm of the global minima of the perturbed subproblem,
����̃?

���, to the norm
of the global minima of the original problem, k�?

k. Lemma 4.6 from Carmon and Duchi [2016]

states that under the gradient perturbation g̃ = g + �q we have that
����
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���
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���� 
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⇢ . So

using the upper bound on � from Equation (27) we obtain that:
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where we define c4 =
p

c3
576 .

C.3 Proofs of Lemma 1 and Corollary 1

Here we conclude by showing the correctness of Algorithm 2 which follows easily using our previous
results.
Lemma 1. There exists an absolute constant c0, such that under the same assumptions on f(x)
and the same choice of parameters n1, n2 as in Theorem 1, Algorithm 2 satisfies Condition 1 with
probability at least 1� �

0 with T (✏)  Õ( p̀⇢✏ ).

Proof. This result follows immediately from Lemmas 7 and 8. In particular, Lemma 7 shows the
Cauchy step, which is only used when kgk �

`2

⇢ , satisfies the conditions of an Case 1 procedure.

6The Fenchel-Young inequality ab  a2 + b2

4 is also used in the second line of this display.
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Lemma 8 shows solving the cubic submodel via gradient descent, which is only used when kgk 
`2

⇢ ,
satisfies the conditions of a Case 2 procedure. Lemma 7 shows the Cauchy step has gradient com-
plexity O(1). Lemma 8 shows the gradient complexity of the gradient descent loop is upper bounded
by Õ( p̀⇢✏ ) but has a failure probability 1� �

0 over the randomness in the gradient perturbation.

Finally, assembling all of our results we can conclude that: Using Lemma 1 and Theorem 1 we can
immediately see that:

Corollary 1. Under the same settings as Theorem 1, if ✏  min
n

�2
1

c1M1
,

�4
2

c22M
2
2 ⇢

o
, and if we instantiate

the Cubic-Subsolver subroutine with Algorithm 2, then with probability greater than 1� �, Algorithm
1 will output an ✏-second-order stationary point of f(x) within

Õ

✓p
⇢�f
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✓
�
2
1

✏2
+

�
2
2

⇢✏
·

`
p
⇢✏

◆◆
(7)

total stochastic gradient and Hessian-vector product evaluations.

Proof. We can check the descent constants (with respect to the cubic submodel) referenced in the
proof of Theorem 1 for the Case 1 and Case 2 procedures of Algorithm 2, K1 = 7

20 and and K2 
1
96

respectively, satisfy �K1  �K2. The conclusion then follows immediately from Theorem 1, since
Lemma 1 shows that Algorithm 2 is a Cubic-Subsolver routine, as defined in Condition 1, with
iteration complexity T (✏)  Õ( p̀⇢✏ ).

D Experimental Details

D.1 Synthetic Nonconvex Problem

The W-shaped function used in our synthetic experiment is a piecewise cubic function defined in
terms of a slope parameter ✏ and a length parameter L:

w(x) =

8
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p
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We set ✏ = 0.01 and L = 5 in our experiment.

For stochastic cubic regularization, we fix ⇢ = 1 at the analytic Hessian Lipschitz constant for this
problem, and we use 10 inner iterations for each invocation of the cubic subsolver, finding that this
yields a good trade-off between progress and accuracy. Then for each method, we perform a grid
search over the following hyperparameters:

• Batch size: {10, 30, 100, 300}
• Step size: {c · 10�i : c 2 {1, 3}, i 2 {1, 2, 3, 4, 5}}

Gradient and Hessian batch sizes are tuned separately for our method. We select the configuration for
each method that converges to a global optimum the fastest, provided the objective value stays within
5% of the optimal value after convergence. Since the global optima are located at (± 3

5 , 0) and each
has objective value �

2
375 , this is equivalent to an absolute tolerance of 1

3750 = 0.0002666 · · · .
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D.2 Deep Autoencoder

Since the standard MNIST split does not include a validation set, we separate the original training
set into 55,000 training images and 5,000 validation images, plotting training error on the former
and using the latter to select hyperparameters for each method. We choose the configuration of each
method that minimizes validation loss after a fixed budget of 2,000,000 oracle calls.

In addition to carrying out experiments using our method, SGD, and AdaGrad, we also test a hybrid
variance reduction and second-order method using the framework of Reddi et al. [2017]. As proposed
in their work, we use SVRG [Johnson and Zhang, 2013] for the GRADIENT-FOCUSED-OPTIMIZER.
For the HESSIAN-FOCUSED-OPTIMIZER, we use Oja’s method [Jain et al., 2016] applied to I�⌘r

2
f

to compute an approximate minimum Hessian eigenvalue, then take a step in that direction.

Due to computational constraints, we were unable to perform a full grid search over all hyper-
parameters for every method. As a compromise, we fix all batch sizes and tune the remaining
hyperparameters. In particular, we fix the gradient batch size for all methods at 100, a typical value
in deep learning applications, and use a Hessian batch size of 10 for stochastic cubic regularization
and the hybrid method as motivated by the theoretical scaling. Then we perform a grid search over
step sizes for each method using the same set of values from the synthetic experiment. For stochastic
cubic regularization, we also select ⇢ from {0.01, 0.1, 1} but find that the choice of this value had
little effect on final performance. As in the synthetic experiments, we carry out 10 inner iterations
per invocation of the cubic subsolver. For the hybrid method, we separately tune the step sizes of
the SVRG phase and the Oja phase. We additionally select the number of iterations for SVRG from
{100, 300, 1000, 3000} and the number of iterations for Oja’s method from {30, 100, 300, 1000}.
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