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Abstract

We propose to solve a label ranking problem as a structured output regression task.
In this view, we adopt a least square surrogate loss approach that solves a supervised
learning problem in two steps: a regression step in a well-chosen feature space
and a pre-image (or decoding) step. We use specific feature maps/embeddings for
ranking data, which convert any ranking/permutation into a vector representation.
These embeddings are all well-tailored for our approach, either by resulting in
consistent estimators, or by solving trivially the pre-image problem which is often
the bottleneck in structured prediction. Their extension to the case of incomplete or
partial rankings is also discussed. Finally, we provide empirical results on synthetic
and real-world datasets showing the relevance of our method.

1 Introduction

Label ranking is a prediction task which aims at mapping input instances to a (total) order over a
given set of labels indexed by {1, . . . ,K}. This problem is motivated by applications where the
output reflects some preferences, or order of relevance, among a set of objects. Hence there is an
increasing number of practical applications of this problem in the machine learning litterature. In
pattern recognition for instance (Geng and Luo, 2014), label ranking can be used to predict the
different objects which are the more likely to appear in an image among a predefined set. Similarly, in
sentiment analysis, (Wang et al., 2011) where the prediction of the emotions expressed in a document
is cast as a label ranking problem over a set of possible affective expressions. In ad targeting, the
prediction of preferences of a web user over ad categories (Djuric et al., 2014) can be also formalized
as a label ranking problem, and the prediction as a ranking guarantees that each user is qualified into
several categories, eliminating overexposure. Another application is metalearning, where the goal
is to rank a set of algorithms according to their suitability based on the characteristics of a target
dataset and learning problem (see Brazdil et al. (2003); Aiguzhinov et al. (2010)). Interestingly,
the label ranking problem can also be seen as an extension of several supervised tasks, such as
multiclass classification or multi-label ranking (see Dekel et al. (2004); Fürnkranz and Hüllermeier
(2003)). Indeed for these tasks, a prediction can be obtained by postprocessing the output of a label
ranking model in a suitable way. However, label ranking differs from other ranking problems, such as
in information retrieval or recommender systems, where the goal is (generally) to predict a target
variable under the form of a rating or a relevance score (Cao et al., 2007).

More formally, the goal of label ranking is to map a vector x lying in some feature space X to a
ranking y lying in the space of rankings Y . A ranking is an ordered list of items of the set {1, . . . ,K}.
These relations linking the components of the y objects induce a structure on the output space
Y . The label ranking task thus naturally enters the framework of structured output prediction for
which an abundant litterature is available (Nowozin and Lampert, 2011). In this paper, we adopt
the Surrogate Least Square Loss approach introduced in the context of output kernels (Cortes et al.,
2005; Kadri et al., 2013; Brouard et al., 2016) and recently theoretically studied by Ciliberto et al.
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(2016) and Osokin et al. (2017) using Calibration theory (Steinwart and Christmann, 2008). This
approach divides the learning task in two steps: the first one is a vector regression step in a Hilbert
space where the outputs objects are represented through an embedding, and the second one solves a
pre-image problem to retrieve an output object in the Y space. In this framework, the algorithmic
complexity of the learning and prediction tasks as well as the generalization properties of the resulting
predictor crucially rely on some properties of the embedding. In this work we study and discuss some
embeddings dedicated to ranking data.

Our contribution is three folds: (1) we cast the label ranking problem into the structured prediction
framework and propose embeddings dedicated to ranking representation, (2) for each embedding we
propose a solution to the pre-image problem and study its algorithmic complexity and (3) we provide
theoretical and empirical evidence for the relevance of our method.

The paper is organized as follows. In section 2, definitions and notations of objects considered through
the paper are introduced, and section 3 is devoted to the statistical setting of the learning problem.
section 4 describes at length the embeddings we propose and section 5 details the theoretical and
computational advantages of our approach. Finally section 6 contains empirical results on benchmark
datasets.

2 Preliminaries

2.1 Mathematical background and notations

Consider a set of items indexed by {1, . . . ,K}, that we will denote JKK. Rankings, i.e. ordered lists
of items of JKK, can be complete (i.e, involving all the items) or incomplete and for both cases, they
can be without-ties (total order) or with-ties (weak order). A full ranking is a complete, and without-
ties ranking of the items in JKK. It can be seen as a permutation, i.e a bijection σ : JKK → JKK,
mapping each item i to its rank σ(i). The rank of item i is thus σ(i) and the item ranked at position
j is σ−1(j). We say that i is preferred over j (denoted by i � j) according to σ if and only if i is
ranked lower than j: σ(i) < σ(j). The set of all permutations over K items is the symmetric group
which we denote by SK . A partial ranking is a complete ranking including ties, and is also referred
as a weak order or bucket order in the litterature (see Kenkre et al. (2011)). This includes in particular
the top-k rankings, that is to say partial rankings dividing items in two groups, the first one being the
k ≤ K most relevant items and the second one including all the rest. These top-k rankings are given
a lot of attention because of their relevance for modern applications, especially search engines or
recommendation systems (see Ailon (2010)). An incomplete ranking is a strict order involving only a
small subset of items, and includes as a particular case pairwise comparisons, another kind of ranking
which is very relevant in large-scale settings when the number of items to be ranked is very large.
We now introduce the main notations used through the paper. For any function f , Im(f) denotes
the image of f , and f−1 its inverse. The indicator function of any event E is denoted by I{E}. We
will denote by sign the function such that for any x ∈ R, sign(x) = I{x > 0} − I{x < 0}. The
notations ‖.‖ and |.| denote respectively the usual l2 and l1 norm in an Euclidean space. Finally, for
any integers a ≤ b, Ja, bK denotes the set {a, a+ 1, . . . , b}, and for any finite set C, #C denotes its
cardinality.

