
A Diminishing Returns for Fine-grained Lattices

We limit our experiments to 2× 2× 2 . . . lattices, which are single-celled lattices. Multi-cell
lattices require additional linear inequality constraints on the lattice parameters. Even with
multilinear interpolation, to ensure decreasing slopes as the input x[d] moves between the
cells of the lattice requires (M − 1)× 2S−1 linear inequality constraints for a MS lattice.

B Diminishing Returns for Deep Lattice Networks

To constrain a deep lattice network (DLN) to be convex and increasing for a feature, one
must make each layer convex and increasing for any values that are influenced by inputs
constrained by those shape constraints. DLN layers are of three types: linear embeddings, 1-d
calibrators, or ensembles of lattices. All three layers can be constrained for shape constraints
by training with the noted extra linear inequality constraints in this paper. However, if a
linear embedding is used before a lattice, for example the Wl matrix in (5), then one must
constrain Wl so that each feature only appears in one input to the lattice, because if a feature
is part of two inputs to the lattice, then the multilinear interpolation is no longer linear with
respect to the feature, which may affect the model’s overall convexity or concavity.

C Concave/Convex Lattices with Simplex Interpolation

Simplex interpolation (also known as the Lovász extension [29]), is a more efficient way
to linearly interpolate a lattice than multilinear interpolation [24], but unlike multilinear
interpolation, the produced function is piecewise linear with S! pieces. And as one varies an
input x[d], one crosses to different planar pieces, each which have different slopes defined
by the lattice parameters. One must constrain the lattice parameters so that all S! planar
pieces one crosses have decreasing slope as x[d] goes from 0→ 1 to guarantee a concave f(x).
The resulting constraints are illustrated in Fig. 4 for S = 2 and S = 3. In general one must
satisfy (S − 1)2(S−2) linear inequality constraints to guarantee concavity for a given input.

Figure 4: Left: A S = 2 dimensional lattice. Simplex interpolation interpolates the S + 1
lattice parameters for the upper triangle and bottom triangle, fitting a plane to each of the
two simplices. Thus the upper triangle has slope θ4 − θ3, and the lower triangle has slope
θ2 − θ1. To guarantee convexity from left-to-right, one must guarantee decreasing slopes by
satisyfing the linear inequality constraint θ4− θ3 > θ2− θ1. Right: For a S = 3 dimensional
lattice, simplex interpolation is piecewise linear on six simplices, and concavity from left-to-
right requires decreasing slopes across adjacent simplices, so four linear inequalities must be
satisfied: θ8 − θ7 > θ4 − θ3, θ8 − θ7 > θ6 − θ5, θ4 − θ3 > θ2 − θ1 and θ6 − θ5 > θ2 − θ1.

12

Table 4: Simulation

Model Validation MSE Test MSE
DNN 1.7× 10−4 2.15× 10−4

SCNN concave 9.9× 10−4 1.19× 10−3

SCNN dim. ret. 5.7× 10−4 6.25× 10−4

RTL dim. ret. 6.0× 10−4 5.79× 10−4

Cal. Lin. dim. ret. 1.98× 10−1 1.93× 10−1

D Simulation

To verify that all methods are working as intended, we learned the following smooth function
f : R6 → R that is ceterus paribus concave and increasing in variables x[1], x[2], x[3]:

f(x) = x[1]0.3x[2]0.6x[3]0.9

ex[4]+2x[5]+3x[6] + cos (x[4]x[5]x[6]) log
(6∑
i=1

x[i]
)
. (6)

Examples were sampled on a uniform grid on [0.5, 1.5]6, 5 points per dimension, for a total of
56 points. They were then randomly shuffled and split into training, validation and test sets
and used to evaluate adding concavity and diminishing returns constraints on x[1], x[2], x[3]
for various function classes. Results in Table 4 verify that all methods are working as
expected, and that the methods with the additional shape constraints show less overfitting
as measured by the difference in validation and test MSE.

E Churn Data for Domain Name Pricing Results

We ran follow-up experiments to better characterize the re-training churn [30] of the test
results for the DNN, SCNN, and RTL models for the Domain Pricing experiment with
respect to re-training. We fixed the hyperparameters to be the ones chosen by the validation
process. Then we re-trained each model type 100 times. We sorted the resulting 100 test
MSE’s for each model type, and then plotted the sorted test MSE’s in Figure 5.
The 100 re-trainings differ because for both model types, each re-training experienced a
different random shuffle of the training data, and randomized mini-batching of the stochastic
gradients. For DNN, there is also randomness from the initialization: the models were initial-
ized using Glorot initialization, that is, the weights are uniform random over some interval,
and the biases are initialized to 0. For SCNN, the models were initialized deterministically
using the identity matrix and zero for the biases. The RTL models are deterministically
initialized based on the training data quantiles, this leads to very stable results across
re-trainings.
The DNN results show the most re-training variability. Over the 100 re-trainings, the DNN
test MSE ranges from 0.00143 to 2.002, with a mean of 0.27, and median 0.05. For the
SCNN, the deterministic regularization and added regularization from the shape constraints
does seem to upper-bound the test error, but it still has a large range of .00122 to 0.3161,
with better mean of 0.072 and worse median of 0.069.

