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Additional notation For simplicity, we shall write c = a±b instead of c ∈ [a− b, a+ b] whenever
appropriate. We use a & b and a . b to denote a ≥ b(1 + o(1)) and a ≤ b(1 + o(1)), respectively.

1 Minimax prediction: lower bound

A standard argument for lower bounding the minimax prediction risk is

ρKL
n (P) = min

P̂
max
P∈P

ρKL
n (P, P̂ ) ≥ min

P̂
EP∼Π[ρKL

n (P, P̂ )],

where Π is a prior distribution over P . The advantage of this approach is that the optimal estimator
that minimizes EP∼Π[ρKL

n (P, P̂ )] can often be computed explicitly.

Perhaps the simplest prior is the uniform distribution over some subset of P . Consider the uniform
distribution over PS ⊂P , say U(PS), the following lemma shows an explicit way of computing
the optimal estimator for EP∼U(PS)[ρ

KL
n (P, P̂ )] when PS is finite.

Lemma 1 Let P̂ ∗ be the optimal estimator that minimizes EP∼U(PS)[ρ
KL
n (P, P̂ )], then for any

xn ∈ [k]n and any symbol i ∈ [k],

P̂ ∗xn(i) =
∑
P∈PS

P (xn)∑
P ′∈PS

P ′(xn)
Pxn(i).

Clearly, computing P̂ ∗ for all the possible sample sequences xn may be unrealistic. Instead, let Kn

be an arbitrary subset of [k]n, we can lower bound

ρKL
n (P, P̂ ) = EXn∼P [DKL(PXn , P̂Xn)]

by
ρKL
n (P, P̂ ; Kn) := EXn∼P [DKL(PXn , P̂Xn)1Xn∈Kn

].

This yields
ρKL
n (P) ≥ min

P̂
EP∼U(PS)[ρ

KL
n (P, P̂ ; Kn)].

The key to apply the above arguments is to find a proper pair (PS ,Kn). The rest of this section
is organized as follows. In Subsection 1.1, we present our construction of PS and Kn. In Sub-
section 1.2, we find the exact form of the optimal estimator using Lemma 1. Then we analyze its
prediction risk over Kn in Subsection 1.3, where we further partition Kn into smaller subsets K`(i),
and lower bound the KL-divergence over K`(i) and the probability P (Xn ∈ K`(i)) in Lemma 4
and 5, respectively. Finally, we consolidate all the previous results and prove the desired lower bound
on ρKL

n (P).
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1.1 Prior construction

Without loss of generality, we assume that k is an even integer. For notational convenience, we denote
by uk the uniform distribution over [k] and define

Mn(p2, p4, . . . , pk) :=



b− a a a a . . . a a
p2 b−p2 a a . . . a a
a a b− a a . . . a a
a a p4 b−p4 . . . a a
...

...
...

...
. . .

...
...

a a a a . . . b− a a
a a a a . . . pk b−pk


,

where a := 1
n and b := 1− k−2

n . In addition, let

Vn :=

{
1

logt n
: t ∈ N and 1 ≤ t ≤ log n

2 log log n

}
.

Given n, we set

PS = {(M) ∈Mk : µ = uk and M = Mn(p2, p4, . . . , pk), where pi ∈ Vn,∀i ∈ [k]e}.
Then, we choose Kn to be the collection of sequences xn ∈ [k]n whose last appearing state didn’t
transition to any other symbol. In other words, for any state i ∈ [k], let ī represent an arbitrary state
other than i, then

Kn = {xn ∈ [k]n : xn = īn−`i` : i ∈ [k], n− 1 ≥ ` ≥ 1}.
According to both the last appearing state and the number of times it transitions to itself, we can
partition Kn as

Kn = ∪n−1
`=1 K`(i), where K`(i) := {xn ∈ [k]n : xn = īn−`i`}.

1.2 The optimal estimator

Let P̂ ∗ denote the optimal estimator that minimizes EP∼U(PS)[ρ
KL
n (P, P̂ ; Kn)]. The following

lemma presents the exact form of P̂ ∗.

Lemma 2 For any xn ∈ Kn, there exists a unique K`(i) that contains it. Consider P̂ ∗xn , we have:

1. If i ∈ [k]e, then

P̂ ∗xn(j) :=


a j > i or j < i− 1∑
v∈Vn(b− v)`/

∑
v∈Vn(b− v)`−1 j = i∑

v∈Vn(b− v)`−1v/
∑
v∈Vn(b− v)`−1 j = i− 1

2. If i ∈ [k]o, then

P̂ ∗xn(j) :=

{
a j > i or j < i

b− a j = i

Proof Given (M) ∈PS , consider Xn ∼ (M),

Pr(Xn = xn) =
1

k

∏
i1∈[k]

∏
j1∈[k]

M
Ni1j1
i1j1

.

By Lemma 1, for any xn ∈ K`(i) and j ∈ [k], P̂ ∗xn(j) evaluates to

P̂ ∗xn(j) =

∑
(M)∈PS

Mij

∏
i1∈[k]

∏
j1∈[k]

M
Ni1j1
i1j1∑

(M)∈PS

∏
i1∈[k]

∏
j1∈[k]

M
Ni1j1
i1j1

.
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Noting that xn ∈ K`(i) implies Nii = ` − 1 and Nij = 0,∀j 6= i. Besides, for any j1 ∈ [k] and
i1 ∈ [k] \ {j1, j1 + 1}, Mi1j1 is uniquely determined by i1 and j1 for all (M) ∈PS .

Thus, for s = 0 or 1, we can rewrite Mij
s∏

i1∈[k]

∏
j1∈[k]M

Ni1j1
i1j1

as

C(xn, k)Ms
ij

k∏
t=2
t even

[
Mt(t−1)

]Nt(t−1) [Mtt]
Ntt ,

where C(xn, k) is a constant that only depends on xn and k.

Hence, for any xn ∈ K`(i),

P̂ ∗xn(j) =

∑
(M)∈PS

Mij

k∏
t=2
t even

[
Mt(t−1)

]Nt(t−1) [Mtt]
Ntt

∑
(M)∈PS

k∏
t=2
t even

[
Mt(t−1)

]Nt(t−1) [Mtt]
Ntt

.

Below we show how to evaluate P̂ ∗xn(j) for j = i ∈ [k]e, and other cases can be derived similarly.

Combining Mjj
Njj with Mjj in the nominator,

P̂ ∗xn(j) =

∑
(M)∈PS

[
M `
jj

] k∏
t=2
t even
t 6=j

[
Mt(t−1)

]Nt(t−1) [Mtt]
Ntt

∑
(M)∈PS

[
M `−1
jj

] k∏
t=2
t even
t6=j

[
Mt(t−1)

]Nt(t−1) [Mtt]
Ntt

=

∑
v∈Vn
v′∈Vn

(b− v′)`
k∏
t=2
t even
t6=j

vNt(t−1)(b− v)Ntt

∑
v∈Vn
v′∈Vn

(b− v′)`−1
k∏
t=2
t even
t6=j

vNt(t−1)(b− v)Ntt

=

[∑
v′∈Vn(b− v′)`

] ∑
v∈Vn

k∏
t=2
t even
t6=j

vNt(t−1)(b− v)Ntt

[∑
v′∈Vn(b− v′)`−1

] ∑
v∈Vn

k∏
t=2
t even
t 6=j

vNt(t−1)(b− v)Ntt

=

∑
v∈Vn(b− v)`∑
v∈Vn(b− v)`−1

.

This completes the proof.