2.2 Related work

An overview of label ranking algorithms can be found in Vembu and Gärtner (2010), Zhou et al.
(2014)), but we recall here the main contributions. One of the first proposed approaches, called
pairwise classification (see Fürnkranz and Hüllermeier (2003)) transforms the label ranking problem
into K(K − 1)/2 binary classification problems. For each possible pair of labels 1 ≤ i < j ≤ K,
the authors learn a model mij that decides for any given example whether i � j or j � i holds. The
model is trained with all examples for which either i � j or j � i is known (all examples for which
nothing is known about this pair are ignored). At prediction time, an example is submitted to all
K(K − 1)/2 classifiers, and each prediction is interpreted as a vote for a label: if the classifier mij

predicts i � j, this counts as a vote for label i. The labels are then ranked according to the number
of votes. Another approach (see Dekel et al. (2004)) consists in learning for each label a linear
utility function from which the ranking is deduced. Then, a large part of the dedicated literature was
devoted to adapting classical partitioning methods such as k-nearest neighbors (see Zhang and Zhou
(2007), Chiang et al. (2012)) or tree-based methods, in a parametric (Cheng et al. (2010), Cheng et al.
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(2009), Aledo et al. (2017)) or a non-parametric way (see Cheng and Hüllermeier (2013), Yu et al.
(2010), Zhou and Qiu (2016), Clémençon et al. (2017), Sá et al. (2017)). Finally, some approaches
are rule-based (see Gurrieri et al. (2012), de Sá et al. (2018)). We will compare our numerical results
with the best performances attained by these methods on a set of benchmark datasets of the label
ranking problem in section 6.

3 Structured prediction for label ranking

3.1 Learning problem

Our goal is to learn a function s : X → Y between a feature space X and a structured output space Y ,
that we set to be SK the space of full rankings over the set of items JKK. The quality of a prediction
s(x) is measured using a loss function ∆ : SK ×SK → R, where ∆(s(x), σ) is the cost suffered
by predicting s(x) for the true output σ. We suppose that the input/output pairs (x, σ) come from
some fixed distribution P on X ×SK . The label ranking problem is then defined as:

minimizes:X→SKE(s), with E(s) =

∫
X×SK

∆(s(x), σ)dP (x, σ). (1)

In this paper, we propose to study how to solve this problem and its empirical counterpart for a
family of loss functions based on some ranking embedding φ : SK → F that maps the permutations
σ ∈ SK into a Hilbert space F :

∆(σ, σ′) = ‖φ(σ)− φ(σ′)‖2F . (2)

This loss presents two main advantages: first, there exists popular losses for ranking data that can
take this form within a finite dimensional Hilbert Space F , second, this choice benefits from the
theoretical results on Surrogate Least Square problems for structured prediction using Calibration
Theory of Ciliberto et al. (2016) and of works of Brouard et al. (2016) on Structured Output Prediction
within vector-valued Reproducing Kernel Hilbert Spaces. These works approach Structured Output
Prediction along a common angle by introducing a surrogate problem involving a function g : X → F
(with values in F) and a surrogate loss L(g(x), σ) to be minimized instead of Eq. 1. The surrogate
loss is said to be calibrated if a minimizer for the surrogate loss is always optimal for the true loss
(Calauzenes et al., 2012). In the context of true risk minimization, the surrogate problem for our case
writes as:

minimize g:X→FR(g), with R(g) =

∫
X×SK

L(g(x), φ(σ))dP (x, σ). (3)

with the following surrogate loss:

L(g(x), φ(σ)) = ‖g(x)− φ(σ)‖2F . (4)

Problem of Eq. (3) is in general easier to optimize since g has values in F instead of the set of
structured objects Y , here SK . The solution of (3), denoted as g∗, can be written for any x ∈ X :
g∗(x) = E[φ(σ)|x]. Eventually, a candidate s(x) pre-image for g∗(x) can then be obtained by
solving:

s(x) = argmin
σ∈SK

L(g∗(x), φ(σ)). (5)

In the context of Empirical Risk Minimization, a training sample S = {(xi, σi), i = 1, . . . , N}, with
N i.i.d. copies of the random variable (x, σ) is available. The Surrogate Least Square approach for
Label Ranking Prediction decomposes into two steps:

• Step 1: minimize a regularized empirical risk to provide an estimator of the minimizer of
the regression problem in Eq. (3):

minimize g∈H RS(g), with RS(g) =
1

N

N∑
i=1

L(g(xi), φ(σi)) + Ω(g). (6)

with an appropriate choice of hypothesis spaceH and complexity term Ω(g). We denote by
ĝ a solution of (6).
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• Step 2: solve, for any x in X , the pre-image problem that provides a prediction in the
original space SK :

ŝ(x) = argmin
σ∈SK

‖φ(σ)− ĝ(x)‖2F . (7)

The pre-image operation can be written as ŝ(x) = d ◦ ĝ(x) with d the decoding function:

d(h) = argmin
σ∈SK

‖φ(σ)− h‖2F for all h ∈ F , (8)

applied on ĝ for any x ∈ X .

This paper studies how to leverage the choice of the embedding φ to obtain a good compromise
between computational complexity and theoretical guarantees. Typically, the pre-image problem
on the discrete set SK (of cardinality K!) can be eased for appropriate choices of φ as we show in
section 4, leading to efficient solutions. In the same time, one would like to benefit from theoretical
guarantees and control the excess risk of the proposed predictor ŝ.

