
KONG: Kernels for ordered-neighborhood graphs
(Appendix)

Moez Draief1 Konstantin Kutzkov2 Kevin Scaman1 Milan Vojnovic2

1 Huawei Noah’s Ark Lab 2 London School of Economics, London
moez.draief@huawei.com, kutzkov@gmail.com (Corresponding author),

kevin.scaman@huawei.com, m.vojnovic@lse.ac.uk

1 Additional background

Count-Sketch and Tensor-Sketch We overview sketching concepts that are used in our algorithm.

Count-Sketch [Charikar et al., 2004] was originally proposed as a space-efficient algorithm for
frequent items mining in data streams. Let the input be a stream S of item-weight pairs (i, wi) and
W =

∑
(i,wi)∈S wi be the total weight of all items in the stream. Each item can appear arbitrarily

many times in the stream. The goal is to detect each item i∗ such that Wi∗ :=
∑

(i,wi)∈S:i=i∗ wi ≥
γW for some γ ∈ (0, 1), the so called heavy hitters.

The Count-Sketch algorithm works by distributing the set of items I to b different bins by a random
hash function h : I → [b]. For each bin j, we keep a counter cntj which is updated as cntj ←
cntj + sign(i)wi where sign : I → {−1, 1} is a random function. After processing the stream, it
holds E[sign(i∗)cnth(i∗)] =Wi∗ , i.e., we have an unbiased estimator for i∗’s weight. The variance
of the estimator decreases with the sketch size b. The intuition is that for large enough sketch size b,
the heavy hitters are likely to be isolated in different bins and the contributions from other items will
cancel out due to the sign function.

Count-Sketch can be also used to approximate the inner product of two vectors x and y as∑
j∈[m] cnt

x
j cnt

y
j by sketching each vector separately; cntxj and cntyj denote the corresponding

counts for bin j. The additive error is bounded by ‖x‖‖y‖/b. Thus, we can approximate the polyno-
mial kernel by incrementally computing the p-level tensor product and then sketching it. However, for
d-dimensional vectors, this results in O(dp) running time per input vector, which can be prohibitively
expensive already for small values of parameter p.

Tensor-Sketch, introduced by [Pagh, 2013],[Pham and Pagh, 2013], is a sketch for p-level tensor
products, designed by building upon work on approximating matrix multiplication. Using suitably
defined hash functions and an application of polynomial multiplication by the fast Fourier transform, it
allows to compute the Count-Sketch with b bins of the p-level tensor product in timeO(p(d+b log b)).
Hence, this sketching algorithm has computation time that scales linearly with the input vector
dimension. We use this sketch in our algorithm to provide a scalable solution.

2 Proofs

Lemma 1 The total number of newly created k-grams during an iteration of CSGT is O(mk).

Proof: By definition, the string siv generated by CSGT at a node v in the i-th iteration is the
concatenation of strings generated at its neighbor nodes in the i − 1-th iteration. Therefore, new
k-grams can only be created when concatenating two strings. For a node v there are |Nv| − 1 string
concatenations, each of them resulting in at most k − 1 k-grams. Thus, the total number of newly

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

created k-grams is at most ∑
v∈V

(k − 1)(|Nv| − 1) = O(mk).

�

The next lemma shows that in order to compute the k-gram frequency vector we don’t need to
explicitly store each intermediate string siv but only keep track of the substrings that will contribute
to new k-grams and siv’s k-gram frequency vector.

Lemma 2 The k-gram frequency vector of the strings siv at each node v can be updated after an
iteration of CSGT from the frequency vectors of the strings si−1

v and explicitly storing substrings of
total length O(mk).

Proof: We need to explicitly store only the substrings that will contribute to new k-grams. Consider
a string siv . We need to concatenate the |Nv| strings si−1

u . Since we need to store the k− 1-prefix and
k − 1-suffix of each si−1

u , for all u ∈ V , it follows that the total length of the stored state is at most∑
v∈V

2(k − 1)|Nv| = O(mk).

�

Theorem 1 LetG1, . . . , GM be a collection ofM graphs, each having at mostm edges and n nodes.
Let K be either polynomial or cosine kernel with parameter p and K̂ its approximation obtained by
using size-b sketches of explicit feature maps. Consider an arbitrary pair of graphs Gi and Gj . Let
T<α denote the number of node pairs vi ∈ Gi, vj ∈ Gj such that coshk(vi, vj)

p < α and R be an
upper bound on the norm of the k-gram distribution vector at each node.

Then, we can choose a sketch size b = O(logM+logn
α2ε2 log 1

δ) such that K̂(Gi, Gj) has an additive
error of at most ε(K(Gi, Gj) +R2pαT<α) with probability at least 1− δ, for ε, δ ∈ (0, 1).

A graph sketch can be computed in time O(mkph+ npb log b) and space O(nb).

Proof: First we note that for non-homogeneous polynomial kernel (xT y + c)p and c > 0, we can
add an extra dimension with value

√
c to the k-gram frequency vector of each string. Therefore in the

following w.l.o.g. we assume c = 0.

We first show how to incrementally maintain a sketch of the k-gram frequency vector of each siv . In
the first iteration, we generate a string s1

v at each node v from the labels `(u) for u ∈ Nv. We then
generate the k-grams and feed them into sketchv and keep the k − 1-prefix and k − 1-suffix of each
s1
v . By Lemma 2, we can compute the k-gram frequency vector of s2

v from the prefixes and suffixes
of s1

u, for u ∈ Nv and the k-gram frequency vector of s1
u.

