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Abstract

We present a novel method for convex unconstrained optimization that, without
any modifications, ensures: (i) accelerated convergence rate for smooth objectives,
(ii) standard convergence rate in the general (non-smooth) setting, and (iii) stan-
dard convergence rate in the stochastic optimization setting. To the best of our
knowledge, this is the first method that simultaneously applies to all of the above
settings.
At the heart of our method is an adaptive learning rate rule that employs importance
weights, in the spirit of adaptive online learning algorithms [13, 21], combined with
an update that linearly couples two sequences, in the spirit of [2]. An empirical
examination of our method demonstrates its applicability to the above mentioned
scenarios and corroborates our theoretical findings.

1 Introduction

The accelerated gradient method of Nesterov [25] is one of the cornerstones of modern optimization.
Due to its appeal as a computationally efficient and fast method, it has found use in numerous
applications including: imaging [9], compressed sensing [15], and deep learning [33], amongst other.

Despite these merits, accelerated methods are less prevalent in Machine Learning due to two major
issues: (i) acceleration is inappropriate for handling noisy feedback, and (ii) acceleration requires
the knowledge of the objective’s smoothness. While each of these issues was separately resolved in
[18, 17, 35], and respectively in [27]; it was unknown whether there exists an accelerated method
that addresses both issues. In this work we propose such a method.

Concretely, Nesterov [27] devises a method that obtains an accelerated convergence rate of O(1/T 2)

for smooth convex objectives, and a standard rate of O(1/
√
T ) for non-smooth convex objectives,

over T iterations. This is done without any prior knowledge of the smoothness parameter, and is
therefore referred to as a universal1 method. Nonetheless, this method uses a line search technique in
every round, and is therefore inappropriate for handling noisy feedback. On the other hand, Lan [18],
Hu et al. [17], and Xiao [35], devise accelerated methods that are able to handle noisy feedback and
obtain a convergence rate of O(1/T 2 + σ/

√
T ), where σ is the variance of the gradients. However,

these methods are not universal since they require the knowledge of both σ and of the smoothness.

Conversely, adaptive first order methods are very popular in Machine Learning, with
AdaGrad, [13], being the most prominent method among this class. AdaGrad is an online learning
algorithm which adapts its learning rate using the feedback (gradients) received through the opti-
mization process, and is known to successfully handle noisy feedback. This renders AdaGrad as

1Following Nesterov’s paper [27], we say that an algorithm is universal if it does not require to know in
advance whether the objective is smooth or not. Note that universality does not mean a parameter free algorithm.
Specifically, Nesterov’s universal methods [27] as well as ours are not parameter free.
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the method of choice in various learning applications. Note however, that AdaGrad (probably) can
not ensure acceleration. Moreover, it was so far unknown whether AdaGrad is at all able to exploit
smoothness in order to converge faster.

In this work we investigate unconstrained convex optimization. We suggest AcceleGrad (Alg. 2),
a novel universal method which employs an accelerated-gradient-like update rule together with an
adaptive learning rate à la AdaGrad. Our contributions,

• We show that AcceleGrad obtains an accelerated rate of O(1/T 2) in the smooth case and
Õ(1/

√
T ) in the general case, without any prior information of the objective’s smoothness.

• We show that without any modifications, AcceleGrad ensures a convergence rate of
Õ(1/

√
T ) in the general stochastic convex case.

• We also present a new result regarding the AdaGrad algorithm. We show that in the case of
stochastic optimization with a smooth expected loss, AdaGrad ensures an O(1/T + σ/

√
T )

convergence rate, where σ is the variance of the gradients. AdaGrad does not require a
knowledge of the smoothness, hence this result establishes the universality of AdaGrad
(though without acceleration).

On the technical side our algorithm emoploys three simultaneous mechanisms: learning rate adapta-
tion in conjunction with importance weighting, in the spirit of adaptive online learning algorithms
[13, 21], combined with an update rule that linearly couples two sequences, in the spirit of [2].

This paper is organized as follows. In Section 2 we present our setup and review relevant background.
Our results and analysis for the offline setting are presented in Section 3, and Section 4 presents
our results for the stochastic setting. In Section 5 we present our empirical study, and Section 6
concludes.

Related Work: In his pioneering work, Nesterov [25], establishes an accelerated rate for smooth
convex optimization. This was later generalized in, [26, 6], to allow for general metrics and line
search.

In recent years there has been a renewed interest in accelerated methods, with efforts being made to
understand acceleration as well as to extend it beyond the standard offline optimization setting.

