
7 Supplementary material

7.1 Omitted proofs from Section 3

Diagram metrics as optimal transport: We recall that we consider D1 =
∑n1

i=1 δxi and D2 =∑n2

j=1 δyj two persistence diagrams with respectively n1 points x1 . . . xn1
and n2 points y1 . . . yn2

,
p ≥ 1, and C is the cost matrix with block structure

C =

(
Ĉ u
vT 0

)
∈ R(n1+1)×(n2+1),

Proof of Prop. 1. Let n = n1 + n2 and µ = D1 + RD2, ν = D2 + RD1. Since µ, ν are point
measures, that is discrete measures of same mass n with integer weights at each point of their
support, finding infP∈Π(µ,ν) 〈P,C〉 is an assignment problem of size n as introduced in §2. It is
equivalent to finding an optimal matching P ∈ Σn representing some permutation σ ∈ Sn for
the cost matrix C̃ ∈ Rn×n built from C by repeating the last line u in total n1 times, the last
column v in total n2 times, and replacing the lower right corner 0 by a n1 × n2 matrix of zeros. The
optimal σ defines a partial matching ζ between D1 and D2, defined by (xi, yj) ∈ ζ iff j = σ(i),
1 ≤ i ≤ n1, 1 ≤ j ≤ n2. Such pairs of points induce a cost ‖xi − yj‖p, while other points
s ∈ D1 ∪D2 (referred to as unmatched) induce a cost ‖s− π∆(s)‖p. Then:

LC(µ, ν) = min
P∈Σn

〈C̃, P 〉

= min
σ∈Sn

n∑
i=1

C̃iσ(i)

= min
ζ∈Γ(D1,D2)

∑
(xi,yj)∈ζ

‖xi − yj‖p +
∑

s∈D1∪D2
s unmatched by ζ

‖s− π∆(s)‖p

= dp(D1, D2)p.

Error control due to discretization: Let D1, D2 be two diagrams and a,b their respective repre-
sentations as d× d histograms. For two histograms, LC(a + Rb,b + Ra) = dp(D

′
1 + RD′2, D

′
2 +

RD′1) where D′1, D
′
2 are diagrams deduced from D1, D2 respectively by moving any mass located

at (x, y) ∈ R2
> ∩ [0, 1]2 to

(
bxdc
d , bydcd

)
, inducing at most an error of 1

d for each point. We identify
a,b and D′1, D

′
2 in the following. We recall that dp(·, ·) is a distance over persistence diagrams and

thus satisfy triangle inequality, leading to:

|dp(D1, D2)− LC(a + Rb,b + Ra)
1
p | ≤ dp(D1, D

′
1) + dp(D2, D

′
2)

Thus, the error made is upper bounded by 1
d (|D1|

1
p + |D2|

1
p ).

Propositions 2, 3, 4: We keep the same notations as in the core of the article and give details
regarding the iteration schemes provided in the paper.

Proof of prop 2. Given an histogram u ∈ Rd×d and a mass u∆ ∈ R+, one can observe that (see
below):

K̂u = k(kuT )T . (17)

In particular, the operation u 7→ K̂u can be perform by only manipulating matrices in Rd×d. Indeed,
observe that:

K̂ij,kl = e−(i−k)2/γe−(j−l)2/γ = kikkjl,
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so we have:
(K̂u)i,j =

∑
k,l

Kij,kluk,l

=
∑
k,l

kikkjluk,l =
∑
k

kik
∑
l

kjlukl

=
∑
k

kik(kuT )jk = (k(kuT )T )i,j .

Thus we have in our case:
K(u, u∆) = (K̂u + u∆k∆, 〈u,k∆〉+ u∆)

where 〈a, b〉 designs the Froebenius dot product between two histograms a, b ∈ Rd×d. Note that
these computations only involves manipulation of matrices with size d× d.

Proof of prop 3.

〈diag(−→u )K̂diag(−→v ), Ĉ〉 =
∑
ijkl

uijkikkjl[cik + cjl]vkl

=
∑
ijkl

uij ([kikcik]kjlvkl + kik[kjlcjl]vkl)

=
∑
ij

uij
∑
kl

(mikkjlvkl + kikmjlvkl)

Thus, we finally have:

〈diag(−→u )K̂diag(−→v ), Ĉ〉 = ‖u�
(
m(kvT )T + kmvT ]T

)
‖1

And finally, taking the {∆} bin into considerations,

〈diag(−→u , u∆)Kdiag(−→v , v∆), C〉 = 〈
(

diag(−→u )K̂diag(−→v ) v∆(−→u �−→k ∆)

u∆(−→v T �−→k T
∆) u∆v∆

)
,

(
Ĉ −→c ∆−→c T∆ 0

)
〉

= 〈diag(−→u )K̂diag(−→v ), Ĉ〉+ u∆ 〈v,k∆ � c∆〉+ v∆ 〈u,k∆ � c∆〉
Remark: First term correspond to the cost of effective mapping (point to point) and the two others to
the mass mapped to the diagonal.

