Supplementary Figures for PG-TS: Improved Thompson Sampling for Logistic Contextual Bandits

The effect of the burn-in step M in Gaussian Simulations

PG-TS relies on approximating an integral using a double sampling of an appropriate Markov Chain. Hence, the burn-in Gibbs step M affects the convergence behavior of PG-TS with respect to the cumulative regret (Fig. S1). Due to diminishing returns illustrated in our empirical studies, we set M to 100 throughout the paper. In practice, setting M to a large value allows for appropriate mixing and has substantial impact on performance, as seen in the news recommendation application.

Figure S1: Comparison of the average cumulative regret of the PG-TS algorithm with varying number of burn-in iterations on the simulated data set with Gaussian θ^* over 100 runs with 1,000 trials. The lower the regret, the better the performance.

Variance of the Cumulative Regret Performance

The methods considered show very diverse behavior across experiments even in the simple Gaussian simulation case. In particular, while both PG-TS and PG-TS-stream converge across experiments, Laplace-TS shows high variability and significantly higher cumulative regret across the same trials.

Figure S2: Trace plots of cumulative regret for PG-TS and PG-TS-stream (Top), and Laplace-TS (Bottom) on the simulated data set with Gaussian θ^* over 100 runs with 1,000 trials.

Furthermore, Laplace-TS is sensitive to multimodality. We found that the misspecified model does not prevent the PG-TS algorithms from consistently finding the correct arm, while Laplace-TS exhibits poor average behavior (Fig. S3). For our similations, we do not show comparison to GLM-UCB as previous studies address the superiority of Laplace-TS [Chapelle and Li, 2011, Russo and Van Roy, 2014].

Figure S3: Comparison of the average cumulative regret of the PG-TS, PG-TSstream, and the Laplace-TS algorithms on simulated data with mixed Gaussian θ^* over 100 runs with 5,000 trials (standard deviation shaded). Laplace-TS performs better during earlier trials, yet struggles to settle on an optimal arm.

Langevin Alternatives

We compared our method to Langevin-TS [Russo et al., 2017], and we found that PG-TS significantly outperforms Langevin-TS in our simulations (Fig. S5). We note that the Langevin implementation is very sensitive to learning rate, step size and numerous other initialization parameters, unlike PG-TS whose performance is consistent across our simulations.

Figure S4: Comparison of the average cumulative regret of the PG-TS-iter, PG-TS-stream, and Laplace-TS algorithms and Langevin on the simulated data set with Gaussian θ^* over 100 runs with 1,000 trials (standard deviation shown as shaded region)

We further note that PG-TS outperforms a variance reduced stochastic gradient Monte Carlo approach extension to Langevin-TS [Chatterji et al., 2018].

Figure S5: Comparison of the average cumulative regret of the PG-TS-iter, PG-TS-stream, and Laplace-TS algorithms and Langevin on the simulated data set with Gaussian θ^* over 100 runs with 1,000 trials (standard deviation shown as shaded region)

Exploration and Exploitation comparison across Gaussian simulations

Figure S6: Comparison of the arm choices for the GLM-UCB (Left) and PG-TSstream (Right) algorithms on the simulated data set with Gaussian θ^* across 1,000 trials. The arms were sorted by expected reward in decreasing order, with arm 0 giving the highest reward, and arm 99 the lowest. The selected arms are colored according to the distance of their expected reward from the optimal reward (regret). GLM-UCB takes many trials to settle on the optimal arm, while both PG-TS algorithms explore successfully and settle on the optimal one. Recall that Laplace-TS gets stuck on a sub-optimal arm.

Pseudocode for the algorithms mentioned

Algorithm 1 Generic Contextual Bandit Algorithm

Initialize $\mathcal{D}_0 = \emptyset$ for t = 1, 2, ... do Observe K_t arms \mathcal{A}_t Receive context $\mathbf{x}_{t,a} \in \mathbb{R}^d$ Select a_t given $\mathbf{x}_{t,a}, \mathcal{D}_{t-1}$ Observe reward r_{t,a_t} Update $\mathcal{D}_t = \mathcal{D}_{t-1} \cup {\mathbf{x}_{t,a_t}, a_t, r_t}$ end for

Algorithm 2 Laplace-TS [Chapelle and Li, 2011]

Input: Regularization parameter $\lambda = 1$ $m_i = 0, q_i = \lambda$, for i = 1, 2, ...dfor t = 1 to T do Receive context $\mathbf{x}_{t,a}$ $\mathbf{Q} = diag \left(q_1^{-1}, q_2^{-1}, ..., q_d^{-1}\right)$ Draw $\theta_t \sim MVN(\mathbf{m}, \mathbf{Q})$ Select $a_t = \arg \max_a \mu \left(\mathbf{x}_{t,a}^{\top} \theta_t\right)$ Receive reward r_t $y_t = 2r_t - 1$ $\mathbf{w} = \arg \min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^d q_i \left(w_i - m_i\right)^2 - \log \left(\mu \left(y_t \mathbf{x}_{t,a_t}^{\top} \mathbf{w}\right)\right)$ $\mathbf{m} = \mathbf{w}$ $p = \mu \left(\mathbf{x}_{t,a_t}^{\top} \mathbf{w}\right)$ $\mathbf{q} = \mathbf{q} + p \left(1 - p\right) \mathbf{x}_{t,a_t}^2$ end for

Algorithm 3 GLM-UCB [Filippi et al., 2010]

Input: Admissible parameter set $\boldsymbol{\Theta}$, slowly increasing function $\rho(t)$ for t = 1, 2, ... do Receive context $\mathbf{x}_{t,a}$ $\boldsymbol{\theta}_t = \arg\min_{\boldsymbol{\theta}\in\boldsymbol{\Theta}} \left\| \sum_{i=1}^{t-1} (r_i - \mu(\mathbf{x}_{i,a_i}^{\top}\boldsymbol{\theta}))\mathbf{x}_{i,a_i} \right\|_{\mathbf{V}_t^{-1}}^2$ Select $a_t = \arg\max_a \{x_{t,a}^{\top}\boldsymbol{\theta}_t + \rho(t) \|x_{t,a}\|_{\mathbf{V}_t^{-1}}^2\}$ Receive reward $r_t \in \{0, 1\}$ $\mathbf{V}_{t+1} = \sum_{i=1}^t \mathbf{x}_{i,a_i} \mathbf{x}_{i,a_i}^{\top}$ end for

References

- Olivier Chapelle and Lihong Li. An empirical evaluation of Thompson sampling. In Advances in neural information processing systems, pages 2249–2257, 2011.
- Niladri S Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L Bartlett, and Michael I Jordan. On the theory of variance reduction for stochastic gradient monte carlo. arXiv preprint arXiv:1802.05431, 2018.
- Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The generalized linear case. In Advances in Neural Information Processing Systems, pages 586–594, 2010.
- Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. *Mathematics of Operations Research*, 39(4):1221–1243, 2014.
- Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, and Ian Osband. A Tutorial on Thompson Sampling. arXiv preprint arXiv:1707.02038, 2017.