1.3 Analysis

Next, for any xn ∈ K`(i), we lower bound DKL(Pxn , P̂
∗
xn) in terms of Mi(i−1) and P̂ ∗xn(i− 1).
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Lemma 3 For any (M) ∈PS and xn ∈ K`(i),

DKL(Pxn , P̂
∗
xn) ≥Mi(i−1)

(
−1 + log

Mi(i−1)

P̂ ∗xn(i− 1)

)
.

Proof By the previous lemma,

DKL(Pxn , P̂
∗
xn) = Mii log

Mii

P̂ ∗xn(i)
+Mi(i−1) log

Mi(i−1)

P̂ ∗xn(i− 1)
.

Noting that x
x+1 ≤ log(x+ 1) for all x > −1,

Mii log
Mii

P̂ ∗xn(i)
= Mii log

(
Mii − P̂ ∗xn(i)

P̂ ∗xn(i)
+ 1

)
≥Mii − P̂ ∗xn(i)

=
(
b−Mi(i−1)

)
−
(
b− P̂ ∗xn(i− 1)

)
≥ −Mi(i−1).

This completes the proof.

Let V ′n := { 1
(logn)t | t ∈ N, 1 ≤ t ≤ logn

4 log logn} be a subset of Vn whose size is 1
2 |Vn|. For

Mi(i−1) ∈ V ′n, we further lower bound Mi(i−1)/P̂
∗
xn(i− 1) in terms of n.

Let `1(M) := 1
Mi(i−1)

1
log logn and `2(M) := 1

Mi(i−1)
log log n, we have

Lemma 4 For any (M) ∈ PS , xn ∈ K`(i) where i ∈ [k]e, Mi(i−1) = 1
(logn)m ∈ V ′n, and

sufficiently large n, if
`1(M) ≤ ` ≤ `2(M),

then,
Mi(i−1)

P̂ ∗xn(i− 1)
&

log n

8 log log n
(1− o(1)).

Proof Consider Mi(i−1) = 1
(logn)m ∈ V

′
n, where m ∈ [1, logn

4 log logn ].

Note that for xn ∈ K`(i), the value of P̂ ∗xn(i− 1) only depends on `, we can define

F` :=
Mi(i−1)

P̂ ∗xn(i− 1)
.

We have
F` ≥

A` +X` + C`
B` +X` +D`

,

where

X` :=

(
1− k − 2

n
− 1

(log n)m

)`
,

A` :=

m−1∑
i=1

(
1− k − 2

n
− 1

(log n)i

)`
,

C` :=

logn
2 log logn∑
i=m+1

(
1− k − 2

n
− 1

(log n)i

)`
,

B` :=

m−1∑
i=1

(
1− k − 2

n
− 1

(log n)i

)`
(log n)m−i,

and D` :=

logn
2 log logn∑
i=m+1

(
1− k − 2

n
− 1

(log n)i

)`
(log n)m−i.

We have the following bounds on these quantities.
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Bounds for X`

0 ≤ X` =

(
1− k − 2

n
− 1

(log n)m

)`
≤ 1.

Bounds for A`

0 ≤ A` =

m−1∑
i=1

(
1− k − 2

n
− 1

(log n)i

)`
.

Bounds for D`

0 ≤ D` ≤

logn
2 log logn∑
i=m+1

(
1− k − 2

n
− 1

(log n)i

)`
1

log n
=

1

log n
C`.

Bounds for C`

Note that

(log n)m

log log n
≤ ` ≤ (log n)m log log n

and

(log n)m ≤
√
n.

Consider a single term of C`, we have

(
1− k − 2

n
− 1

(log n)i

)`
≥
(

1− k − 2

n
− 1

(log n)i

)(logn)m log logn

=

(
1− k − 2

n
− 1

(log n)i

) 1
k−2
n

+ 1
(logn)i

(
k−2
n + 1

(logn)i

)
(logn)m log logn

≥

[(
1− k − 2

n
− 1

(log n)i

) 1
k−2
n

+ 1
(logn)i

]( k−2√
n

+ 1
logn ) log logn

≥
(

1

4

) (k−2) log logn√
n

+ log logn
logn

≥
(

1

4

) 1
2

=
1

2
,

where we use the inequality i ≥ m+ 1 and (1− 1
x )x ≥ 1

4 for x ≥ 2.

Hence,

log n

8 log log n
=

log n

4 log log n
· 1

2
≤ C` =

logn
2 log logn∑
i=m+1

(
1−k − 2

n
− 1

(log n)i

)`
≤

logn
2 log logn∑
i=m+1

1 ≤ log n

2 log log n
.
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Bounds for B`

Similarly, consider a single term of B` without the factor (log n)m−i,(
1− k − 2

n
− 1

(log n)i

)`
≤
(

1− k − 2

n
− 1

(log n)i

) (logn)m

log logn

≤
(

1− k − 2

n
− 1

(log n)i

) 1
1

(log)i
+ k−2

n

(
1

(log)i
+ k−2

n

)
(logn)m

log logn

≤

[(
1− k − 2

n
− 1

(log n)i

) 1
1

(log)i
+ k−2

n

]( 1

(log)i
+ k−2

n

)
(logn)m

log logn

≤
(

1

e

) (logn)m−i
log logn

=

(
1

n

) (logn)m−i−1

log logn

,

where we use the inequality (1− 1
x )x ≤ 1

e for x ≥ 2.

Hence,

B` =

m−1∑
i=1

(
1− k − 2

n
− 1

(log n)i

)`
(log n)m−i

≤
m−1∑
i=1

(
1

n

) (logn)m−i−1

log logn

(log n)m−i

=

m−1∑
i=1

(
1

n

) (logn)m−i−1

3 log logn

(log n)m−i
(

1

n

) 2(logn)m−i−1

3 log logn

=

(
1

n

) 1
log logn

log n+

m−2∑
i=1

(
1

n

) (logn)m−i−1

3 log logn

(log n)m−i
(

1

n

) 2(logn)m−i−1

3 log logn

≤
(

1

n

) 1
log logn

log n+

m−2∑
i=1

(
1

n

) logn
3 log logn

(log n)m
(

1

n

) 2 logn
3 log logn

≤
(

1

n

) 1
log logn

log n+
m−2∑
i=1

(
1

n

) logn
3 log logn

(log n)
logn

4 log logn

(
1

n

) 2 logn
3 log logn

≤
(

1

n

) 1
log logn

log n+
log n

4 log log n

(
1

n

) logn
3 log logn

(log n)
logn

4 log logn

(
1

n

) 2 logn
3 log logn

≤
(

1

n

) 1
log logn

log n+

(
1

n

) logn
3 log logn

(log n)
logn

4 log logn+1

(
1

n

) 2 logn
3 log logn

≤
(

1

n

) 1
log logn

elog logn +

(
log n

n

) logn
3 log logn

(
1

n

) 2 logn
3 log logn

≤ e
− logn+(log logn)2

log logn +
1

n

≤ e−
2(log logn)2+(log logn)2

log logn +
1

n

≤ e− log logn +
1

n

≤ 2

log n
,
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where we use the inequality x− 2(log x)2 ≥ 0 for x ≥ 1.

Putting everything together:

F` =
A` +X` + C`
B` +X` +D`

≥
0 + logn

8 log logn
2

logn + 1 + 1
2 log logn

� log n

8 log log n
.

This completes the proof.

Another quantity that will be appear later is Pr(Xn ∈ K`(i)) where Xn ∼ (M) ∈ PS . We need
the following lower bound.

Lemma 5 For Xn ∼ (M) ∈PS and i ∈ [k]e,

Pr(Xn ∈ K`(i)) &
k − 1

ek

1

n

(
1− k − 2

n
−Mi(i−1)

)l−1

.

Proof By our construction of PS , for Xn ∼ (M) ∈ PS and i ∈ [k]e, we have the following
observations.