In the following subsection we exhibit popular losses for ranking data that we will use for the label
ranking problem.

3.2 Losses for ranking

We now present losses ∆ on SK that we will consider for the label ranking task. A natural loss
for full rankings, i.e. permutations in SK , is a distance between permutations. Several distances
on SK are widely used in the literature (Deza and Deza, 2009), one of the most popular being the
Kendall’s τ distance, which counts the number of pairwise disagreements between two permutations
σ, σ′ ∈ SK :

∆τ (σ, σ′) =
∑
i<j

I[(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0]. (9)

The maximal Kendall’s τ distance is thusK(K−1)/2, the total number of pairs. Another well-spread
distance between permutations is the Hamming distance, which counts the number of entries on
which two permutations σ, σ′ ∈ SK disagree:

∆H(σ, σ′) =

K∑
i=1

I[σ(i) 6= σ′(i)]. (10)

The maximal Hamming distance is thus K, the number of labels or items.

The Kendall’s τ distance is a natural discrepancy measure when permutations are interpreted as
rankings and is thus the most widely used in the preference learning literature. In contrast, the
Hamming distance is particularly used when permutations represent matching of bipartite graphs and
is thus also very popular (see Fathony et al. (2018)). In the next section we show how these distances
can be written as Eq. (2) for a well chosen embedding φ.

4 Output embeddings for rankings

In what follows, we study three embeddings tailored to represent full rankings/permutations in SK

and discuss their properties in terms of link with the ranking distances ∆τ and ∆H , and in terms of
algorithmic complexity for the pre-image problem (5) induced.

4.1 The Kemeny embedding

Motivated by the minimization of the Kendall’s τ distance ∆τ , we study the Kemeny embedding,
previously introduced for the ranking aggregation problem (see Jiao et al. (2016)):

φτ : SK → RK(K−1)/2

σ 7→ (sign(σ(j)− σ(i)))1≤i<j≤K .

which maps any permutation σ ∈ SK into Im(φτ ) ( {−1, 1}K(K−1)/2 (that we have embedded
into the Hilbert space (RK(K−1)/2, 〈., .〉)). One can show that the square of the euclidean distance
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between the mappings of two permutations σ, σ′ ∈ SK recovers their Kendall’s τ distance (proving
at the same time that φτ is injective) up to a constant: ‖φτ (σ) − φτ (σ′)‖2 = 4∆τ (σ, σ′). The
Kemeny embedding then naturally appears to be a good candidate to build a surrogate loss related
to ∆τ . By noticing that φτ has a constant norm (∀σ ∈ SK , ‖φτ (σ)‖ =

√
K(K − 1)/2), we can

rewrite the pre-image problem (7) under the form:

ŝ(x) = argmin
σ∈SK

−〈φτ (σ), ĝ(x)〉. (11)

To compute (11), one can first solve an Integer Linear Program (ILP) to find φ̂σ =

argminφσ∈Im(φτ )−〈φσ, ĝ(x)〉, and then find the output object σ = φ−1
τ (φ̂σ). The latter step,

i.e. inverting φτ , can be performed in O(K2) by means of the Copeland method (see Merlin and
Saari (1997)), which ranks the items by their number of pairwise victories1. In contrast, the ILP prob-
lem is harder to solve since it involves a minimization over Im(φτ ), a set of structured vectors since
their coordinates are strongly correlated by the transitivity property of rankings. Indeed, consider
a vector v ∈ Im(φτ ), so ∃σ ∈ SK such that v = φτ (σ). Then, for any 1 ≤ i < j < k ≤ K, if its
coordinates corresponding to the pairs (i, j) and (j, k) are equal to one (meaning that σ(i) < σ(j)
and σ(j) < σ(k)), then the coordinate corresponding to the pair (i, k) cannot contradict the others
and must be set to one as well. Since φσ = (φσ)i,j ∈ Im(φτ ) is only defined for 1 ≤ i < j ≤ K,
one cannot directly encode the transitivity constraints that take into account the components (φσ)i,j
with j > i. Thus to encode the transitivity constraint we introduce φ′σ = (φ′σ)i,j ∈ RK(K−1) defined
by (φ′σ)i,j = (φσ)i,j if 1 ≤ i < j ≤ K and (φ′σ)i,j = −(φσ)i,j else, and write the ILP problem as
follows:

φ̂σ = argmin
φ′
σ

∑
1≤i,j≤K

ĝ(x)i,j(φ
′
σ)i,j ,

s.c.


(φ′σ)i,j ∈ {−1, 1} ∀ i, j
(φ′σ)i,j + (φ′σ)j,i = 0 ∀ i, j
−1 ≤ (φ′σ)i,j + (φ′σ)j,k + (φ′σ)k,i ≤ 1 ∀ i, j, k s.t. i 6= j 6= k.

(12)

Such a problem is NP-Hard. In previous works (see Calauzenes et al. (2012); Ramaswamy et al.
(2013)), the complexity of designing calibrated surrogate losses for the Kendall’s τ distance had
already been investigated. In particular, Calauzenes et al. (2012) proved that there exists no convex
K-dimensional calibrated surrogate loss for Kendall’s τ distance. As a consequence, optimizing this
type of loss has an inherent computational cost. However, in practice, branch and bound based ILP
solvers find the solution of (12) in a reasonable time for a reduced number of labels K. We discuss
the computational implications of choosing the Kemeny embedding section 5.2. We now turn to the
study of an embedding devoted to build a surrogate loss for the Hamming distance.

