
Adversarial Scene Editing:
Automatic Object Removal from Weak Supervision

Rakshith Shetty1 Mario Fritz2 Bernt Schiele1

1Max Planck Institute for Informatics, Saarland Informatics Campus
2CISPA Helmholtz Center i.G., Saarland Informatics Campus

Saarbrücken, Germany
1firstname.lastname@mpi-inf.mpg.de
2firstname.lastname@cispa.saarland

1 Data pre-processing

We pre-process the COCO dataset to filter out images containing large objects. This is done by
removing images with single object class covering more than 30% of the image. Removing very large
objects requires the model to hallucinate most of the image, and the task becomes very difficult. This
is also reasonable from application point of view, since the object larger than 30% of the image are
very often the focus of the image, and removing them would not be very useful. After size filtering
we are have 39238 training, 2350 validation and 1905 test images.

In both the datasets, the images are preprocessed by resizing the shortest edge to 128 pixels and
center-cropping to obtain 128x128 images. Further data augmentation is performed using random
horizontal flips and the images are normalized to have zero mean and unit variance.

Similar preprocessing is applied to the masks from the Pascal dataset to obtain 128x128 dimensional
masks for the prior. The Pascal dataset has about 215 masks on average for each of the 20 classes.
This gives us 4318 masks for our mask-prior, which is much lower compared to 39238 training
images in our pre-processed dataset.

2 Network architectures

Mask generator. The mask generator architecture is built on top of a VGG network pre-trained on
Image net classification task. Note that this pre-training also uses only image-level labels. We use
the features from the convolutional layer before the first fully connected layer from the VGG-19
architecture as our starting point. Additionally, we remove two previous maxpool layers to obtain
features of dimensions 512 × 32 × 32. This is concatenated with 20 dimensional one-hot vector
representing the target class. On top of this we add the following layers:

C3
512 − L0.1 −R512 − C3

256 − L0.1 −R256 − C3
128 − L0.1 −R128 − C7

21 − S

where Ck
n indicates a convolutional layer with n filters of k × k size and Rn is a residual block with

n filters, L0.1 is leaky relu non-linear activation layer and S is the sigmoid activation function.

Each residual block is Rn consists of

C3
n − In − L0.1 − C3

n − In − L0.1

where In is a n dimensional instance normalization layer. with slope parameter 0.1. We also
concatenate the target class vector after every residual block since it improves the performance.

In-painter. Our in-painter network architecture is designed borrowing ideas from prior works [1, 2].
We use the same basic architectures as in [1] but incorporate dilated convolutions in the bottleneck

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Table 1: Comparing our inpainter to state-of-the art methods. Other results are taken from the
paper [4].

Metric Method Relative mask size
(0-0.1) [0.1-0.2) [0.2-0.3) [0.3-0.4) [0.4-0.5) [0.5-0.6)

SSIM

PM [5] 0.947 0.865 0.768 0.675 0.579 0.472
GL [2] 0.923 0.829 0.721 0.627 0.533 0.440
PConv [4] 0.945 0.870 0.779 0.689 0.595 0.484
Ours 0.972±0.00 0.925±0.00 0.870±0.00 0.813±0.00 0.758±0.00 0.721±0.01

pSNR

PM [5] 33.68 27.51 24.35 22.05 20.58 18.22
GL [2] 29.74 23.83 20.73 18.61 17.38 16.37
PConv [4] 34.34 28.32 25.25 22.89 21.38 19.04
Ours 32.68±0.09 26.07±0.03 22.84±0.03 20.67±0.02 19.09±0.04 18.14± 0.17

layers to improve performance on larger masks as proposed in [2]. The in-painter takes the input
image concatenated with the mask and is agnostic to the object class.

The in-painter network is built with a downsampling block, bottle-neck block and the upsampling
block. The layers in the downsampling block are

C4
64 − I64 − L0.1 −D2

128 − I128 − L0.1 −D2
256 − I256 − L0.1 −D2

512 − I512 − L0.1

where D2
n is a downsampling layer halving the spatial dimensions of the input. It consists of a

convolutional layer with filter size 4× 4 and stride 2. The bottle-neck block is just six back-to-back
residual layers, R256. Finally, the upsampling block is made of three upsampling blocks followed by
an output convolutional layer with tanh non-linearity (T )

U2 − C3
256 − I256 − L0.1 − U2 − C3

128 − I128 − L0.1 − U2 − C3
64 − I64 − L0.1 − C7

3 − T

where U2 is a bilinear up-sampler which doubles the spatial dimensions of the input.