1. The probability that the initial state is not i is k−1
k .

2. The probability of transitioning from some state j 6= i to some state that is not i is 1− 1
n .

3. The probability of transitioning from some state j 6= i to state i is 1
n .

4. The probability of transitioning from state i to itself is 1− k−2
n −Mi(i−1).

Therefore,

Pr(Xn ∈ K`(i)) =
k − 1

k

(
1− 1

n

)n−`−1
1

n

(
1− k − 2

n
−Mi(i−1)

)`−1

≥ k − 1

k

(
1− 1

n

)n
1

n

(
1− k − 2

n
−Mi(i−1)

)`−1

� k − 1

ek

1

n

(
1− k − 2

n
−Mi(i−1)

)`−1

.

This completes the proof.

Now we turn back to ρKL
n (P). According to the previous derivations,

ρKL
n (P) ≥ min

P̂
EP∼U(PS)[ρ

KL
n (P, P̂ ; Kn)]

= EP∼U(PS)

[ ∑
xn∈Kn

Pr
Xn∼P

(Xn = xn)DKL(Pxn , P̂
∗
xn)

]

=
1

|PS |
∑

(M)∈PS

n−1∑
l=1

∑
i∈[k]

∑
xn∈K`(i)

[
Pr

Xn∼P
(Xn = xn)DKL(Pxn , P̂

∗
xn)
]

≥ 1

|PS |
∑

(M)∈PS

`2(M)∑
`=`1(M)

∑
i∈[k]e

∑
xn∈K`(i)

[
Pr

Xn∼P
(Xn = xn)DKL(Pxn , P̂

∗
xn)
]
.

Noting that all xn ∈ K`(i) have the same Pxn and P̂ ∗xn , thus, the last formula can be written as

1

|PS |
∑

(M)∈PS

`2(M)∑
`=`1(M)

∑
i∈[k]e

[
Pr

Xn∼P
(Xn ∈ K`(i))DKL(Pxn , P̂

∗
xn ;xn ∈ K`(i))

]
.
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By Lemma 3 and 4, for `1(M) ≤ ` ≤ `2(M) and Mi(i−1) ∈ V ′n,

DKL(Pxn , P̂
∗
xn ;xn ∈ K`(i)) ≥Mi(i−1)

(
−1 + log

Mi(i−1)

P̂ ∗xn(i− 1)

)

&Mi(i−1)

(
−1 + log

(
log n

8 log log n

))
�Mi(i−1) log log n.

By Lemma 5,

Pr(Xn ∈ K`(i)) &
k − 1

ek

1

n

(
1− k − 2

n
−Mi(i−1)

)`−1

.

Therefore,

ρKL
n (P) ≥ 1

|PS |
∑

(M)∈PS

`2(M)∑
`=`1(M)

∑
i∈[k]e

[
Pr

Xn∼P
(Xn ∈ K`(i))DKL(Pxn , P̂

∗
xn ;xn ∈ K`(i))

]

&
(k − 1) log log n

enk

∑
i∈[k]e

1

|PS |
∑

(M)∈PS

andMi(i−1)∈V ′n

`2(M)∑
`=`1(M)

(
1−k − 2

n
−Mi(i−1)

)`−1

Mi(i−1)

≥ (k − 1) log log n

enk

∑
i∈[k]e

1

|Vn|
∑
v∈V ′n

1
v log logn∑
`= 1

v
1

log logn

(
1−k − 2

n
−v
)`−1

v,

where the last step follows by symmetry.

Next, we show that for any v = 1
(logn)m ∈ V

′
n,

Tm :=

1
v log logn∑
`= 1

v
1

log logn

(
1− k − 2

n
− v
)`−1

v & 1.

Noting that Tm is simply the summation of a geometric sequence, we can compute it as follows

Tm =
1

(log n)m

(logn)m log logn∑
`=

(logn)m

log logn

[(
1− k − 2

n
− 1

(log n)m

)`−1
]

=
1

(log n)m

(
1−k−2

n −
1

(logn)m

) (logn)m

log logn −1

−
(

1−k−2
n −

1
(logn)m

)(logn)m log logn

1−
(

1−k−2
n −

1
(logn)m

)
=

1
(k−2)(logn)m

n + 1

(1− k − 2

n
− 1

(log n)m

) (logn)m

log logn −1

−
(

1− k − 2

n
− 1

(log n)m

)(logn)m log logn
]
.

To provide a lower bound for Tm, we use the following inequalities:

1
(k−2)(logn)m

n + 1
≥ 1

(k−2)(logn)
logn

4 log logn

n + 1

=
1

(k−2)n
1
4

n + 1
� 1,
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(
1−k − 2

n
− 1

(log n)m

) (logn)m

log logn −1

≥

[(
1−k − 2

n
− 1

(log n)m

) 1
1

(log)m
+ k−2

n

](1+
(k−2)(logn)m

n

)
1

log logn

≥
(

1

4

)(1+
(k−2)

√
n

n ) 1
log logn

≥
(

1

4

)2 1
log logn

� 1,

and (
1−k − 2

n
− 1

(log n)m

)(logn)m log logn

=

[(
1−k − 2

n
− 1

(log n)m

) 1
k−2
n

+ 1
(logn)m

]( (k−2)(logn)m

n +1
)

log logn

≤
(

1

e

)log logn

=
1

log n
.

Consolidating these three inequalities, the sum Tm can be lower bounded by

Tm & 1(1− 1

log n
) � 1.

Finally,

ρKL
n (P) &

(k − 1) log log n

enk

∑
i∈[k]e

1

|Vn|
∑
v∈V ′n

(1− o(1))

=
(k − 1) log log n

enk

k

2

|V ′n|
|Vn|

=
(k − 1) log log n

4en
.

2 Minimax prediction: upper bound

The proof makes use of the following lemma, which provides a uniform upper bound for the hitting
probability of any k-state Markov chain.

Lemma 6 [1] For any Markov chain over [k] and any two states i, j ∈ [k], if n > k, then

Pri(τ(j) = n) ≤ k

n
.

Let Kn be the same as is in the previous section. Recall that

ρKL
n (P, P̂ ; Kn) =

∑
xn∈Kn

P (xn)DKL(Pxn , P̂xn),

we denote the partial minimax prediction risk over Kn by

ρKL
n (P; Kn) := min

P̂
max
P∈P

ρKL
n (P, P̂ ; Kn).

Let Kn := [k]n \ Kn, we define ρKL
n (P, P̂ ; Kn) and ρKL

n (P; Kn) in the same manner. As the
consequence of P̂ being a function from [k]n to ∆k, we have the following triangle inequality,

ρKL
n (P) ≤ ρKL

n (P; Kn) + ρKL
n (P; Kn).

Turning back to Markov chains, the next lemma upper bounds ρKL
n (Mk; Kn).

9



Lemma 7 Let P̂+ 1
2 denote the estimator that maps Xn ∼ (M) to M̂+ 1

2 (Xn, ·), then

max
P∈Mk

ρKL
n (P, P̂+ 1

2 ; Kn) ≤ Ok
(

1

n

)
,

which implies

ρKL
n (Mk; Kn) ≤ Ok

(
1

n

)
.

Proof The proof of this lemma is essentially a combination of the upper bounds’ proofs in [2]
and in Section 4. Instead of using the fact that Mij are bounded away from 0 (see Section 4), we
partition Kn into different subsets according to how close the counts are to their expected values, the
number of times that the last appearing state transitioning to itself, and the number of times that the
last appearing state transitioning to other states. Then, we bound the estimator’s expected loss over
each set of the partition by Ok (1/n). We omit the proof for the sake of brevity.

Recall the following lower bound,

ρKL
n (Mk) = Ωk

(
log log n

n

)
.