4.2 The Hamming embedding

Another well-spread embedding for permutations, that we will call the Hamming embedding, consists
in mapping σ to its permutation matrix φH(σ):

φH : SK → RK×K

σ 7→ (I{σ(i) = j})1≤i,j≤K ,

where we have embedded the set of permutation matrices Im(φH) ( {0, 1}K×K into the Hilbert
space (RK×K , 〈., .〉) with 〈., .〉 the Froebenius inner product. This embedding shares similar
properties with the Kemeny embedding: first, it is also of constant (Froebenius) norm, since
∀σ ∈ SK , ‖φH(σ)‖ =

√
K. Then, the squared euclidean distance between the mappings of

two permutations σ, σ′ ∈ SK recovers their Hamming distance (proving that φH is also injective):
‖φH(σ)− φH(σ′)‖2 = ∆H(σ, σ′). Once again, the pre-image problem consists in solving the linear
program:

ŝ(x) = argmin
σ∈SK

−〈φH(σ), ĝ(x)〉, (13)

1Copeland method firstly affects a score si for item i as: si =
∑
j 6=i I{σ(i) < σ(j)} and then ranks the

items by decreasing score.
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which is, as for the Kemeny embedding previously, divided in a minimization step, i.e. find φ̂σ =

argminφσ∈Im(φH)−〈φσ, g(x)〉, and an inversion step, i.e. compute σ = φ−1
H (φ̂σ). The inversion

step is of complexityO(K2) since it involves scrolling through all the rows (items i) of the matrix φ̂σ
and all the columns (to find their positions σ(i)). The minimization step itself writes as the following
problem:

φ̂σ = argmax
φσ

∑
1≤i,j≤K

ĝ(x)i,j(φσ)i,j ,

s.c

{
(φσ)i,j ∈ {0, 1} ∀ i, j∑
i(φσ)i,j =

∑
j(φσ)i,j = 1 ∀ i, j ,

(14)

which can be solved with the Hungarian algorithm (see Kuhn (1955)) in O(K3) time. Now we turn
to the study of an embedding which presents efficient algorithmic properties.

4.3 Lehmer code

A permutation σ = (σ(1), . . . , σ(K)) ∈ SK may be uniquely represented via its Lehmer code (also
called the inversion vector), i.e. a word of the form cσ ∈ CK =∆ {0}×J0, 1K×J0, 2K×· · ·×J0,K−1K,
where for j = 1, . . . ,K:

cσ(j) = #{i ∈ JKK : i < j, σ(i) > σ(j)}. (15)

The coordinate cσ(j) is thus the number of elements i with index smaller than j that are ranked
higher than j in the permutation σ. By default, cσ(1) = 0 and is typically omitted. For instance, we
have:

e 1 2 3 4 5 6 7 8 9
σ 2 1 4 5 7 3 6 9 8
cσ 0 1 0 0 0 3 1 0 1

It is well known that the Lehmer code is bijective, and that the encoding and decoding algorithms
have linear complexity O(K) (see Mareš and Straka (2007), Myrvold and Ruskey (2001)). This
embedding has been recently used for ranking aggregation of full or partial rankings (see Li et al.
(2017)). Our idea is thus to consider the following Lehmer mapping for label ranking;

φL : SK → RK

σ 7→ (cσ(i)))i=1,...,K ,

which maps any permutation σ ∈ SK into the space CK (that we have embedded into the Hilbert
space (RK , 〈., .〉)). The loss function in the case of the Lehmer embedding is thus the following:

∆L(σ, σ′) = ‖φL(σ)− φL(σ′)‖2, (16)

which does not correspond to a known distance over permutations (Deza and Deza, 2009). Notice that
|φL(σ)| = dτ (σ, e) where e is the identity permutation, a quantity which is also called the number of
inversions of σ. Therefore, in contrast to the previous mappings, the norm ‖φL(σ)‖ is not constant for
any σ ∈ SK . Hence it is not possible to write the loss ∆L(σ, σ′) as −〈φL(σ), φL(σ′)〉2.Moreover,
this mapping is not distance preserving and it can be proven that 1

K−1∆τ (σ, σ′) ≤ |φL(σ) −
φL(σ′)| ≤ ∆τ (σ, σ′) (see Wang et al. (2015)). However, the Lehmer embedding still enjoys great
advantages. Firstly, its coordinates are decoupled, which will enable a trivial solving of the inverse
image step (7). Indeed we can write explicitly its solution as:

ŝ(x) = φ−1
L ◦ dL︸ ︷︷ ︸

d

◦ĝ(x) with
dL : RK → CK

(hi)i=1,...,K 7→ ( argmin
j∈J0,i−1K

(hi − j))i=1,...,K , (17)

where d is the decoding function defined in (8). Then, there may be repetitions in the coordinates of
the Lehmer embedding, allowing for a compact representation of the vectors.

