
Supplementary Figures for PG-TS: Improved

Thompson Sampling for Logistic Contextual

Bandits

The effect of the burn-in step M in Gaussian Simulations

PG-TS relies on approximating an integral using a double sampling of an ap-
propriate Markov Chain. Hence, the burn-in Gibbs step M affects the con-
vergence behavior of PG-TS with respect to the cumulative regret (Fig. S1).
Due to diminishing returns illustrated in our empirical studies, we set M to
100 throughout the paper. In practice, setting M to a large value allows for
appropriate mixing and has substantial impact on performance, as seen in the
news recommendation application.
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Figure S1: Comparison of the average cumulative regret of the PG-TS algo-
rithm with varying number of burn-in iterations on the simulated data set with
Gaussian θ∗ over 100 runs with 1, 000 trials. The lower the regret, the better
the performance.

1



Variance of the Cumulative Regret Performance

The methods considered show very diverse behavior across experiments even
in the simple Gaussian simulation case. In particular, while both PG-TS and
PG-TS-stream converge across experiments, Laplace-TS shows high variability
and significantly higher cumulative regret across the same trials.
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Figure S2: Trace plots of cumulative regret for PG-TS and PG-TS-stream (Top),
and Laplace-TS (Bottom) on the simulated data set with Gaussian θ∗ over 100
runs with 1, 000 trials.

Furthermore, Laplace-TS is sensitive to multimodality. We found that the
misspecified model does not prevent the PG-TS algorithms from consistently
finding the correct arm, while Laplace-TS exhibits poor average behavior (Fig. S3).
For our similations, we do not show comparison to GLM-UCB as previous stud-
ies address the superiority of Laplace-TS [Chapelle and Li, 2011, Russo and
Van Roy, 2014].
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Figure S3: Comparison of the average cumulative regret of the PG-TS, PG-TS-
stream, and the Laplace-TS algorithms on simulated data with mixed Gaussian
θ∗ over 100 runs with 5, 000 trials (standard deviation shaded). Laplace-TS
performs better during earlier trials, yet struggles to settle on an optimal arm.

Langevin Alternatives

We compared our method to Langevin-TS [Russo et al., 2017], and we found
that PG-TS significantly outperforms Langevin-TS in our simulations (Fig. S5).
We note that the Langevin implementation is very sensitive to learning rate,
step size and numerous other initialization parameters, unlike PG-TS whose
performance is consistent across our simulations.

Figure S4: Comparison of the average cumulative regret of the PG-TS-iter, PG-
TS-stream, and Laplace-TS algorithms and Langevin on the simulated data set
with Gaussian θ∗ over 100 runs with 1, 000 trials (standard deviation shown as
shaded region)

We further note that PG-TS outperforms a variance reduced stochastic gra-
dient Monte Carlo approach extension to Langevin-TS [Chatterji et al., 2018].
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Figure S5: Comparison of the average cumulative regret of the PG-TS-iter, PG-
TS-stream, and Laplace-TS algorithms and Langevin on the simulated data set
with Gaussian θ∗ over 100 runs with 1, 000 trials (standard deviation shown as
shaded region)

Exploration and Exploitation comparison across Gaussian
simulations
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Figure S6: Comparison of the arm choices for the GLM-UCB (Left) and PG-TS-
stream (Right) algorithms on the simulated data set with Gaussian θ∗ across
1, 000 trials. The arms were sorted by expected reward in decreasing order, with
arm 0 giving the highest reward, and arm 99 the lowest. The selected arms are
colored according to the distance of their expected reward from the optimal
reward (regret). GLM-UCB takes many trials to settle on the optimal arm,
while both PG-TS algorithms explore successfully and settle on the optimal
one. Recall that Laplace-TS gets stuck on a sub-optimal arm.
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Pseudocode for the algorithms mentioned

Algorithm 1 Generic Contextual Bandit Algorithm

Initialize D0 = ∅
for t = 1, 2, ... do

Observe Kt arms At
Receive context xt,a ∈ Rd
Select at given xt,a,Dt−1
Observe reward rt,at
Update Dt = Dt−1 ∪ {xt,at , at, rt}

end for

Algorithm 2 Laplace-TS [Chapelle and Li, 2011]

Input: Regularization parameter λ = 1
mi = 0, qi = λ, for i = 1, 2, . . . d
for t = 1 to T do

Receive context xt,a
Q = diag

(
q−11 , q−12 , . . . q−1d

)
Draw θt ∼MVN (m,Q)
Select at = arg maxa µ

(
x>t,aθt

)
Receive reward rt
yt = 2rt − 1
w = arg minw

1
2

∑d
i=1 qi (wi −mi)

2 − log
(
µ
(
ytx
>
t,atw

))
m = w
p = µ

(
x>t,atw

)
q = q + p (1− p) x2

t,at
end for

Algorithm 3 GLM-UCB [Filippi et al., 2010]

Input: Admissible parameter set Θ, slowly increasing function ρ(t)
for t = 1, 2, . . . do

Receive context xt,a

θt = arg minθ∈Θ

∥∥∥∑t−1
i=1(ri − µ(x>i,aiθ))xi,ai

∥∥∥2
V−1

t

Select at = arg maxa{x>t,aθt + ρ(t) ‖xt,a‖2V−1
t
}

Receive reward rt ∈ {0, 1}
Vt+1 =

∑t
i=1 xi,aix

>
i,ai

end for
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