This together with Lemma 3 and the triangle inequality above shows that an upper bound on
ρKL
n (Mk; Kn) also suffices to bound the leading term of ρKL

n (Mk). The following lemma provides
such an upper bound. Recall that for any i ∈ [k], K`(i) is defined as {xn ∈ [k]n : xn = īn−`i`}.

Lemma 8 For any xn ∈ Kn, there exists a unique pair (`, i) such that xn ∈ K`(i). Consider the
following estimator

P̂xn(i) :=

{
1− 1

` logn ` ≤ n
2

1− 1
` ` > n

2

and

P̂xn(j) :=
1− P̂xn(i)

k − 1
, ∀j ∈ [k] \ {i},

then we have

ρKL
n (Mk; Kn) ≤ max

P∈Mk
ρKL
n (P, P̂ ; Kn) .

2k2 log log n

n
.

Proof Let i ∈ [k] be an arbitrary state. For simplicity of illustration, we use the following notation:
for any xn = īn−`i`, denote p̂` := P̂xn ; for any (M) ∈ Mk, denote pi := M(i, ·); for any ` ≤ n,
denote hi,` := Pr(τ(i) = `). By Lemma 6, the hitting probability hi,` is upper bounded by k/` for
all ` > k. We can write

ρKL
n (P, P̂ ; Kn) =

∑
i∈[k]

n−1∑
`=1

hi,n−`(pi(i))
`−1DKL(pi, p̂`).

10



Now, we break the right hand side into two sums according to whether ` is greater than n/2 or not.
For ` > n/2, we have

∑
i∈[k]

n−1∑
`=n

2 +1

hi,n−`(pi(i))
`−1DKL(pi, p̂`)

≤
∑
i∈[k]

n−1∑
`=n

2 +1

hi,n−`(pi(i))
`−1

pi(i) log

(
pi(i)

1− 1
`

)
+
∑
j 6=i

pi(j) log

(∑
j 6=i pi(j)

1
`(k−1)

)
≤
∑
i∈[k]

n−1∑
`=n

2 +1

hi,n−`(pi(i))
`−1

(
log

(
1

1− 1
`

)
+ (1− pi(i)) log (`(k − 1)(1− pi(i)))

)

≤
∑
i∈[k]

n−1∑
`=n

2 +1

hi,n−`(pi(i))
`−1

( 1
`

1− 1
`

+ (1− pi(i))2`(k − 1)

)

≤
∑
i∈[k]

n−1∑
`=n

2 +1

hi,n−`

(
2

n
+ (pi(i))

`−1(1− pi(i))2`(k − 1)

)

≤
∑
i∈[k]

n−1∑
`=n

2 +1

hi,n−`

(
2

n
+

1

(`+ 1)2
`(k − 1)

)

≤
∑
i∈[k]

n−1∑
`=n

2 +1

hi,n−`

(
2k

n

)

=
∑
i∈[k]

2k

n
Pr(τ(i) ∈ [1, n/2− 1]) ≤ 2k2

n
.

Similarly, for ` ≤ n/2, we have

∑
i∈[k]

n
2∑
`=1

hi,n−`(pi(i))
`−1DKL(pi, p̂`)

≤
∑
i∈[k]

n
2∑
`=1

hi,n−`(pi(i))
`−1

(
log

(
1

1− 1
` logn

)
+ (1− pi(i)) log (`(k − 1)(1− pi(i)) log n)

)

≤
∑
i∈[k]

n
2∑
`=1

2k

n
(pi(i))

`−1

(
2

` log n
+ (1− pi(i))2`(k − 1) + (1− pi(i)) log log n

)

≤
∑
i∈[k]

2k

n

 n
2∑
`=1

2

` log n
+

n
2∑
`=1

`(pi(i))
`−1(1− pi(i))2(k − 1) +

n
2∑
`=1

(pi(i))
`−1(1− pi(i)) log log n


≤
∑
i∈[k]

2k

n
(2 + (k − 1) + log log n)

� 2k2 log log n

n
.

This completes the proof.

3 Minimax estimation: lower bound

The proof of the lower bound makes use of the following concentration inequality, which upper
bounds the probability that a binomial random variable exceeds its mean.

11



Lemma 9 [3] Let Y be a binomial random variable with parameters m ∈ N and p ∈ [0, 1], then
for any ε ∈ (0, 1),

Pr(Y ≥ (1 + ε)mp) ≤ exp
(
−ε2mp/3

)
.

3.1 Prior construction

Again we use the following standard argument to lower bound the minimax risk,

εLn(M ) = min
M̂

max
(M)∈M

εLn(M, M̂) ≥ min
M̂
E(M)∼U(MS)[ε

L
n(M,M̂)],

where MS ⊂M and U(MS) is the uniform distribution over MS . Setting M = Mk
δ,π∗ , we outline

the construction of MS as follows.

We adopt the notation in [4] and denote the L∞ ball of radius r around uk−1, the uniform distribution
over [k − 1], by

Bk−1(r) := {p ∈ ∆k−1 : L∞(p, uk−1) < r},
where L∞(·, ·) is the L∞ distance between two distributions. For simplicity, define

p′ := (p1, p2, . . . , pk−1),

p∗ :=

(
π̄∗

k − 1
,

π̄∗

k − 1
, . . .

π̄∗

k − 1
, π∗

)
,

and

Mn(p′) :=


π̄∗

k−1
π̄∗

k−1 . . . π̄∗

k−1 π∗

π̄∗

k−1
π̄∗

k−1 . . . π̄∗

k−1 π∗

...
...

. . .
...

...
π̄∗

k−1
π̄∗

k−1 . . . π̄∗

k−1 π∗

π̄∗p1 π̄∗p2 . . . π̄∗pk−1 π∗

 ,

where π̄∗ = 1− π∗ and
∑k−1
i=1 pi = 1.

Given n and ε ∈ (0, 1), let n′ := (n(1 + ε)π∗)1/5. We set

MS = {(M) ∈Mk
δ,π∗ : µ = p∗ and M = Mn(p′), where p′ ∈ Bk−1(1/n′)}.

Noting that the uniform distribution over MS , U(MS), is induced by U(Bk−1(1/n′)), the uniform
distribution over Bk−1(1/n′) and thus is well-defined.

An important property of the above construction is that for a sample sequence Xn ∼ (M) ∈MS ,
Nk, the number of times that state k appears in Xn, is a binomial random variable with parameters n
and π∗. Therefore, Lemma 9 implies that Nk is highly concentrated around its mean nπ∗.

3.2 L2-divergence lower bound

Let us first consider the L2-distance. Similar to Lemma 1, M̂∗, the estimator that minimizes
E(M)∼U(MS)[ε

L2
n (M,M̂)], can be computed exactly. In particular, we have the following lemma.

Lemma 10 There exists an estimator M̂∗ with

M̂∗xn(i, ·) = p∗,∀i ∈ [k − 1],

and
M̂∗xn(k, k) = π∗,

such that M̂∗ minimizes E(M)∼U(MS)[ε
L2
n (M,M̂)].

Based on the above lemma, we can relate the minimax estimation risk of Markov chains to the
minimax prediction risk of i.i.d. processes. For simplicity, denote Bi.i.d. := {(p) ∈ IIDk−1 : p ∈
Bk−1(1/n′)}. The following lemma holds.
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Lemma 11 For any xn ∈ [k]n, let I(xn) be the collection of indexes j ∈ [n] such that xj = k. Then,

E(M)∼U(MS)[EXn∼(M)[L2(M(k, ·), M̂∗Xn(k, ·))1I(Xn)=I0 ]]

= C(I0, π
∗, p∗, n) min

P̂
EP∼U(Bi.i.d.)[ρ

L2

|I0|(P, P̂ )],

where I0 is an arbitrary non-empty subset of [n] and C(I0, π
∗, p∗, n) is a constant whose value only

depends on I0, π∗, p∗, and n.