2The scalar product of two embeddings of two permutations φL(σ), φL(σ′) is not maximized for σ = σ′.
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4.4 Extension to partial and incomplete rankings

In many real-world applications, one does not observe full rankings but only partial or incomplete
rankings (see the definitions section 2.1). We now discuss to what extent the embeddings we propose
for permutations can be adapted to this kind of rankings as input data. Firstly, the Kemeny embedding
can be naturally extended to partial and incomplete rankings since it encodes relative information
about the positions of the items. Indeed, we propose to map any partial ranking σ̃ to the vector:

φ(σ̃) = (sign(σ̃(i)− σ̃(j))1≤i<j≤K , (18)

where each coordinate can now take its value in {−1, 0, 1} (instead of {−1, 1} for full rankings).
For any incomplete ranking σ̄, we also propose to fill the missing entries (missing comparisons) in
the embedding with zeros. This can be interpreted as setting the probability that i � j to 1/2 for
a missing comparison between (i, j). In contrast, the Hamming embedding, since it encodes the
absolute positions of the items, is tricky to extend to map partial or incomplete rankings where this
information is missing. Finally, the Lehmer embedding falls between the two latter embeddings. It
also relies on an encoding of relative rankings and thus may be adapted to take into account the partial
ranking information. Indeed, in Li et al. (2017), the authors propose a generalization of the Lehmer
code for partial rankings. We recall that a tie in a ranking happens when #{i 6= j, σ(i) = σ(j)} > 0.
The generalized representation c′ takes into account ties, so that for any partial ranking σ̃:

c′σ̃(j) = #{i ∈ JKK : i < j, σ̃(i) ≥ σ̃(j)}. (19)

Clearly, c′σ̃(j) ≥ cσ̃(j) for all j ∈ JKK. Given a partial ranking σ̃, it is possible to break its ties to
convert it in a permutation σ as follows: for i, j ∈ JKK2, if σ̃(i) = σ̃(j) then σ(i) = σ(j) iff i < j.
The entries j = 1, . . . ,K of the Lehmer codes of σ̃ (see (20)) and σ (see (15)) then verify:

c′σ̃(j) = cσ(j) + INj − 1 , cσ̃(j) = cσ(j), (20)

where INj = #{i ≤ j, σ̃(i) = σ̃(j)}. An example illustrating the extension of the Lehmer code to
partial rankings is given in the Supplementary. However, computing each coordinate of the Lehmer
code cσ(j) for any j ∈ JKK requires to sum over the JKK items. As an incomplete ranking do not
involve the whole set of items, it is also tricky to extend the Lehmer code to map incomplete rankings.

Taking as input partial or incomplete rankings only modifies Step 1 of our method since it corresponds
to the mapping step of the training data, and in Step 2 we still predict a full ranking. Extending our
method to the task of predicting as output a partial or incomplete ranking raises several mathematical
questions that we did not develop at length here because of space limitations. For instance, to predict
partial rankings, a naive approach would consist in predicting a full ranking and then converting it
to a partial ranking according to some threshold (i.e, keep the top-k items of the full ranking). A
more formal extension of our method to make it able to predict directly partial rankings as outputs
would require to optimize a metric tailored for this data and which could be written as in Eq. (2). A
possibility for future work could be to consider the extension of the Kendall’s τ distance with penalty
parameter p for partial rankings proposed in Fagin et al. (2004).

5 Computational and theoretical analysis

5.1 Theoretical guarantees

In this section, we give some statistical guarantees for the estimators obtained by following the steps
described in section 3. To this end, we build upon recent results in the framework of Surrogate Least
Square by Ciliberto et al. (2016). Consider one of the embeddings φ on permutations presented in the
previous section, which defines a loss ∆ as in Eq. (2). Let cφ = maxσ∈SK ‖φ(σ)‖. We will denote
by s∗ a minimizer of the true risk (1), g∗ a minimizer of the surrogate risk (3), and d a decoding
function as (8)3. Given an estimator ĝ of g∗ from Step 1, i.e. a minimizer of the empirical surrogate
risk (6) we can then consider in Step 2 an estimator ŝ = d ◦ ĝ. The following theorem reveals how
the performance of the estimator ŝ we propose can be related to a solution s∗ of (1) for the considered
embeddings.

3Note that d = φ−1
L ◦ dL for φL and is obtained as the composition of two steps for φτ and φH : solving an

optimization problem and compute the inverse of the embedding.
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Embedding Step 1 (a) Step 2 (b)
φτ O(K2N) NP-hard
φH O(KN) O(K3N)
φL O(KN) O(KN)

Regressor Step 1 (b) Step 2 (a)
kNN O(1) O(Nm)
Ridge O(N3) O(Nm)

Table 1: Embeddings and regressors complexities.

Theorem 1 The excess risks of the proposed predictors are linked to the excess surrogate risks as:

(i) For the loss (2) defined by the Kemeny and Hamming embedding φτ and φH respectively:

E(d ◦ ĝ)− E(s∗) ≤ cφ
√
R(ĝ)−R(g∗)

with cφτ =
√

K(K−1)
2 and cφH =

√
K.

(ii) For the loss (2) defined by the Lehmer embedding φL:

E(d ◦ ĝ)− E(s∗) ≤
√
K(K − 1)

2

√
R(ĝ)−R(g∗) + E(d ◦ g∗)− E(s∗) +O(K

√
K)

The full proof is given in the Supplementary. Assertion (i) is a direct application of Theorem 2 in
Ciliberto et al. (2016). In particular, it comes from a preliminary consistency result which shows that
E(d ◦ g∗) = E(s∗) for both embeddings. Concerning the Lehmer embedding, it is not possible to
apply their consistency results immediately; however a large part of the arguments of their proof is
used to bound the estimation error for the surrogate risk, and we remain with an approximation error
E(d ◦ g∗)− E(s∗) +O(K

√
K) resulting in Assertion (ii). In Remark 2 in the Supplementary, we

give several insights about this approximation error. Firstly we show that it can be upper bounded
by 2
√

2
√
K(K − 1)E(s∗) +O(K

√
K). Then, we explain how this term results from using φL in

the learning procedure. The Lehmer embedding thus have weaker statistical guarantees, but has the
advantage of being more computationnally efficient, as we explain in the next subsection.