F TensorFlow Code for Shape-Constrained Neural Network

1 import tensorflow as tf
2
3 def scnn_model_fn (features , labels , mode , params):
4 inputs = {}
5 for input_name in [’xu’, ’xc’, ’xs’]:
6 if input_name not in features :
7 continue
8 input_dim = features [input_name]. shape [1]. value

13

Figure 5: Plots show the 100 sorted test MSE values for 100 different DNN, SCNN and RTL
models, where each of the models was re-trained with the (same) hyperparameters chosen
on the validation set.

9 if input_dim > 0:
10 inputs [input_name] = tf. feature_column . input_layer (
11 { input_name : features [input_name]},
12 [tf. feature_column . numeric_column (
13 input_name , shape =(input_dim)
14)])
15
16 # for simplicity , assume at least one feature is unconstrained
17 assert ’xu’ in inputs
18 fc = tf. layers .dense
19
20 # if ‘is_convex ‘, constrain xc and xs to be convex , else concave
21 g = (tf.nn.relu if params [’is_convex ’]
22 else lambda x: -1*tf.nn.relu (-1*x))
23 h = tf.nn.relu
24
25 u_dims = params [’u_dims ’]
26 z_dims = params [’z_dims ’]
27 n_layers = len(z_dims)
28 nonneg = lambda x: tf. maximum (x, 0.0)
29 bias_init = tf. constant_initializer (0.0)
30 kernel_init = tf. initializers . identity ()
31
32 prev_u = inputs [’xu’]
33 for i in range(n_layers):
34 z_dim = z_dims [i]
35
36 pre = fc(prev_u , z_dim , kernel_initializer = kernel_init ,
37 bias_initializer = bias_init)
38
39 if ’xs’ in inputs :
40 inner = fc(prev_u , inputs [’xs’]. shape [1],
41 kernel_initializer = kernel_init ,
42 bias_initializer =bias_init ,
43 activation =tf.nn.relu)

14

44 pre += fc(tf. multiply (inputs [’xs’], inner),
45 z_dim , kernel_constraint =nonneg ,
46 kernel_initializer = kernel_init ,
47 use_bias =False)
48
49 if ’xc’ in inputs :
50 inner = fc(prev_u , inputs [’xc’]. shape [1],
51 kernel_initializer = kernel_init ,
52 bias_initializer = bias_init)
53 pre += fc(tf. multiply (inputs [’xc’], inner),
54 z_dim , kernel_initializer = kernel_init ,
55 use_bias =False)
56
57 if i > 0:
58 prev_z_dim = z_dims [i -1]
59 inner = fc(prev_u , prev_z_dim , kernel_initializer = kernel_init ,
60 bias_initializer =bias_init ,
61 activation =tf.nn.relu)
62 pre += fc(tf. multiply (prev_z , inner), z_dim ,
63 kernel_constraint =nonneg ,
64 kernel_initializer = kernel_init ,
65 use_bias =False)
66
67 if i == n_layers -1:
68 z = pre
69 else:
70 z = g(pre)
71
72 prev_z = z
73 if i != n_layers -1:
74 prev_u = fc(prev_u , u_dims [i],
75 kernel_initializer = kernel_init ,
76 bias_initializer =bias_init ,
77 activation =h)
78
79 if mode == tf. estimator . ModeKeys .TRAIN:
80 optimizer = tf.train. AdamOptimizer (
81 learning_rate = params [’learning_rate ’])
82 loss = tf. losses . mean_squared_error (z, labels)
83 train_op = optimizer . minimize (
84 loss , global_step =tf.train. get_global_step ())
85 return tf. estimator . EstimatorSpec (
86 mode , loss=loss , train_op = train_op)
87 if mode == tf. estimator . ModeKeys . PREDICT :
88 predictions = {’predictions ’: z}
89 return tf. estimator . EstimatorSpec (mode , predictions = predictions)
90
91 # example usage
92 scnn_estimator = tf. estimator . Estimator (
93 model_fn = scnn_model_fn , params ={’u_dims ’: [50] , ’z_dims ’:[50 , 1],
94 ’learning_rate ’: 0.1, ’is_convex ’: False })

15

	Introduction
	Related Work
	Shape-Constrained Neural Network
	Lattice Models with Convex/Concave Shape Constraints
	Calibrated Linear Models with Convex/Concave Shape Constraints
	Two Layer Lattice Models with Convex/Concave Shape Constraints
	Training the Constrained Optimization

	Experiments
	Car Sales
	Puzzle Sales from Reviews
	Domain Name Pricing
	Wine Enthusiast Magazine Reviews
	Query-Result Matching

	Conclusions
	Diminishing Returns for Fine-grained Lattices
	Diminishing Returns for Deep Lattice Networks
	Concave/Convex Lattices with Simplex Interpolation
	Simulation
	Churn Data for Domain Name Pricing Results
	TensorFlow Code for Shape-Constrained Neural Network

