
8 Proofs

8.1 Proof Of Proposition 1

Proof. For N = 1, the result directly follows from [26]. Now we formally prove that more players
cannot help. Assume that for N > 1 there is a policy that results in a better total expected regret
than Ω (log T ). Hence, there must exist a player for which the personal regret is also better than
Ω (log T ). This player, denoted player n, can simulate N − 1 other players and generate at random
their expectations and rewards, all of which are independent of the actual rewards she receives. This
player also simulates the policies for other players, and even knows when a collision occurred for
herself and can assign zero reward in that case. Hence, simulating N − 1 fictitious players is a valid
single player multi-armed bandit policy that violates the Ω (log T ) bound, which is a contradiction.
We conclude that this bound is also valid for N > 1.

8.2 Proof Of Lemma 1

Proof. First note that an optimal solution must not have any collisions, otherwise it can be improved
since K ≥ N . Hence J1 =

∑N
n=1 µn,a1,n . For all n and i we have µ̂n,i = µn,i + zn,i such that

|zn,i| ≤ ∆. In the perturbed assignment problem, a1 performs at least as well as

N∑
n=1

µ̂n,a1,n =

N∑
n=1

(
µn,a1,n + zn,i

)
≥

N∑
n=1

µn,a1,n −∆N (24)

and any assignment a 6= a1 performs at most as well as
N∑
n=1

µ̂n,anηan (a) =

N∑
n=1

(µn,an + zn,i) ηan (a) ≤
N∑
n=1

µn,a2,nηa2,n (a2) + ∆N. (25)

Hence it follows that if ∆ < J1−J2
2N then for every a 6= a1

N∑
n=1

µ̂n,a1,n >

N∑
n=1

µ̂n,anηan (a) . (26)

8.3 Proof Of Lemma 2

Proof. According to [7, Lemma 1], for each ∆ > 0 and error probability 0 < Pe,k < 1 , after

T0 =
4K

∆2
ln

(
4K2

Pe,k

)
(27)

turns of pure exploration, for all n and all i we have with a probability of at least 1− Pe,k that∣∣µkn,i − µn,i∣∣ ≤ ∆. (28)

In [7], the formulation of the lemma is slightly different and states the probability of an 2∆-correct
ranking. However, the proof follows by showing (28). Note that we used the fact that

∆ <
J1 − J2

2N
≤ N − 0

2N
=

1

2
< 1

so

T0 = max

{
K

2
ln

(
2K2

Pe,k

)
,

4K

∆2
ln

(
4K2

Pe,k

)}
=

4K

∆2
ln

(
4K2

Pe,k

)
. (29)

We conclude that after T0 exploration turns, the error probability is at most Pe,k. Hence, if the
exploration phase has a duration of at least 4K

∆2 turns we obtain

4K

∆2
k ≤ c1k =

4K

∆2
ln

(
4K2

Pe,k

)
=⇒ Pe,k ≤ 4K2e−k (30)

which together with the requirement ∆ < J1−J2
2N of Lemma 1 completes the proof.
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8.4 Proof Of Theorem 2

Proof. Let z, z′ ∈ Z. Define for each z
Nz = {n | an 6= an or un = 0 orMn = D} . (31)

This is the set of players for which the transition of Mn is governed by (11). Compared to [24], our
dynamics have a different transition probability Pzz′ only when z has a non-empty Nz . For each
Nz ⊆ N we have

lim
ε→0+

∏
n∈Nz

un
un,max

εun,max−un

ε
∑
n∈Nz (un,max−un)

=
∏
n∈Nz

un
un,max

. (32)

Hence, in the limit ε→ 0+, the ratio between the transition probabilities in our dynamics and those
of [24] is either

∏
n∈Nz

un
un,max

≤ 1 or one. We conclude that each transition either has the same
resistance as in [24] or it is impossible since un = 0 for some n. From any z ∈ C0 there is a path
with resistance c to D, where a content player explores and becomes discontent. From any z ∈ D
to any z ∈ C0 there is a path where all discontent players become content, which has resistance∑
n (un,max − un (z)) with {un (z)} as the utilities in z. Therefore, the path from any z to the

maximizers of
∑
n∈N un (which are in C0) has the same resistance as in [24] (it is the same path).

Since all other paths have the same resistance as in [24] or do not exist, the maximizers of
∑
n∈N un

remain the only stochastically stable states, as in [24]. From Lemma 4 we know that the maximizer
of
∑
n∈N un is unique with probability 1.

8.5 Proof Of Lemma 5

Proof. Denote the optimal state by z∗ =
[
ak∗, CN

]
. From Theorem 2 and the definition of a

stochastically stable state, we know that for a small enough ε we have π (z∗) ≥ 2
3 . Denote the

length of the part of the GoT phase where counting (of (6)) took place by L ,
⌊
c2 (1− ρ) k1+δ

⌋
.

In the end of the GoT phase, each player picks the action that she played most of the times she
was content. If the strategy profile ak∗ was played more than L

2 of the time, each player played the
corresponding action at least half of the time. Hence, the probability that a strategy profile other than
ak∗ would be picked is lower than the probability that ak∗ has been played less than L

2 of the time.
We bound this probability using [27, Theorem 3]. Our function is f (z) = I (z = z∗), that counts
the number of visits to the optimal state. Note that the events I (z (t) = z∗) are not independent but
rather form a Markov chain. Hence, Markovian concentration inequalities are required.

We denote by Tm
(

1
8

)
the mixing time of Z with an accuracy of 1

8 . We define for the initial distri-
bution ϕ on Z (after dg =

⌈
ρc2k

1+δ
⌉

turns in the k-th GoT Phase),

‖ϕ‖π ,

√√√√ |Z|∑
i=1

ϕ2
i

πi
. (33)

By choosing η = 1− 1
2π(z∗) (so 0 < η < 1 when π (z∗) > 1

2 ), we obtain the following bound for a
small enough ε

Pr

(
L∑
τ=1

f (z (τ)) ≤ (1− η)π (z∗)L

)
≤ Pr

(
L∑
τ=1

I (z (τ) = z∗) ≤ c2 (1− ρ) k1+δ

2

)
≤

c ‖ϕ‖π e
−

(1− 1
2π(z∗) )

2
π(z∗)c2(1−ρ)

72Tm( 1
8 )

k1+δ

≤
(a)

c ‖ϕ‖π e
− c2(1−ρ)

1728Tm( 1
8 )
k1+δ

(34)

where c is some constant. Note that π
(
1− 1

2π

)2
= π − 1 + 1

4π is monotonically increasing for all
1
2 < π < 1. Since for a small enough ε we have π (z∗) ≥ 2

3 , (a) follows by substituting π (z∗) = 2
3 .

There is a tradeoff regarding ‖ϕ‖π . Starting from an arbitrary initial condition, ‖ϕ‖π can be large.
By dedicating the first dg turns of the GoT phase to letting Z approach its stationary distribution,
and starting to count the visits to z∗ only afterwards, we can reduce ‖ϕ‖π significantly, at the cost
of dg turns less for estimating z∗. Optimizing over dg (or ρ) and ‖ϕ‖π can improve the constants of
the bound (34).
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