To address the last proof, we recall below the rounding_to_feasible algorithm introduced by
Altschuler et al.; r(P ) and c(P ) denotes respectively the first and second marginal of a matrix P .

Algorithm 3 Rounding algorithm of Altschuler et al. (2017)

1: Input: P ∈ Rd×d, desired marginals r, c.
2: Output: F (P ) ∈ Π(r, c) close to P .
3: X = min

(
r

r(P ) , 1
)
∈ Rd

4: P ′ = diag(X)P

5: Y = min
(

c
c(P ′) , 1

)
∈ Rd

6: P ′′ = P ′diag(Y )
7: er = r − r(P ′′), ec = c− c(P ′′)
8: return F (P ) := P ′′ + ere

T
c /‖ec‖1

Proof of prop 4. By straightforward computations, the first and second marginals of P γt =
diag(−→u )Kdiag(−→v ) are given by:(∑

kl

uijKij,klvkl

)
ij

= u� (Kv),

∑
ij

uijKij,klvkl


kl

= (uK)� v.
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Observe that Kv and uK can be computed using Proposition 2.

Now, the transport cost computation is:
〈F (P γt ), C〉 = 〈diag(X)P γt diag(Y ), C〉+ 〈ereTc /‖ec‖1, C〉

= 〈diag(X � u)Kdiag(Y � v), C〉+
1

‖ec‖1
∑
ijkl

(er)ij(ec)kl[cik + cjl]

The first term is the transport cost induced by a rescaling of u,v and can be computed with Prop 3.
Consider now the second term. Without considering the additional bin {∆}, we have:∑

ijkl

(er)ij(ec)kl[cik + cjl] =
∑
ijl

(er)ij
∑
k

cik(ec)kl +
∑
ijk

(er)ij
∑
l

cjl(ec)kl

=
∑
ijl

(er)ij(cec)il +
∑
ijk

(er)ij(ce
T
c )jk

= ‖eTr cec‖1 + ‖erceTc ‖1,
so when we consider our framework (with {∆}), it comes:

〈
(

er
(er)∆

)
· (ec (ec)∆) , C〉 = 〈

(
ere

T
c (ec)∆er

(er)∆e
T
c (er)∆(ec)∆

)
,

(
Ĉ −→c ∆−→c T∆ 0

)
〉

= 〈ereTc , Ĉ〉+ (ec)∆ 〈er, c∆〉+ (er)∆ 〈ec, c∆〉 .
Putting things together finally proves the claim.

7.2 Omitted proofs from Section 4

We first observe that E does not have local minimum (while Ê does). For x ∈ R2
> ∪ {∆}, we extend

the Euclidean norm by ‖x−∆‖ the distance from x to its orthogonal projection onto the diagonal
π∆(x). In particular, ‖∆ −∆‖ = 0. We denote by c the corresponding cost function (continuous
analogue of the matrix C defined in (8)).1

Proposition (Convexity of E). For any two measures µ, µ′ ∈M+(R2
>) and t ∈ (0, 1), we have:

E((1− t)µ+ tµ′) ≤ (1− t)E(µ) + tE(µ′) (18)

Proof. We denote by αi, βi the dual variables involved when computing the optimal transport plan
between (1− t)µ+ tµ′ +RDi and Di +R((1− t)µ+ tµ′). Note that maximum are taken over the
set αi, βi|αi ⊕ βi ≤ c (with α⊕ β : (x, y) 7→ α(x) + β(y)):

E((1− t)µ+ tµ′) =
1

n

n∑
i=1

Lc((1− t)µ+ tµ′ + RDi, Di + (1− t)Rµ+ tRµ′)

=
1

n

n∑
i=1

max{〈αi, (1− t)µ+ tµ′ + RDi〉+ 〈βi, Di + (1− t)Rµ+ tRµ′〉}

=
1

n

n∑
i=1

max{(1− t) (〈αi, µ+ RDi〉+ 〈βi, Di + Rµ〉) +

t (〈αi, µ′ + RDi〉+ 〈βi, Di + Rµ′〉)}

≤ 1

n

n∑
i=1

(1− t) max {〈αi, µ+ RDi〉+ 〈βi, Di + Rµ〉}

+ tmax {〈αi, µ′ + RDi〉+ 〈βi, Di + Rµ′〉}

= (1− t) 1

n

n∑
i=1

Lc(µ+ RDi, Di + Rµ) + t
1

n

n∑
i=1

Lc(µ
′ + RDi, Di + Rµ′)

= (1− t)E(µ) + tE(µ′).