Proof We first consider the inner expectation on the left-hand side of the equality. For any
(M) ∈MS , we have

EXn∼(M)[L2(M(k, ·), M̂∗Xn(k, ·))1I(Xn)=I0 ]

=
∑

xn:I(xn)=I0

P (xn)L2(M(k, ·), M̂∗xn(k, ·))

=
∑

xn:I(xn)=I0

µ(x1)

n−1∏
t=1

M(xt, xt+1)L2(M(k, ·), M̂∗xn(k, ·)).

Let us partition I0 into two parts: the collection of indexes m ∈ I0 ∩ [n− 1] such that m ∈ I0 and
m+ 1 6∈ I0, say {m1, . . . ,ms}, and the remaining elements in I0. By the construction of MS , we
have

∑
xn:I(xn)=I0

µ(x1)

n−1∏
t=1

M(xt, xt+1)L2(M(k, ·), M̂∗xn(k, ·))

= (π∗)|I0|
(

π̄∗

k − 1

)n−s−|I0| ∑
xn:I(xn)=I0

s∏
t=1

M(k, xmt+1)L2(M(k, ·), M̂∗xn(k, ·)).

For any xn, let xn \ I0 denote the subsequence xj1 , . . . , xjn−|I0|−s such that j1 < j2 . . . < jn−|I0|−s,
jt 6∈ I0 and jt − 1 6∈ {m1, . . . ,ms},∀t. We can further partition the last summation according to
xn \ I0 as follows.

∑
xn:I(xn)=I0

s∏
t=1

M(k, xmt+1)L2(M(k, ·), M̂∗xn(k, ·))

=
∑

yn−|I0|−s∈[k−1]n−|I0|−s

 ∑
xn:xj=k,∀j∈I0

and xn\I0=yn−|I0|−s

s∏
t=1

M(k, xmt+1)L2(M(k, ·), M̂∗xn(k, ·))

.

Fixing yn−|I0|−s ∈ [k − 1]n−|I0|−s, there is a bijective mapping from S(I0, y
n−|I0|−s) := {xn :

xj = k, ∀j ∈ I0 and xn\I0 = yn−|I0|−s} to [k−1]s, say g(·). Furthermore, we have M̂∗(k, k) = π∗.

Hence, we can denote q∗g(xn) :=
M̂∗xn (k,[k−1])

π̄∗ for xn ∈ S(I0, y
n−|I0|−s) and treat it as a mapping

from [k−1]s to ∆k−1. Also, (M) ∈MS implies thatM(k, [k−1]) = p′ for some p′ ∈ Bk−1(1/n′).
Thus,

L2(M(k, ·), M̂∗xn(k, ·)) = (π̄∗)2L2(p′, q∗g(xn)),

s∏
t=1

M(k, xmt+1)L2(M(k, ·), M̂∗xn(k, ·)) =

s∏
t=1

p′(xmt+1)(π̄∗)2L2(p′, q∗g(xn)),

13



and ∑
xn∈S(I0,yn−|I0|−s)

s∏
t=1

M(k, xmt+1)L2(M(k, ·), M̂∗xn(k, ·))

=
∑

xn∈S(I0,yn−|I0|−s)

s∏
t=1

p′(xmt+1)(π̄∗)2L2(p′, q∗g(xn))

=
∑

zs∈[k−1]s

s∏
t=1

p′(zt)(π̄
∗)2L2(p′, q∗zs)

= EZs∼(p′)[(π̄
∗)2L2(p′, q∗Zs)],

where (p′) is an i.i.d. process whose underlying distribution is p′.

By definition, M̂∗ minimizes E(M)∼U(MS)[ε
L2
n (M,M̂)] and for each xn ∈ [k]n, its value M̂∗xn

is completely determined by xn. Besides, {S(I0, y
n−|I0|−s) : I0 ⊂ [n] and yn−|I0|−s ∈ [k −

1]n−|I0|−s} forms a partition of [k]n. Therefore, by the linearity of expectation and the definition
of q∗, the estimator q∗ also minimizes Ep′∼U(Bk−1(1/n′))[EZs∼(p′)[(π̄

∗)2L2(p′, qZs)]], where the
minimization is over all the possible mappings q from [k − 1]s to ∆k−1. Equivalently, we have

Ep′∼U(Bk−1(1/n′))[EZn∼(p′)[(π̄
∗)2L2(p′, q∗Zn)]] = min

P̂
EP∼U(Bi.i.d.)(π̄

∗)2[ρL2
s (P, P̂ )].

This immediately yields the lemma.

For any (M) ∈MS , denote by Nk((M), n) the number of times that state k appears in Xn ∼ (M),
which is a random variable induced by (M) and n. Lemma 11, we can deduce that

Lemma 12

min
M̂
E(M)∼U(MS)[ε

L2
n (M,M̂)] ≥ E(M)∼U(MS)

[
(π̄∗)2 min

P̂
EP ′∼U(Bi.i.d.)[ρ

L2

Nk((M),n)(P
′, P̂ )]

]
.

By Lemma 9 and our construction of MS , the probability that Nk((M), n) ≥ (1 + ε)nπ∗ is at most
exp(−ε2nπ∗/3) for any (M) ∈MS and ε ∈ (0, 1). This together with Lemma 12 and

min
P̂
EP∼U(Bi.i.d.)[ρ

L2
m (P, P̂ )] &

1− 1
k−1

(1 + ε)nπ∗
,∀m < (1 + ε)nπ∗,

from [4] yields

Lemma 13 For all ε ∈ (0, 1),

εL2
n (M ) = εL2

n (Mk
δ,π∗) &

(1− 1
k−1 )(1− π∗)2

nπ∗(1 + ε)
.

3.3 Lower bound for ordinary f -divergences

Now we proceed from the L2-distance to ordinary f -divergences. The following lemma from [4]
shows that Df (p, q) decreases if we move q closer to p.

Lemma 14 For p1 > q1, p2 < q2 and d ≤ min{p1 − q1, q2 − p2},

q1f

(
p1

q1

)
+ q2f

(
p2

q2

)
≥ (q1 + d)f

(
p1

q1 + d

)
+ (q2 − d)f

(
p2

q2 − d

)
.

Based on the above lemma, we show that for any xn ∈ [k]n, the value of the optimal estimator is
always close to (uk−1π̄

∗, π∗).

Let p̂∗xn := M̂∗xn(k, ·). For any xn ∈ [k]n, we claim that either p̂∗xn(j) ≥ ( 1
k−1 −

1
n′ )π̄

∗, ∀j ∈ [k−1]

and p̂∗xn(k) ≥ π∗ OR p̂∗xn(j) ≤ ( 1
k−1 + 1

n′ )π̄
∗, ∀j ∈ [k−1] and p̂∗xn(k) ≤ π∗. Otherwise, Lemma 14

implies that we can reduce the estimation risk by moving p̂∗xn closer to (uk−1π̄
∗, π∗).
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If p̂∗xn(j) ≥ ( 1
k−1 −

1
n′ )π̄

∗, ∀j ∈ [k − 1] and p̂∗xn(k) ≥ π∗, then p̂∗xn(j) ≤ ( 1
k−1 + k−2

n′ )π̄∗,
∀j ∈ [k − 1] and p̂∗xn(k) ≤ π∗ + k−1

n′ π̄
∗. Similarly, if p̂∗xn(j) ≤ ( 1

k−1 + 1
n′ )π̄

∗, ∀j ∈ [k − 1] and
p̂∗xn(k) ≤ π∗, then p̂∗xn(j) ≥ ( 1

k−1 −
k−2
n′ )π̄∗, ∀j ∈ [k − 1] and p̂∗xn(k) ≥ π∗ − k−1

n′ π̄
∗.