Object Classifier. Our object classifier is designed on top off the VGG-19 network backbone which
is pre-trained on Imagenet. We add the following layers after the last convolutional layer of VGG-19

C3
512 −B512 − L0.1 − C3

512 −B512 − L0.1 −G− Lin20 − S

where Bn is a n-dimensional batch normalization layer, G is a global pooling layer and Lin20 is a
linear layer mapping input to 20 class scores.

3 Implementation Details

All the components of our model are trained using stochastic gradient descent with Adam optimizer.
The adversarial discriminators used in the mask prior and real/fake classification are regularized with
the gradient penalty [3]. The model hyper-parameters were chosen using a validation set. The final
settings of the hyper-parameters in our loss function were λc = 12, λp = 3, λsz = 18, λrf = 2,
λr = 100,λtv = 10, and λsty = 3000.

We implement all our models with the PyTorch framework. We will release our code upon publication.

4 Comparing In-painter to state-of-the-art

We compare our in-painter model to state-of-the-art image in-painting models from literature on the
Places2 [6] dataset in Table 1. Results from the other papers shown in Table 1 are taken from [4].
Since we do not have access to the masks used to test these models, we test ours using random rotated
rectangular masks. We mask the input image with up to four randomly generated rectangular masks
and measure the in-painting performance. From the table we see that our model performs better than
prior work in-terms of structural similarity index (ssim) and is bit worse than partial convolution
based method [4] (PConv) in terms of pSNR.

We have noticed in our experiments that irregular masks are much harder to in-paint than axis-aligned
rectangular masks. Our model learns to handle both since it is trained with the mask-generator.

2



Input Mask GL Ours

Figure 1: Qualitative comparison of our in-painter to GL [2]. We compare the performance of the
two models with axis aligned and rotated rectangular patches. These results show that the inpainters
trained with only regular axis-aligned rectangles (as in GL) do not perform well with even a small
change to the mask distribution including on rotated rectangular masks.

However, prior work [2] is only trained with axis-aligned rectangles (it does not allow easy extension
to irregular masks as the local discriminator needs a bounding box) and performs poorly on irregular
masks. We demonstrate this in qualitative examples shown in Figure 1. We can see from these
examples that while [2] works well on axis-aligned rectangles, it degrades with rotated rectangles.
This is the primary reason our model has an advantage over [2] in the metrics shown in Table 1 and is
on par with [4] (better in SSIM worse in pSNR), which explicitly handles irregular masks.

5 Qualitative Results

Figure 2 shows more qualitative examples of objects removal on the COCO dataset. Examples in the
first three rows showcase a wide-variety of scenes where our model is able to successfully remove
the target object class. It works for objects of different poses and sizes, and with single or multiple
instances of the target object class.

Last row of Figure 2 highlights some failure modes we observed in our model. The First four columns
in the last row shows failures where the full extent of the object is not removed and some parts
of the object is still visible. However, only in case of the motorcycle we can clearly identify the
removed object class in the edited image. In case of the boat image, only one instance of boat has

3



been removed by the editor. Similarly in the second last column, although the larger person has
been removed, the smaller instances of people are visible in the background. Finally, the last column
shows a case of false removal wherein in an attempt to remove the horse, our editor also removes the
people riding the horse.

References
[1] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan: Unified generative adversar-

ial networks for multi-domain image-to-image translation,” arXiv preprint arXiv:1711.09020,
2017.

[2] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally consistent image completion,”
ACM Transactions on Graphics (TOG), 2017.

[3] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of
wasserstein gans,” in Advances in Neural Information Processing Systems (NIPS), 2017.

[4] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro, “Image inpainting for
irregular holes using partial convolutions,” arXiv preprint arXiv:1804.07723, 2018.

[5] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patchmatch: A randomized
correspondence algorithm for structural image editing,” ACM Transactions on Graphics-TOG,
2009.

[6] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 million image
database for scene recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

4



tv person dog person bicycle person train

Input
image

Ours

chair dog sheep cat horse cow person

Input
image

Ours

person train person couch horse person bird

Input
image

Ours

bird motorcylce person airplane boat person horse

Input
image

Ours

Figure 2: Qualitative examples of removal of different object classes in diverese scenes. First three
rows show examples where our model does well, whereas the last row highlights some failure cases.

5


	Data pre-processing
	Network architectures
	Implementation Details
	Comparing In-painter to state-of-the-art
	Qualitative Results