A key property of Count-Sketch is that it is a linear transformation, i.e. it holds CS(x + y) =
CS(x) + CS(y) for x, y ∈ Rd. Thus, we have that

CS(siv) =
∑
u∈Nv

CS(si−1
u) + CS(K(τv(Nv)))

where K(τv(Nv)) denotes the newly created k-grams from the concatenation of the strings si−1
u .

By Lemmas 1 and 2, we can thus compute a single Count-Sketch that summarizes the k-gram
frequency vector of Shv for all v ∈ V in time O(mkh) and space O(nb) for sketch size b.

For the cosine kernel with parameter p = 1, we extend the above to summarizing the normalized
k-gram frequency vectors as follows. As discussed, Count-Sketch maintains b bins. After processing
all k-grams of a string s, it holds cntj =

∑
t∈Σ∗

k:h(t)=j #t(s), where #t(s) is the number of
occurrences of string t in s. Instead, we want to sketch the values #t(s)/w where w is the 2-norm
of the k-gram frequency vector of Siv. From each Count-sketch CS(siv) we can compute also an
(1± ε)-approximation w̃ of the norm of k-gram frequency vector [Charikar et al., 2004]. Using that
(1+ ε)/(1− ε) ≥ 1+ 2ε and (1− ε)/(1+ ε) ≥ 1− 2ε for ε ≤ 1/2, we can scale ε in order to obtain
the desired approximation guarantee.

2

Now consider the polynomial and cosine kernels with parameter p > 1. Let TS(x) denote the
Tensor-Sketch of vector x. By the main result from [Pham and Pagh, 2013], for a sketch size
b = 1/(α2ε2), TS(x)TS(y) is an approximation of (xT y)p such that the variance of the additive
error is ((xT y)2p + (‖x‖‖y‖)2p)/t. For α ≤ cos(x, y)p we thus have

(xT y)2p + (‖x‖‖y‖)2p

t
≤ ε2α2(xT y)2p + ε2α2(‖x‖‖y‖)2p ≤ 2ε2(xT y)2p.

A standard application of Chebyshev’s inequality yields an (1± ε)-multiplicative approximation of
(xT y)p with probability larger than 1/2. On the other hand, for α > cos(x, y)p we bound the additive
error to 2αε(‖x‖‖y‖)p = O(αεR2p). The bounds hold with probability δ by taking the median of
log(1/δ) independent estimators, and by the union bound δ can be scaled to δ/(Mn2) such that the
bounds hold for all node pairs for all graphs. The same reasoning applies to the cosine kernel where
the norm of the vectors is bounded by 1.

The Tensor-Sketch algorithm keeps p Count-sketches per node and we need to feed the k-gram
distribution vector at each node into each sketch. After h iterations, the p sketches at each node are
converted to a single sketch using the Fast Fourier transform in time O(pb log b). This shows the
claimed time and space bounds. �

3 Experiments

In Table 1 we provide additional experimental results on more datasets that confirm that KONG is
competitive with the state-of-the-art kernels.

Dataset KW SP WL KONG

Mutag 83.7± 1.2 84.7± 1.3 84.9± 2.1 87.8± 0.7 (poly-rlb-1)

Enzymes 34.8± 0.7 39.6± 0.8 52.9± 1.1 50.1± 1.1 (cosine-rlb-2)

PTC 57.7± 1.1 59.1± 1.3 62.4± 1.2 63.7± 0.8 (cosine-2)

Proteins 70.9± 0.4 72.7± 0.5 71.4± 0.7 73.0± 0.6 (cosine-rlb-1)

NCI1 74.1± 0.3 73.3± 0.3 81.4± 0.3 76.4± 0.3 (cosine-rlb-1)

MSRC 92.9± 0.8 91.2± 0.9 91.0± 0.7 95.2± 1.3 (poly-1)

BZR 81.9± 0.6 81.4± 1.2 85.9± 0.9 85.1± 1.1 (poly-rlb-2)

COX2 78.4± 1.0 79.6± 1.1 80.7± 0.8 81.8± 2.1 (poly-rlb-1)

DHFR 79.1± 1.0 79.2± 0.7 81.4± 0.6 80.1± 0.5 (poly-rlb-3)

Table 1: Classification accuracies for general labeled graphs (the 1-gram case).

As discussed in the paper, we obtained best results for p = 1. However, we also sketched the explicit
feature maps for the polynomial and cosine kernels for p = 2. (Note that the running time for KONG
in Table 2 in the main body of the paper also include the time for sketching.) We present classification
accuracy results for sketch sizes 100, 250, 500, 1000, 2500, 5000 and 10000 in Figure 1. As evident
from the values, the values are close to the case p = 1 and also for quite small sketch sizes we obtain
good accuracy. This indicates that sketching captures essential characteristics of the 2-gram frequency
distribution also for small sketch sizes and can indeed yield compact feature maps.

References
Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams.

Theor. Comput. Sci., 312(1):3–15, 2004.

Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation Theory, 5(3):
9:1–9:17, 2013.

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps. In The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2013, pages 239–247, 2013.

3

Figure 1: Comparison of classification accuracy for graphs with ordered neighborhoods.

4

	Additional background
	Proofs
	Experiments