Now we relate Df (p, p̂∗) to L2(p, p̂∗). For simplicity, denote p := M(k, ·) and drop xn from p̂∗xn .

Lemma 15 For sufficiently large n,

Df (p, p̂∗) � (k − 1)f ′′(1)

2
L2(p, p̂∗).

Proof By the previous lemma, p̂∗xn(j) = ( 1
k−1±

k−2
n′ )π̄∗, ∀j ∈ [k−1] and p̂∗xn(k) = π∗ ± k−1

n′ π̄
∗.

Therefore,
p(i)

p̂∗(i)
∈

[
n′ − k

δ

n′ + k
δ

,
n′ + k

δ

n′ − k
δ

]
,∀i ∈ [k].

Let us denote the interval on the right hand side by I .

For sufficiently large n, we can apply the second-order Taylor expansion to f at point 1.

Df (p, p̂∗) =
∑
i∈[k]

p̂∗(i)f

(
p(i)

p̂∗(i)

)

=
∑
i∈[k]

(
p̂∗(i)

(
p(i)

p̂∗(i)
− 1

)
f ′(1) +

p̂∗(i)

2

(
p(i)

p̂∗(i)
− 1

)2

f ′′(1)

± p̂
∗(i)

6

∣∣∣∣ p(i)p̂∗(i)
− 1

∣∣∣∣3 max
z∈I
|f ′′′(z)|

)

=
∑
i∈[k]

(
p̂∗(i)

2

(
p(i)

p̂∗(i)
− 1

)2

f ′′(1)± 1

6

k

n′

(
p(i)

p̂∗(i)
− 1

)2

max
z∈I
|f ′′′(z)|

)

&
f ′′(1)

2

∑
i∈[k−1]

p̂∗(i)

(
p(i)

p̂∗(i)
− 1

)2

� (k − 1)f ′′(1)

2π̄∗
L2(p, p̂∗).

Lemma 15 together with Lemma 13 yields

Lemma 16 For sufficiently large n,

εfn(Mk
δ,π∗) & (1− π∗) (k − 2)f ′′(1)

2nπ∗
.

4 Minimax estimation: upper bound

4.1 Concentration of the counts

The proof of the upper bound relies on the following concentration inequality, which shows that for
any Markov chain inMk

δ and any state i ∈ [k], with high probability Ni stays close to (n− 1)πi, for
sufficiently large n.

Lemma 17 Given a sample sequence Xn from any Markov chain (M) ∈ Mk
δ , let Ni denote the

number of times that symbol i appears in Xn−1. Then for any t ≥ 0,

Pr(|Ni − (n− 1)πi| > t) ≤
√

2

δ
exp

(
−t2/C(δ)

4((n− 1) + 2C(δ)) + 40t

)
,
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where π is the stationary distribution of (M) and

C(δ) :=

⌈
− ln 4

ln (1− δ)
+ 1

⌉
.

Proof Given (M) ∈Mk
δ , recall that Pn+1 denotes the distribution of Xn+1 if we draw Xn+1 ∼

(M). First, we show that
DL1(Pn+1, π) ≤ 2(1− δ)n.

Let Π be the k × k matrix such that Π(i, ·) = π for all i ∈ [k]. Noting that M(i, j) ≥ δΠ(i, j), we
can define

Mδ :=
M − δΠ

1− δ
,

which is also a valid transition matrix.

By induction, we can show

Mn = (1− (1− δ)n)Π + (1− δ)nMn
δ .

Let us rearrange the terms:
Mn −Π = (1− δ)n(Mn

δ −Π).

Hence, let | · | denote the L1 norm, we have

DL1
(Pn+1, π) = |µ(Mn −Π)| = |(1− δ)nµ(Mn

δ −Π)| ≤ 2(1− δ)n.

This implies that we can upper bound tmix by C(δ).

The remaining proof follows from Proposition 3.4, Theorem 3.4, and Proposition 3.10 of [5] and is
omitted here for the sake of brevity.

Noting that Pr(|Ni − (n− 1)πi| > (n− 1)) = 0, we have

Pr(|Ni − (n− 1)πi| > t) ≤
√

2

δ
exp

(
−t2

4C(δ)(11(n− 1) + 2C(δ))

)
.

Informally, we can express the above inequality as

Pr(|Ni − (n− 1)πi| > t) ≤ Θδ(exp(Θδ(−t2/n))),

which is very similar to the Hoeffding’s inequality for the i.i.d. processes. As an important implication,
the following lemma bounds the moments of |Ni − (n− 1)πi|.

Lemma 18 For Ni defined in Lemma 17 and any m ∈ Z+,

E[|Ni − (n− 1)πi|m] ≤ mΓ(m/2)√
2δ

(4C(δ)(11(n− 1) + 2C(δ)))m/2.

Proof The statement follows from

E[|Ni − (n− 1)πi|m] =

∞∫
0

Pr(|Ni − (n− 1)πi|m > t) dt

=

∞∫
0

Pr(|Ni − (n− 1)πi| > t1/m) dt

≤
√

2

δ

∞∫
0

exp

(
−t2/m

4C(δ)(11n+ 2C(δ))

)
dt

=
m√
2δ

(4C(δ)(11n+ 2C(δ)))m/2
∞∫

0

e−yym/2−1 dy

=
mΓ(m/2)√

2δ
(4C(δ)(11n+ 2C(δ)))m/2.
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4.2 A modified add-β estimator

The difficulty with analyzing the performance of the original add-β estimator is that the chain’s initial
distribution could be far away from its stationary distribution and finding a simple expression for
E[Ni] and E[Nij ] could be hard. To overcome such difficulty, we ignore the first few sample points
and construct a new add-β estimator based on the remaining sample points. To be more specific, let
Xn be a length-n sample sequence drawn from the Markov chain (M). Removing the first m sample
points, Xn

m+1 := Xm+1, . . . , Xn can be viewed as a length-(n−m) sample sequence drawn from
(M) whose initial distribution µ′ satisfies

L1(µ′, π) < 2(1− δ)m−1.

Setting m =
√
n, we have L1(µ′, π) . 1/n2. Noting that

√
n� n for sufficiently large n, without

loss of generality, we assume that the original distribution µ already satisfies L1(µ, π) < 1/n2. If
not, we can simply replace Xn by Xn√

n+1
.

To prove the upper bound, we consider the following (modified) add-β estimator:

M̂+β
Xn(i, j) :=

Nij + β

Ni + kβ
, ∀i, j ∈ [k],

where β > 0 is a fixed constant.

We can compute the expected values of these counts as

E[Ni] = (n− 1)πi +

n−1∑
t=1

(E[1Xt=i]− πi)

= (n− 1)πi ±O(1/(n2δ))

and

E[Nij ] = (n− 1)πiMij +

n−1∑
t=1

(E[1Xt=i1Xt+1=j ]− πiMij)

= (n− 1)πiMij +

n−1∑
t=1

(E[1Xt=i]− πi)Mij

= (n− 1)πiMij ±O(1/(n2δ)).

4.3 Analysis

For notational convenience, let us re-denote n′ := n− 1.

By Lemma 17,
Pr (|Ni − n′πi| > t) ≤ Θδ(exp(Θδ(−t2/n)))

and
Pr (|Nij − n′πiMij | > t) ≤ Θδ(exp(Θδ(−t2/n))).

The second inequality follows from the fact that Nij can be viewed as the sum of counts from the
following two Markov chains over [k]× [k] whose transition probabilities are greater than δ2:

(X1, X2), (X3, X4), . . .

and
(X2, X3), (X4, X5), . . . .

