
Supplementary Material: Reparameterization
Gradient for Non-differentiable Models

A Proof of Theorem 1

Using reparameterization, we can write ELBOθ as follows:

ELBOθ = Eq(ε)

[
log

∑K
k=1 1[fθ(ε) ∈ Rk] · rk(fθ(ε))

qθ(fθ(ε))

]

= Eq(ε)

[
K∑
k=1

1[fθ(ε) ∈ Rk] · log
rk(fθ(ε))

qθ(fθ(ε))

]
(6)

=

K∑
k=1

Eq(ε)
[
1[fθ(ε) ∈ Rk] · hk(ε, θ)

]
.

In (6), we can move the summation and the indicator function out of log since the regions {Rk}1≤k≤K
are disjoint. We then compute the gradient of ELBOθ as follows:

∇θELBOθ

=

K∑
k=1

∇θEq(ε)
[
1[fθ(ε) ∈ Rk] · hk(ε, θ)

]
=

K∑
k=1

∇θ
∫
f−1
θ (Rk)

q(ε)hk(ε, θ)dε

=

K∑
k=1

∫
f−1
θ (Rk)

(
q(ε)∇θhk(ε, θ) +∇ε •

(
q(ε)hk(ε, θ)V (ε, θ)

))
dε (7)

= Eq(ε)

[
K∑
k=1

1[fθ(ε)∈Rk] · ∇θhk(ε, θ)

]
+

K∑
k=1

∫
f−1
θ (Rk)

∇ε •
(
q(ε)hk(ε, θ)V (ε, θ)

)
dε

= Eq(ε)

[
K∑
k=1

1[fθ(ε)∈Rk] · ∇θhk(ε, θ)

]
︸ ︷︷ ︸

RepGradθ

+
K∑
k=1

∫
f−1
θ (∂Rk)

(
q(ε)hk(ε, θ)V (ε, θ)

)
• dΣ︸ ︷︷ ︸

BouContrθ

(8)

where ∇ε •U denotes the column vector whose i-th component is ∇ε ·Ui, the divergence of Ui
with respect to ε. (8) is the formula that we wanted to prove.

The two non-trivial steps in the above derivation are (7) and (8). First, (7) is a direct consequence of
the following theorem, existing yet less well-known, on exchanging integration and differentiation
under moving domain:
Theorem 6. LetDθ ⊂ Rn be a smoothly parameterized region. That is, there exist open sets Ω ⊂ Rn
and Θ ⊂ R, and twice continuously differentiable ε̂ : Ω×Θ→ Rn such that Dθ = ε̂(Ω, θ) for each
θ ∈ Θ. Suppose that ε̂(·, θ) is a C1-diffeomorphism for each θ ∈ Θ. Let f : Rn × R → R be a
differentiable function such that f(·, θ) ∈ L1(Dθ) for each θ ∈ Θ. If there exists g : Ω → R such
that g ∈ L1(Ω) and

∣∣∇θ(f(ε̂, θ)
∣∣ ∂ε̂
∂ω

∣∣)∣∣ ≤ g(ω) for any θ ∈ Θ and ω ∈ Ω, then

∇θ
∫
Dθ

f(ε, θ)dε =

∫
Dθ

(
∇θf +∇ε · (fv)

)
(ε, θ)dε.

Here v(ε, θ) denotes ∇θε̂(ω, θ)
∣∣
ω=ε̂−1

θ (ε)
, the velocity of the particle ε at time θ.
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The statement of Theorem 6 (without detailed conditions as we present above) and the sketch of
its proof can be found in [3]. One subtlety in applying Theorem 6 to our case is that Rk (which
corresponds to Ω in the theorem) may not be open, so the theorem may not be immediately applicable.
However, since the boundary ∂Rk has Lebesgue measure zero in Rn, ignoring the reparameterized
boundary f−1θ (∂Rk) in the integral of (7) does not change the value of the integral. Hence, we apply
Theorem 6 to Dθ = int(f−1θ (Rk)) (which is possible because Ω = int(Rk) is now open), and this
gives us the desired result. Here int(T ) denotes the interior of T .

Second, to prove (8), it suffices to show that∫
V

∇ε •U(ε)dε =

∫
∂V

U(ε) • dΣ

where U(ε) = q(ε)hk(ε, θ)V (ε, θ) and V = f−1θ (Rk). To prove this equality, we apply the
divergence theorem:
Theorem 7 (Divergence theorem). Let V be a compact subset of Rn that has a piecewise smooth
boundary ∂V . If F is a differentiable vector field defined on a neighborhood of V , then∫

V

(∇ · F ) dV =

∫
∂V

F · dΣ

where dΣ is the outward pointing normal vector of the boundary ∂V .

In our case, the region V = f−1θ (Rk) may not be compact, so we cannot directly apply Theorem 7
to U . To circumvent the non-compactness issue, we assume that q(ε) is in S(Rn), the Schwartz
space on Rn. That is, assume that every partial derivative of q(ε) of any order decays faster than
any polynomial. This assumption is reasonable in that the probability density of many important
probability distributions (e.g., the normal distribution) is in S(Rn). Since q ∈ S(Rn), there exists a
sequence of test functions {φj}j∈N such that each φj has compact support and {φj}j∈N converges to
q in S(Rn), which is a well-known result in functional analysis. Since each φj has compact support,
so does U j(ε) , φj(ε)hk(ε, θ)V (ε, θ). By applying Theorem 7 to U j , we have∫

V

∇ε •U j(ε)dε =

∫
∂V

U j(ε) • dΣ.

Because {φj}j∈N converges to q in S(Rn), taking the limit j →∞ on the both sides of the equation
gives us the desired result.

B Proof of Theorem 3

Theorem 3 is a direct consequence of the following theorem called “area formula”:
Theorem 8 (Area formula). Suppose that g : Rn−1 → Rn is injective and Lipschitz. If A ⊂ Rn−1
is measurable andH : Rn → Rn is measurable, then∫

g(A)

H(ε) · dΣ =

∫
A

(
H(g(ζ)) · n(ζ)

)
|Jg(ζ)| dζ

where Jg(ζ) = det
[
∂g(ζ)
∂ζ1

∣∣∂g(ζ)
∂ζ2

∣∣ · · · ∣∣ ∂g(ζ)∂ζn−1

∣∣n(ζ)
]
, and n(ζ) is the unit normal vector of the

hypersurface g(A) at g(ζ) such that it has the same direction as dΣ.

A more general version of Theorem 8 can be found in [2]. In our case, the hypersurface g(A)
for the surface integral on the LHS is given by {ε | a · ε = c}, so we use A = Rn−1 and
g(ζ) =

(
ζ1, . . . , ζj−1,

1
aj

(c−a−j ·ζ), ζj , . . . , ζn−1
)ᵀ

and apply Theorem 8 withH(ε) = q(ε)F (ε).
In this settings, n(ζ) and |Jg(ζ)| are calculated as

n(ζ) = sgn(−aj)
|aj |
‖a‖2

(a1

aj
, . . . ,

aj−1
aj

, 1,
aj+1

aj
, . . . ,

an
aj

)ᵀ
and |Jg(ζ)| = ‖a‖2|aj |

,

and this gives us the desired result.

13


	Proof of Theorem 1
	Proof of Theorem 3