Notice that for Step 1, one can choose a consistent regressor with vector values ĝ, i.e such that
R(ĝ)→ R(g∗) when the number of training points tends to infinity. Examples of such methods that
we use in our experiments to learn ĝ, are the k-nearest neighbors (kNN) or kernel ridge regression
(Micchelli and Pontil, 2005) methods whose consistency have been proved (see Chapter 5 in Devroye
et al. (2013) and Caponnetto and De Vito (2007)). In this case the control of the excess of the
surrogate riskR(ĝ)−R(g∗) implies the control of E(ŝ)− E(s∗) where ŝ = d ◦ ĝ by Theorem 1.

Remark 1 We clarify that the consistency results of Theorem 1 are established for the task of
predicting full rankings which is adressed in this paper. In the case of predicting partial or incomplete
rankings, these results are not guaranteed to hold. Providing theoretical guarantees for this task is
left for future work.

5.2 Algorithmic complexity

We now discuss the algorithmic complexity of our approach. We recall that K is the number of
items/labels whereas N is the number of samples in the dataset. For a given embedding φ, the
total complexity of our approach for learning decomposes as follows. Step 1 in Section 3 can be
decomposed in two steps: a preprocessing step (Step 1 (a)) consisting in mapping the training sample
{(xi, σi), i = 1, . . . , N} to {(xi, φ(σi)), i = 1, . . . , N}, and a second step (Step 1 (b)) that consists
in computing the estimator ĝ of the Least squares surrogate empirical minimization (6). Then, at
prediction time, Step 2 Section 3 can also be decomposed in two steps: a first one consisting in
mapping new inputs to a Hilbert space using ĝ (Step 2 (a)), and then solving the preimage problem (7)
(Step 2 (b)). The complexity of a predictor corresponds to the worst complexity across all steps. The
complexities resulting from the choice of an embedding and a regressor are summarized Table 1,
where we denoted by m the dimension of the ranking embedded representations. The Lehmer
embedding with kNN regressor thus provides the fastest theoretical complexity of O(KN) at the
cost of weaker theoretical guarantees. The fastest methods previously proposed in the litterature
typically involved a sorting procedure at prediction Cheng et al. (2010) leading to a O(NKlog(K))
complexity. In the experimental section we compare our approach with the former (denoted as Cheng
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PL), but also with the label wise decomposition approach in Cheng and Hüllermeier (2013) (Cheng
LWD) involving a kNN regression followed by a projection on SK computed in O(K3N), and the
more recent Random Forest Label Ranking (Zhou RF) Zhou and Qiu (2016). In their analysis, if dX
is the size of input features and Dmax the maximum depth of a tree, then RF have a complexity in
O(DmaxdXK

2N2).

6 Numerical Experiments

Finally we evaluate the performance of our approach on standard benchmarks. We present the results
obtained with two regressors : Kernel Ridge regression (Ridge) and k-Nearest Neighbors (kNN).
Both regressors were trained with the three embeddings presented in Section 4. We adopt the same
setting as Cheng et al. (2010) and report the results of our predictors in terms of mean Kendall’s τ :

kτ =
C −D

K(K − 1)/2

{
C : number of concordant pairs between 2 rankings
D : number of discordant pairs between 2 rankings

, (21)

from five repetitions of a ten-fold cross-validation (c.v.). Note that kτ is an affine transformation of the
Kendall’s tau distance ∆τ mapping on the [−1, 1] interval. We also report the standard deviation of
the resulting scores as in Cheng and Hüllermeier (2013). The parameters of our regressors were tuned
in a five folds inner c.v. for each training set. We report our parameter grids in the supplementary
materials.

Table 2: Mean Kendall’s τ coefficient on benchmark datasets

authorship glass iris vehicle vowel wine

kNN Hamming 0.01±0.02 0.08±0.04 -0.15±0.13 -0.21±0.04 0.24±0.04 -0.36±0.04
kNN Kemeny 0.94±0.02 0.85±0.06 0.95±0.05 0.85±0.03 0.85±0.02 0.94±0.05
kNN Lehmer 0.93±0.02 0.85±0.05 0.95±0.04 0.84±0.03 0.78±0.03 0.94±0.06
ridge Hamming -0.00±0.02 0.08±0.05 -0.10±0.13 -0.21±0.03 0.26±0.04 -0.36±0.03
ridge Lehmer 0.92±0.02 0.83±0.05 0.97±0.03 0.85±0.02 0.86±0.01 0.84±0.08
ridge Kemeny 0.94±0.02 0.86±0.06 0.97±0.05 0.89±0.03 0.92±0.01 0.94±0.05

Cheng PL 0.94±0.02 0.84±0.07 0.96±0.04 0.86±0.03 0.85±0.02 0.95±0.05
Cheng LWD 0.93±0.02 0.84±0.08 0.96±0.04 0.85±0.03 0.88±0.02 0.94±0.05
Zhou RF 0.91 0.89 0.97 0.86 0.87 0.95

The Kemeny and Lehmer embedding based approaches are competitive with the state of the art
methods on these benchmarks datasets. The Hamming based methods give poor results in terms of
kτ but become the best choice when measuring the mean Hamming distance between predictions and
ground truth (see Table 3 in the Supplementary). In contrast, the fact that the Lehmer embedding
performs well for the optimization of the Kendall’s τ distance highlights its practical relevance for
label ranking. The Supplementary presents additional results (on additional datasets and results in
terms of Hamming distance) which show that our method remains competitive with the state of the
art. The code to reproduce our results is available: https://github.com/akorba/Structured_
Approach_Label_Ranking/