In other words, Ni and Nij are highly concentrated around n′πi and n′πiMij , respectively. Let Ai
denote the event that Ni = n′πi(1± δ/2) and Nij = n′πiMij(1± δ/2), ∀j ∈ [k]. Let ACi denote
the event that Ai does not happen. Applying the union bound, we have

E[1ACi ] = Pr(ACi ) ≤ Θδ(exp(Θδ(−n))).

17



Now consider

Df (p, q) =
∑
i∈[k]

q(i)f

(
p(i)

q(i)

)
,

the corresponding estimation risk of M̂+β over a particular sate i ∈ [k] can be decomposed as

E[Df (M(i, ·), M̂+β
Xn(i, ·))1Ai ] + E[Df (M(i, ·), M̂+β

Xn(i, ·))1ACi ].

Noting that

M̂+β
Xn(i, j) =

Nij + β

Ni + kβ
∈
[

β

n+ kβ
, 1

]
and Mij ∈ [δ, 1], we have

|Df (M(i, ·), M̂+β
Xn(i, ·))| ≤ k · n+ β

kβ
· max
y∈[δ,k+n/β]

f(y).

Hence, we can bound the second term as

E[Df (M(i, ·), M̂+β
Xn(i, ·))1ACi ] ≤ n+ β

β
· max
y∈[δ,k+n/β]

f(y) · E[1ACi ]

≤ n+ β

β
· max
y∈[δ,k+n/β]

f(y) ·Θδ(exp(Θδ(−n)))

=
o(1)

n
,

where the last step follows from our assumption that f is sub-exponential.

By the definition of Df and M̂+β ,

E
[
Df (M(i, ·), M̂+β

Xn(i, ·))1Ai
]

= E

∑
j∈[k]

Nij + β

Ni + kβ
f

(
Mij

Nij+β
Ni+kβ

)
1Ai

 .
Let h(x) := f

(
1

1+x

)
, then h is thrice continuously differentiable around some neighborhood of

point 0 and

f(x) = h

(
1

x
− 1

)
.

We apply Taylor expansion to h at point 0 and rewrite the expectation on the right-hand side as

E
∑
j∈[k]

Nij + β

Ni + kβ
f

(
Mij

Nij+β
Ni+kβ

)
1Ai = E

∑
j∈[k]

Nij + β

Ni + kβ
h

(
(Nij −MijNi) + β(1− kMij)

Mij(Ni + kβ)

)
1Ai

= E
∑
j∈[k]

Nij + β

Ni + kβ

[
h′(0)

(Nij −MijNi) + β(1− kMij)

Mij(Ni + kβ)

+
h′′(0)

2

(
(Nij −MijNi) + β(1− kMij)

Mij(Ni + kβ)

)2

±M(δ)

6

∣∣∣∣ (Nij −MijNi) + β(1− kMij)

Mij(Ni + kβ)

∣∣∣∣3
]
1Ai ,

where by our definition of Ai, we set

M(δ) := max
z∈[− 2δ

1−δ ,
2δ

1−δ ]
|h′′′(z)|.
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Now, we bound individual terms. Taking out h′(0), the first term evaluates to:

E
∑
j∈[k]

Nij + β

Ni + kβ

(Nij −MijNi) + β(1− kMij)

Mij(Ni + kβ)
1Ai

= E
∑
j∈[k]

((Nij − n′πiMij) + (n′πiMij + β))
(Nij −MijNi) + β(1− kMij)

Mij(Ni + kβ)2
1Ai

= E
∑
j∈[k]

(Nij − n′πiMij)

Mij

Nij − n′πiMij) + (n′πiMij −MijNi) + β(1− kMij)

(Ni + kβ)2
1Ai

+
(n′πiMij + β)

Mij

(Nij −MijNi) + β(1− kMij)

(Ni + kβ)2
1Ai

= E
∑
j∈[k]

(Nij − n′πiMij)

Mij

(Nij − n′πiMij)

(Ni + kβ)2
+

(Nij − n′πiMij)(n
′πi −Ni)

(Ni + kβ)2

+ n′πi
(Nij −MijNi) + β(1− kMij)

(Ni + kβ)2
+
o(1)

n

= −E (Ni − n′πi)2

(Ni + kβ)2
+ E

∑
j∈[k]

1

Mij

(Nij − n′πiMij)
2

(Ni + kβ)2
+
o(1)

n

= −E (Ni − n′πi)2

(n′πi + kβ)2
+ E

∑
j∈[k]

1

Mij

(Nij − n′πiMij)
2

(n′πi + kβ)2
+
o(1)

n
.

Taking out h′′(0)/2, the second term evaluates to:

E
∑
j∈[k]

Nij + β

Ni + kβ

(
(Nij −MijNi) + β(1− kMij)

Mij(Ni + kβ)

)2

1Ai

= E
∑
j∈[k]

((Nij −MijNi) + (MijNi + β))
((Nij −MijNi) + β(1− kMij))

2

M2
ij(Ni + kβ)3

1Ai

= E
∑
j∈[k]

(Nij −MijNi)
((Nij −MijNi) + β(1− kMij))

2

M2
ij(Ni + kβ)3

1Ai

+ (MijNi + β)
((Nij −MijNi) + β(1− kMij))

2

M2
ij(Ni + kβ)3

1Ai

= E
∑
j∈[k]

(MijNi + β)
((Nij −MijNi) + β(1− kMij))

2

M2
ij(Ni + kβ)3

+
o(1)

n

= E
∑
j∈[k]

1

Mij

(Nij −MijNi)
2

(Ni + kβ)2
+ 2E

∑
j∈[k]

(MijNi + β)
(Nij −MijNi)β(1− kMij)

M2
ij(Ni + kβ)3

+
o(1)

n

= E
∑
j∈[k]

1

Mij

(Nij − n′Mijπi + n′Mijπi −MijNi)
2

(Ni + kβ)2
+
o(1)

n

= −E (Ni − n′πi)2

(Ni + kβ)2
+ E

∑
j∈[k]

1

Mij

(Nij − n′Mijπi)
2

(Ni + kβ)2
+
o(1)

n

= −E (Ni − n′πi)2

(n′πi + kβ)2
+ E

∑
j∈[k]

1

Mij

(Nij − n′πiMij)
2

(n′πi + kβ)2
+
o(1)

n
.
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Finally, taking out M(δ)/6, the last term can be bounded as

E
∑
j∈[k]

Nij + β

Ni + kβ

∣∣∣∣ (Nij −MijNi) + β(1− kMij)

Mij(Ni + kβ)

∣∣∣∣3 1Ai
≤ 4

∑
j∈[k]

E |Nij −MijNi|3 + |β(1− kMij)|3

M3
ij(n

′πi(1− δ/2) + kβ)3
1Ai

≤ 4
∑
j∈[k]

4E |Nij −Mijn
′πi|3 + 4M3

ijE |n′πi −Ni|
3

+ |β(1− kMij)|3

M3
ij(n

′πi(1− δ/2) + kβ)3
1Ai

=
o(1)

n
,

where we have used the ineuqality (a+ b)3 ≤ 4(|a|3 + |b|3) twice.

By the definition of h(·), we have

h′(0) = −f ′(0)

and
h′′(0)

2
= f ′(0) +

f ′′(0)

2
.

Hence, consolidating all the previous results,

E[Df (M(i, ·), M̂+β
Xn(i, ·))]

=
f ′′(0)

2(n′πi + kβ)2
E

−(Ni − n′πi)2 +
∑
j∈[k]

1

Mij
(Nij − n′πiMij)

2

+
o(1)

n

=
f ′′(0)

2(n′πi + kβ)2

−EN2
i +

∑
j∈[k]

1

Mij
EN2

ij

+
o(1)

n
.

