Supplementary Material: Reparameterization
Gradient for Non-differentiable Models

A Proof of Theorem 1]

Using reparameterization, we can write ELBOy as follows:
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In (6)), we can move the summation and the indicator function out of log since the regions { Ry }1<k<k
are disjoint. We then compute the gradient of ELBOjy as follows:
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where V. e U denotes the column vector whose ¢-th component is V. - U;, the divergence of U;
with respect to €. (8) is the formula that we wanted to prove.

The two non-trivial steps in the above derivation are (7)) and (8). First, (7) is a direct consequence of
the following theorem, existing yet less well-known, on exchanging integration and differentiation
under moving domain:

Theorem 6. Let Dy C R™ be a smoothly parameterized region. That is, there exist open sets ) C R™
and © C R, and twice continuously differentiable € : Q@ x © — R"™ such that Dy = €(, 8) for each
0 € ©. Suppose that €(-,0) is a C'-diffeomorphism for each 0 € ©. Let f : R* x R — R be a
diﬁ‘erentiablefunction such that f( 0) € LY(Dg) for each § € ©. If there exists g : 2 — R such
that g € L(Q and!Vg( f(€,0) |)|<g w) forany 0 € © and w € ), then

vof (e, 0)de = /Dg (V9f+ve : (fv))(e,e)de.

Here v (e, 0) denotes Vy€e(w, 0) |w_€_1(6), the velocity of the particle € at time 0.
e
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The statement of Theorem [6] (without detailed conditions as we present above) and the sketch of
its proof can be found in [3]. One subtlety in applying Theorem [f]to our case is that R, (which
corresponds to € in the theorem) may not be open, so the theorem may not be immediately applicable.
However, since the boundary 0 R, has Lebesgue measure zero in R", ignoring the reparameterized
boundary f, ! (ORy,) in the integral of (7)) does not change the value of the integral. Hence, we apply
Theorem@to Dy = int(f, ' (Rx)) (which is possible because 2 = int(Ry,) is now open), and this
gives us the desired result. Here int(7") denotes the interior of T'.

Second, to prove (B, it suffices to show that
/ VeoUle)de = Ule) o dX
174 ov

where U(e) = q(€)hi(€,0)V (e,0) and V = f, '(Ry). To prove this equality, we apply the
divergence theorem:

Theorem 7 (Divergence theorem). Let V' be a compact subset of R™ that has a piecewise smooth
boundary OV'. If F' is a differentiable vector field defined on a neighborhood of V, then

/(V~F)dV: F.d%
1% oV

where d3 is the outward pointing normal vector of the boundary OV .

In our case, the region V' = f,° '(Ry) may not be compact, so we cannot directly apply Theorem
to U. To circumvent the non-compactness issue, we assume that ¢(€) is in S(R™), the Schwartz
space on R™. That is, assume that every partial derivative of ¢(e) of any order decays faster than
any polynomial. This assumption is reasonable in that the probability density of many important
probability distributions (e.g., the normal distribution) is in S(R™). Since ¢ € S(R™), there exists a
sequence of test functions {¢; } jen such that each ¢; has compact support and {@; } jen converges to
g in S(R™), which is a well-known result in functional analysis. Since each ¢; has compact support,

so does U’ (€) £ ¢;(€)hy(€,0)V (€,0). By applying Theoremto U7, we have
/ VeoUl(e)de = U’(e) o dX.
v ov

Because {¢, } ;e converges to ¢ in S(R™), taking the limit j — oo on the both sides of the equation
gives us the desired result.

B Proof of Theorem

Theorem [3]is a direct consequence of the following theorem called “area formula”:

Theorem 8 (Area formula). Suppose that g : R"~' — R" is injective and Lipschitz. If A C R"~1
is measurable and H : R™ — R" is measurable, then

H( -3 = [ (H(5(0) - n(0)1Is(0)]d¢
9(4) A
where Jg(¢) = det {agéf) agég) ggfi |n(C)}, and n(¢) is the unit normal vector of the

hypersurface g(A) at () such that it has the same direction as dX.

A more general version of Theorem |8 can be found in [2]. In our case, the hypersurface g(A)
for the surface integral on the LHS is given by {¢ | a-€ = c}, so we use A = R"~! and

g9(¢) = (Ch oo Giet, a%(c—a,j(), Ciyenos Cn,l)T and apply Theoremwith H (€) = q(€)F(e).
In this settings, n(¢) and |.Jg(¢)| are calculated as

la;]| (al a;_1 aji1 a,\T |2
— sgn(—a; @ 1——) d |Jg(¢)| = ,
n(C) Sgn( a’]) ||a||2 aj aj aj aj an | g(<)| ‘aj|

and this gives us the desired result.
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