7 Conclusion

This paper introduces a novel framework for label ranking, which is based on the theory of Surrogate
Least Square problem for structured prediction. The structured prediction approach we propose
comes along with theoretical guarantees and efficient algorithms, and its performance has been
shown on real-world datasets. To go forward, extensions of our methodology to predict partial and
incomplete rankings are to be investigated. In particular, the framework of prediction with abstention
should be of interest.
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8 Supplementary material

8.1 Proof of Theorem 1

We borrow the notations of Ciliberto et al. (2016) and recall their main result Theorem 2. They firstly exhibit the
following assumption for a given loss ∆, see Assumption 1 therein:

Assumption 1. There exists a separable Hilbert space F with inner product 〈., .〉F , a continuous embedding
ψ : Y → F and a bounded linear operator V : F → F , such that:

∆(y, y′) = 〈ψ(y), V ψ(y′)〉F ∀y, y′ ∈ Y (22)

Theorem 2 Let ∆ : Y → Y satisfying Assumption 1 with Y a compact set. Then, for every measurable
g : X → F and d : F → Y such that ∀h ∈ F , d(h) = argminy∈Y〈φ(y), h〉F , the following holds:

(i) Fisher Consistency: E(d ◦ g∗) = E(s∗)

(ii) Comparison Inequality: E(d ◦ g)− E(s∗) ≤ 2c∆
√
R(g)−R(g∗)

with c∆ = ‖V ‖maxy∈Y ‖φ(y)‖.

Notice that any discrete set Y is compact and φ : Y → F is continuous. We now prove the two assertions of
Theorem 1.

Proof of Assertion(i) in Theorem 1. Firstly, Y = SK is finite. Then, for the Kemeny and Hamming embeddings,
∆ satisfies Assumption 1 with V = −id (where id denotes the identity operator) , and ψ = φK and ψ = φH
respectively. Theorem 2 thus applies directly.

Proof of Assertion(ii) in Theorem 1. In the following proof, Y denotes SK , φ denotes φL and d = φ−1
L ◦ dL

with dL as defined in (17). Our goal is to control the excess risk E(s)− E(s∗).

E(s)− E(s∗) = E(d ◦ ĝ)− E(s∗)

= E(d ◦ ĝ)− E(d ◦ g∗)︸ ︷︷ ︸
(A)

+ E(d ◦ g∗)− E(s∗)︸ ︷︷ ︸
(B)

Consider the first term (A).

E(d ◦ ĝ)− E(d ◦ g∗) =

∫
X×Y

∆(d ◦ ĝ(x), σ)−∆(d ◦ g∗(x), σ)dP (x, σ)

=

∫
X×Y

‖φ(d ◦ ĝ(x))− φ(σ)‖2F − ‖φ(d ◦ g∗(x))− φ(σ)‖2FdP (x, σ)

=

∫
X
‖φ(d ◦ ĝ(x))‖2F − ‖φ(d ◦ g∗(x))‖2FdP (x)︸ ︷︷ ︸

(A1)

+

2

∫
X
〈φ(d ◦ g∗(x))− φ(d ◦ ĝ(x)),

∫
Y
φ(σ)dP (σ, x)〉dP (x)︸ ︷︷ ︸

(A2)

The first term (A1) can be upper bounded as follows:∫
X
‖φ(d ◦ ĝ(x))‖2F − ‖φ(d ◦ g∗(x))‖2FdP (x) ≤

∫
X
〈φ(d ◦ ĝ(x))− φ(d ◦ g∗(x)), φ(d ◦ ĝ(x)) + φ(d ◦ g∗(x))〉FdP (x)

≤ 2c∆

∫
X
‖φ(d ◦ ĝ(x))− φ(d ◦ g∗(x))‖FdP (x)

≤ 2c∆

√∫
X
‖dL(ĝ(x))− dL(g∗(x))‖2FdP (x)

≤ 2c∆

√∫
X
‖g∗(x)− ĝ(x)‖2FdP (x) +O(K

√
K)

with c∆ = maxσ∈Y ‖φ(σ)‖F =
√

(K−1)(K−2)
2

and since ‖dL(u) − dL(v)‖ ≤ ‖u − v‖ +
√
K. Since∫

X ‖g
∗(x)− ĝ(x)‖2FdP (x) = R(ĝ)−R(g∗) (see Ciliberto et al. (2016)) we get the first term of Assertion (i).

12



For the second term (A2), we can actually follow the proof of Theorem 12 in Ciliberto et al. (2016) and we get:∫
X
〈φ(d ◦ g∗(x))− φ(d ◦ ĝ(x)),

∫
Y
φ(σ)dP (σ, x)〉dP (x) ≤ 2c∆

√
R(ĝ)−R(g∗)

Consider the second term (2). By Lemma 8 in (Ciliberto et al., 2016), we have that:

g∗(x) =

∫
Y
φ(σ)dP (σ|x) (23)

and then:

E(d ◦ g∗)− E(s∗) =

∫
X×Y

‖φ(d ◦ g∗(x))− φ(σ)‖2F − ‖φ(s∗(x))− φ(σ)‖2FdP (x, σ)

≤
∫
X×Y
〈φ(d ◦ ĝ(x))− φ(s∗(x)), φ(d ◦ ĝ(x)) + φ(s∗(x))− 2φ(σ)〉FdP (x, σ)

≤ 4c∆

∫
X
‖φ(d ◦ g∗(x))− φ(s∗(x))‖FdP (x)

≤ 4c∆

∫
X
‖dL ◦ g∗(x))− dL ◦ φ(s∗(x))‖FdP (x)