1Optimal transport between non-discrete measures was not introduced in the core of this article for the
sake of concision. It is a natural extension of notions introduced in §2 (distances, primal and dual problems,
barycenters). We refer the reader to (Santambrogio, 2015; Villani, 2008) for more details.
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Tightness of the relaxation. The following result states that the minimization problem (15) is a
tight relaxation of the problem considered by Turner et al. in sense that global minimizers of Ê (which
are, by definition, persistence diagrams) are (global) minimizers of E .
Proposition 6. Let D1, . . . , DN be a set of persistence diagrams. Diagram Di has mass mi ∈
N, while mtot =

∑
mi denotes the total mass of the dataset. Consider the normalized dataset

D̂1, . . . , D̂N defined by D̂i := Di + (mtot −mi)δ∆. Then the functional

G : µ 7→ 1

N

N∑
i=1

Lc(µ+ (mtot − |µ|)δ∆, D̂i) (19)

where µ ∈ {M+(R2
>) : maximi ≤ |µ| ≤ mtot} has the same minimizers as (15).

Corollary (Properties of barycenters for PDs). Let µ∗ be a minimizer of (15). Then µ∗ satisfies:

(i) (Carlier et al., 2015) Localization: x ∈ supp(µ∗) ⇒ x minimizes z 7→ ∑n
i=1 ‖xi − z‖22

for some xi ∈ supp(D̂i). This function admit a unique minimizer in R2
> ∪ {∆}, thus the

support of µ∗ is discrete.

(ii) G admits persistence diagrams (that is finite discrete measures with integer masses) as
minimizers (so does E).

We introduce an intermediate function F , which appears to have same minimizers as E and G, which
will allow us to conclude that E and G have the same set of minimizers.
Proposition. Let µ∗ ∈M+(R2

>) be a minimizer of E and (Pi)i the corresponding optimal transport
plans. Then for all i, Pi fully transports Di onto µ∗ (i.e. Pi(x,∆) = 0 for any x ∈ supp(Di)). In
particular, |µ∗| ≥ maxmi and E has the same minimizers as:

F(µ) :=
1

N

N∑
i=1

Lc(µ,Di + (|µ| −mi)δ∆) (20)

where µ ∈M+(R2
>) and satisfies |µ| ≥ maxmi

Proof. Fix i ∈ {1 . . . N}. Let Pi be an optimal transport plan between µ∗ +miδ∆ and Di + |µ∗|δ∆.
Let x ∈ supp(Di). Assume that there is a fraction of mass t > 0 located at x that is transported to
the diagonal ∆.

Consider the measure µ′ := µ∗ + tδx′ , where x′ = x+(N−1)π∆(x)
N . We now define the transport

plan P ′i which is adapted from Pi by transporting the previous mass to x′ instead of ∆ (inducing a
cost t‖x − x′‖2 instead of t‖x −∆‖2). Extend all other optimal transport plans (Pj)j 6=i to P ′j by
transporting the mass t located at x′ in µ′ to the diagonal ∆ (inducing a total cost (N−1)t‖x′−∆‖2),
and everything else remains unchanged. One can observe that the new (P ′j)j are admissible transport
plans from µ′ +mjδ∆ to Dj + |µ′|δ∆ (respectively) inducing an energy E(µ′) strictly smaller than
E(µ∗) , leading to a contradiction since E(µ∗) is supposed to be optimal.

To prove equivalence between the two problems considered (in the sense that they have the same
minimizers), we introduce µ∗E and µ∗F which are minimizers of E and F respectively. Note that the
existence of minimizers is given by standard arguments in optimal transport theory (lower semi-
continuity of E ,F ,G and relative compactness of minimizing sequences, see for example (Agueh &
Carlier, 2011, Prop. 2.3)). We first observe that E(µ) ≤ F(µ) for all µ (adding the same amount of
mass on the diagonal can only decrease the optimal transport cost).

This allows us to write:
F(µ∗E) = E(µ∗E) We can remove miδ∆ from both sides

≤ E(µ∗F ) since µ∗E is a minimizer of E
≤ F(µ∗F ) since E(µ) ≤ F(µ)

≤ F(µ∗E) since µ∗F is a minimizer of F
Hence, all these inequalities are actually equalities, thus minimizers of E are minimizers of F and
vice-versa.
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We can now prove that F as the same minimizers as G which will finally prove Proposition 6.