It remains to analyze EN2
i and EN2

ij .

For EN2
i , we have

EN2
i = E

(∑
t<n

1Xt=i

)2

= E

(∑
t<n

1Xt=i

)
+ 2E

( ∑
t1<t2<n

1Xt1=i1Xt2=i

)
=
∑
t<n

Pr(Xt = i) + 2
∑

t1<t2<n

Pr(Xt1 = i) Pr(Xt2 = i|Xt1 = i)

= n′πi +O(1) + 2
∑

t1<t2<n

(
πi ±O

(
1

n2

))
Pr(Xt2 = i|Xt1 = i)

= n′πi +O(1) + 2πi
∑

t1<t2<n

Pr(Xt2 = i|Xt1 = i)

= n′πi +O(1) + 2πi
∑

t1<t2<n

∑
j∈[k]

Pr(Xt2 = i|Xt1+1 = j) Pr(Xt1+1 = j|Xt1 = i)

= n′πi +O(1) + 2πi
∑
j∈[k]

∑
t1<t2<n

Pr(Xt2 = i|Xt1+1 = j)Mij .

20



For EN2
ij , we have

EN2
ij = E

(∑
t<n

1Xt=i1Xt+1=j

)2

= E

(∑
t<n

1Xt=i1Xt+1=j

)
+ 2E

( ∑
t1<t2<n

1Xt1=i1Xt1+1=j1Xt2=i1Xt2+1=j

)
= Mi,j

∑
t<n

Pr(Xt = i) + 2
∑

t1<t2<n

Pr(Xt1 = i)Mij Pr(Xt2 = i|Xt1+1 = j)Mij

= Mi,jn
′πi +O(1) + 2

∑
t1<t2<n

(
πi ±O

(
1

n2

))
Pr(Xt2 = i|Xt1+1 = j)M2

ij

= Mi,jn
′πi +O(1) + 2πiM

2
ij

∑
t1<t2<n

Pr(Xt2 = i|Xt1+1 = j).

Thus, the desired quantity evaluates to

−EN2
i +

∑
j∈[k]

1

Mij
EN2

ij =
∑
j∈[k]

(
n′πi +O(1) + 2πiMij

∑
t1<t2<n

Pr(Xt2 = i|Xt1+1 = j)

)

−

n′πi +O(1) + 2πi
∑
j∈[k]

∑
t1<t2<n

Pr(Xt2 = i|Xt1+1 = j)Mij


≤ (k − 1)n′πi +O(k).

The above inequality yields

E[Df (M(i, ·), M̂+β
Xn(i, ·))]

=
f ′′(0)

2(n′πi + kβ)2
E

−(Ni − n′πi)2 +
∑
j∈[k]

1

Mij
(Nij − n′πiMij)

2

+
o(1)

n

.
(k − 1)f ′′(0)

2nπi
.

This completes our proof for ordinary f -divergences.

4.4 L2-divergence upper bound

Finally, we consider the L2-divergence. Again, we assume that the sample sequence Xn ∼ (M) and
µ satisfies

DL1
(π, µ) <

1

n2
.

Instead of using an add-constant estimator, we use the following add-
√
Ni/k estimator:

M̂
+
√
Ni/k

Xn (i, j) :=
Nij +

√
Ni/k

Ni +
√
Ni

, ∀i, j ∈ [k]× [k].

Now, consider the expected loss for a particular state i ∈ [k].

E
∑
j∈[k]

(
Mij −

Nij +
√
Ni/k

Ni +
√
Ni

)2

=
∑
j∈[k]

E

(
(MijNi −Nij) +

√
Ni(Mij − 1/k)

Ni +
√
Ni

)2

=
∑
j∈[k]

E

(
MijNi −Nij
Ni +

√
Ni

)2

+

(√
Ni(Mij − 1/k)

Ni +
√
Ni

)2

+ 2E
(MijNi −Nij)(

√
Ni(Mij − 1/k))(

Ni +
√
Ni
)2 .
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We first show that the last term is negligible. Noting that

E
∑
j∈[k]

(MijNi −Nij)(
√
Ni(Mij − 1/k))(

Ni +
√
Ni
)2 = E

∑
j∈[k]

(MijNi −Nij)Mij
√
Ni
(√
Ni + 1

)2 ,

we can apply Taylor expansion to the function

f(x) :=
1√

x(
√
x+ 1)2

at point x = E[Ni] and set x = Ni:

f(x) = f(E[Ni]) + f ′(N ′i)(Ni − E[Ni]),

where N ′i ∈ [E[Ni], Ni]. Hence,

E
∑
j∈[k]

(MijNi −Nij)Mij(
Ni +

√
Ni
)(√

Ni + 1
)

= E
∑
j∈[k]

(f(E[Ni]) + f ′(N ′i)(Ni − E[Ni]))(MijNi −Nij)Mij

= E
∑
j∈[k]

(MijNi −Nij)Mij√
E[Ni](

√
E[Ni] + 1)2

+
−3
√
N ′i − 1

2(
√
N ′i + 1)3(N ′i)

3/2
(Ni − E[Ni])(MijNi −Nij)Mij

≤ E
∑
j∈[k]

O
(

1

n7/2

)
+

−3
√
N ′i − 1

2(
√
N ′i + 1)3(N ′i)

3/2
Mij

√
E(Ni − E[Ni])2E(MijNi −Nij)2

= Θ

(
1

n3/2

)
.

where the last step follows from Lemma 18. It remains to consider

E

(
MijNi −Nij
Ni +

√
Ni

)2

=
E(MijNi −Nij)2

(nπi +
√
nπi)2

+
o(1)

n
.

According to the previous derivations, for M2
ijEN

2
i , we have

M2
ijEN

2
i = M2

ij

∑
t<n

Pr(Xt = i) + 2M2
ij

∑
t1<t2<n

Pr(Xt1 = i) Pr(Xt2 = i|Xt1 = i).

For EN2
ij , we have

EN2
ij = Mij

∑
t<n

Pr(Xt = i) + 2M2
ij

∑
t1<t2<n

Pr(Xt1 = i) Pr(Xt2 = i|Xt1+1 = j).

For 2MijENijNi, we have

2MijENijNi = 2MijE

(∑
t<n

1Xt=i1Xt+1=j

)(∑
t<n

1Xt=i

)

= 2MijE

(∑
t<n

1Xt=i1Xt+1=j

)
+ 2MijE

( ∑
t1<t2<n

1Xt1=i1Xt1+1=j1Xt2=i

)

+ 2MijE

( ∑
t2<t1<n

1Xt1=i1Xt1+1=j1Xt2=i

)
= 2M2

ij

∑
t<n

Pr(Xt = i) + 2M2
ij

∑
t1<t2<n

Pr(Xt2 = i|Xt1+1 = j) Pr(Xt1 = i)

+ 2M2
ij

∑
t2<t1<n

Pr(Xt1 = i|Xt2 = i) Pr(Xt2 = i).
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Therefore,

E(MijNi −Nij)2
= Mij(1−Mij)nπi +

o(1)

n
.

Finally,

E
∑
j∈[k]

(√
Ni(Mij − 1/k)

Ni +
√
Ni

)2

=
o(1)

n
+
− 1
kE[Ni] + E[Ni]

∑
j∈[k]M

2
ij

(nπi +
√
nπi)2

.

We have

E
∑
j∈[k]

(
Mij −

Nij +
√
Ni/k

Ni +
√
Ni

)2

=

(
1− 1

k

)
1

nπi
+
o(1)

n
.

This completes our proof for the L2-divergence.
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