≤ 4c∆

∫
X
‖g∗(x))− φ(s∗(x))‖FdP (x) +O(K

√
K)

where we used that φ(s∗(x)) ∈ CK so dL ◦ φ(s∗(x)) = φ(s∗(x)). Then we can plug (23) in the right term:

E(d ◦ g∗)− E(s∗) ≤ 4c∆

∫
X
‖
∫
Y
φ(σ)dP (σ|x)− φ(s∗(x))‖FdP (x) +O(K

√
K)

≤ 4c∆

∫
X×Y

‖φ(σ)− φ(s∗(x))‖FdP (x) +O(K
√
K)

≤ 4c∆E(s∗) +O(K
√
K)

Remark 2 As proved in Theorem 19 in (Ciliberto et al., 2016), since the space of rankings Y is finite, ∆L

necessarily satisfies Assumption 1 with some continuous embedding ψ. If the approach we developped was
relying on this ψ, we would have consistency for the minimizer g∗ of the Lehmer loss (16). However, the choice
of φL is relevant because it yields a pre-image problem with low computational complexity.

8.2 Lehmer embedding for partial rankings

An example, borrowed from (Li et al., 2017) illustrating the extension of the Lehmer code for partial rankings is
the following:

e 1 2 3 4 5 6 7 8 9
σ̃ 1 1 2 2 3 1 2 3 3
σ 1 2 4 5 7 3 6 8 9
cσ 0 0 0 0 0 3 1 0 0
IN 1 2 1 2 1 3 3 2 3
cσ̃ 0 0 0 0 0 3 1 0 0
c′σ̃ 0 1 0 1 0 5 3 1 2

where each row represents a step to encode a partial ranking.

8.3 Additional experimental results

Details concerning the parameter grids. We first recall our notations for vector valued kernel ridge regression.
Let HK be a vector-valued Reproducing Kernel Hilbert Space associated to an operator-valued kernel K :
X × X → L(Rn). Solve:

min
g∈HK

N∑
k=1

‖g(xk)− φ(σk)‖2 + λ‖h‖2HK (24)

The solution of this problem is unique and admits an expansion: ĝ(.) =
∑N
i=1 K(xi, .)ci (see Micchelli and

Pontil (2005)). Moreover, it has the following closed-form solution:

ĝ(.) = ψx(.)(Kx + λIN )−1YN (25)
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where Kx is the N × N block-matrix, with each block of the form K(xk, xl), YN is the vector of all
stacked vectors φ(σ1), . . . , φ(σN ), and ψx is the matrix composed of [K(., x1), . . . ,K(., xN )]. In all our
experiments, we used a decomposable gaussian kernel K(x, y) = exp(−γ‖x− y‖2)Im. The bandwith γ and
the regularization parameter λ were chosen in the set {10−i, 5 · 10−i} for i ∈ 0, . . . , 5 during the gridsearch
cross-validation steps. For the k-Nearest Neighbors experiments, we used the euclidean distance and the
neighborhood size was chosen in the set {1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 50}.

Experimental results. We report additional results in terms of rescaled Hamming distance (dHK (σ, σ′) =
dH (σ,σ′)
K2 ) on the datasets presented in the paper and in terms of Kendall’s τ coefficient on other datasets. All the

results have been obtained in the same experimental conditions: ten folds cross-validation are repeated five times
with the parameters tuned in a five folds inner cross-validation. The results presented in Table 3 correspond to
the mean normalized Hamming distance between the prediction and the ground truth (lower is better). Whereas
Hamming based embeddings led to very low results on the task measured using the Kendall’s τ coefficient, they
outperform other embeddings for the Hamming distance minimization problem as expected.

Table 3: rescaled Hamming distance

authorship glass iris vehicle vowel wine

kNN Kemeny 0.05±0.01 0.07±0.02 0.04±0.03 0.08±0.01 0.07±0.01 0.04±0.03
kNN Lehmer 0.05±0.01 0.08±0.02 0.03±0.03 0.10±0.01 0.10±0.01 0.04±0.03
kNN Hamming 0.05±0.01 0.08±0.02 0.03±0.03 0.08±0.02 0.07±0.01 0.04±0.03
ridge Kemeny 0.06±0.01 0.08±0.03 0.04±0.03 0.08±0.01 0.08±0.01 0.04±0.03
ridge Lehmer 0.05±0.01 0.09±0.03 0.02±0.02 0.10±0.01 0.08±0.01 0.09±0.04
ridge Hamming 0.04±0.01 0.06±0.02 0.02±0.02 0.07±0.01 0.05±0.01 0.04±0.02

In Table (4), we show that Lehmer and Hamming based embeddings stay competitive on other standard
benchmark datasets. The Ridge results have not been reported due to scalability issues as the number of inputs
elements and the output space size grow.

Table 4: Kendall’s τ coefficient on additional datasets

bodyfat calhousing cpu-small pendigits segment wisconsin fried sushi

kNN Lehmer 0.23±0.01 0.22±0.01 0.40±0.01 0.94±0.00 0.95±0.01 0.49±0.00 0.85±0.02 0.17±0.01
kNN Kemeny 0.23±0.06 0.33±0.01 0.51±0.00 0.94±0.00 0.95±0.01 0.49±0.04 0.89±0.00 0.31±0.01

Cheng PL 0.23 0.33 0.50 0.94 0.95 0.48 0.89 0.32
Zhou RF 0.185 0.37 0.51 0.94 0.96 0.48 0.93 –

On the sushi dataset Kamishima et al. (2010), we additionally tested our approach Ridge Kemeny which obtained
the same results as Cheng PL (0.32 Kendall’s τ ).
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