Proof of Proposition 6. Let µ∗G be a minimizer of G. Consider µ∆ := (mtot − |µ∗G |)δ∆. We observe
that µ∆ is always transported on {∆} (inducing a cost of 0) for each of the transport plan Pi ∈
Π(µ∗G + µ∆, D̂i) for minimality considerations (as in previous proof). Observe also (as in previous
proof) that G(µ) ≤ F(µ) for any measure µ, yielding:

G(µ∗G) = F(µ∗G) remove µ∆ from both sides
≥ F(µ∗F ) since µ∗F is a minimizer of F
≥ G(µ∗F ) since G(µ) ≤ F(µ)

≥ G(µ∗G) since µ∗G is a minimizer of G
This implies that minimizers of G are minimizers of F (and thus of E) and conversely.

Details for Corollary of Proposition 6

(i) Given N diagrams D1 . . . DN and (x1 . . . xN ) ∈ supp(D̂1) × · · · × supp(D̂N ), among
which k of them are equals to ∆, on can easily observe (this is mentioned in Turner et al.
(2014)) that z 7→∑N

i=1 ‖z − xi‖22 admits a unique minimizer x∗ = (N−k)x+kπ∆(x)
N , where

x is the arithmetic mean of the (N − k) non-diagonal points in x1 . . . xN .
The localization property (see §2.2 of Carlier et al. (2015)) states that the support of any
barycenter is included in the set S of such x∗s which is finite, proving in particular that
barycenters of D̂1 . . . D̂N have a discrete support included in some known set. Note that a
similar result is also mentioned in (Anderes et al., 2016).

(ii) As a consequence of previous point, one can describe a barycenter of D̂1 . . . D̂N as a vector
of weight w ∈ Rs+, where s is the cardinality of S and cast the barycenter problem as a
Linear Programming (LP) one (see for example §3.2 in (Anderes et al., 2016) or §2.3 and
2.4 in (Carlier et al., 2015)). More precisely, the problem is equivalent to:

minimize
w∈Rs+

wT c

s.t.∀i = 1 . . . N,Aiw = bi

Here, c ∈ Rs is defined as cj =
∑N
k=1 ‖x∗j − xk,j‖22, where x∗j is the mean (as defined

above) associated to (xk,j)
N
k=1. The constraints correspond to marginals constraints: bi is

the weight vector associated to D̂i on each point of its support. Integer Linear Programming
(see (Schrijver, 1998)) allows to conclude that among optimal w, some of them have integer
coordinates.

Bad local minima of Ê . The following lemma illustrate specific situation which lead algorithms
proposed by Turner et al. to get stuck in bad local minima.

Lemma 1. For any κ ≥ 1, there exists a set of diagrams such that Ê admits a local minimizer Dloc

satisfying:
Ê(Dloc) ≥ κÊ(Dopt)

where Dopt is a global minimizer. Furthermore, there exist sets of diagrams so that the B-Munkres
algorithm always converges to such a local minimum when initialized with one of the input diagram.

Proof. We consider the configuration of Fig. 9a where we consider two diagrams with 1 point (blue
and green diagram) and their correct barycenter (red diagram) along with the orange diagram (2
points). It is easy to observe that when restricted to the space of persistence diagram, the orange
diagram is a minimizer of the function Ê (in which the algorithm could get stuck if initialized poorly).
It achieves an energy of 1

2 (( 1
2 + 1

2 )2 + ( 1
2 + 1

2 )2) = 1 while the red diagram achieves an energy of
1
2 (
√
ε
2

+
√
ε
2
) = ε. This example proves that there exist configurations of diagrams so that Ê has

arbitrary bad local minima.

One could argue that when initialized to one of the input diagram (as suggested in (Turner et al.,
2014)), the algorithm will not get stuck to the orange diagram. Fig. 9b provide a configuration
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involving three diagrams with two points each where the algorithm will always get stuck in a bad
local minimum when initialized with any of the three diagrams. The analysis is similar to previous
statement.

births

de
at
hs

2
√
ε

1

(a) Example of arbitrary bad local minima of Ê .
Blue point and green point represent our two dia-
grams of interest. Red point is a global minimizer
of Ê . The two orange points give a diagram which
is a local minimizer of Ê achieving an energy ar-
bitrary higher (relatively) than the one of the red
diagram (as ε goes to 0).

births

d
ea
th
s

(b) Failing configuration for B-Munkres algorithm.
Three diagrams (red, blue, green) along with the
output of Turner et al algorithm (purple) when
initialized on the green diagram (we have a similar
result by symmetry when initialized on any other
diagram).

Figure 9: Example of simple configurations in which the B-Munkres algorithm will converge to arbitrarily bad
local minima
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