An extension of acceleration to handle stochastic feedback was developed in, [18, 17, 35, 10].
Acceleration for modern variance reduction optimization methods is explored in, [31, 1], and generic
templates to accelerating variance reduction algorithms are developed in, [22, 16]. Scieur et al.
[30], derives a scheme that enables hindsight acceleration of non-accelerated methods. In [36], the
authors devise a universal accelerated method for primal dual problems. And the connection between
acceleration and ODEs is investigated in, [32, 34, 14, 20, 5, 4]. Universal accelerated schemes are
explore in [27, 19, 28], yet these works do not apply to the stochastic setting. Alternative accelerated
methods and interpretations are explored in, [3, 7, 12].

Curiously, Allen-Zhu and Orecchia [2], interpret acceleration as a linear coupling between gradient
descent and mirror descent, our work builds on their ideas. Our method also relies on ideas from [21],
where universal (non-accelerated) procedures are derived through a conversion scheme of online
learning algorithms.

2 Setting and Preliminaries

We discuss the optimization of a convex function f : Rd 7→ R. Our goal is to (approximately) solve
the following unconstrained optimization problem,

min
x∈Rd

f(x) .

We focus on first order methods, i.e., methods that only require gradient information, and consider
both smooth and non-smooth objectives. The former is defined below,
Definition 1 (β-smoothness). A function f : Rd 7→ R is β-smooth if,

f(y) ≤ f(x) +∇f(x) · (y − x) +
β

2
‖x− y‖2; ∀x, y ∈ Rd
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Algorithm 1 Adaptive Gradient Method (AdaGrad)
Input: #Iterations T , x1 ∈ K, set K
for t = 1 . . . T do

Calculate: gt = ∇f(xt), and update, ηt = D
(

2
∑t
τ=1 ‖gτ‖2

)−1/2
Update:

xt+1 = ΠK (xt − ηtgt)
end for
Output: x̄T = 1

T

∑T
t=1 xt

It is well known that with the knowledge of the smoothness parameter, β, one may obtain fast
convergence rates by an appropriate adaptation of the update rule. In this work we do not assume any
such knowledge; instead we assume to be given a bound on the distance between some initial point,
x0, and a global minimizer of the objective.

This is formalized as follows: we are given a compact convex set K that contains a global minimum
of f , i.e., ∃z ∈ K such that z ∈ arg minx∈Rd f(x). Thus, for any initial point, x0 ∈ K, its distance
from the global optimum is bounded by the diameter of the set, D := maxx,y∈K ‖x− y‖. Note that
we allow to choose points outside K. We also assume that the objective f is G-Lipschitz, which
translates to a bound of G on the magnitudes of the (sub)-gradients.

An access to the exact gradients of the objective is not always possible. And in many scenarios we
may only access an oracle which provides noisy and unbiased gradient estimates. This Stochatic
Optimization setting is prevalent in Machine Learning, and we discuss it more formally in Section 4.

The AdaGrad Algorithm: The adaptive method presented in this paper is inspired by AdaGrad
(Alg. 1), a well known online optimization method which employs an adaptive learning rate. The
following theorem states AdaGrad’s guarantees2 , [13],

Theorem 2.1. Let K be a convex set with diameter D. Let f be a convex function. Then Algorithm 1
guarantees the following error;

f(x̄T )−min
x∈K

f(x) ≤

√√√√2D2

T∑
t=1

‖gt‖2/T .

Notation: We denote the Euclidean norm by ‖ · ‖. Given a compact convex set K we denote by
ΠK(·) the projection onto the K, i.e. ∀x ∈ Rd, ΠK(x) = arg miny∈K ‖y − x‖2 .

3 Offline Setting

This section discusses the offline optimization setting where we have an access to the exact gradients
of the objective. We present our method in Algorithm 2, and substantiate its universality by providing
O(1/T 2) rate in the smooth case (Thm. 3.1), and a rate of O(

√
log T/T ) in the general convex case

(Thm. 3.2). The analysis for the smooth case appears in Section 3.1 and we defer the proof of the
non-smooth case to the Appendix.

AcceleGrad is summarized in Algorithm 2. Inspired by, [2], our method linearly couples between
two sequences {zt}t, {yt}t into a sequence {xt+1}t. Using the gradient , gt = ∇f(xt+1), these
sequences are then updated with the same learning rate, ηt, yet with different reference points and
gradient magnitudes. Concretely, yt+1 takes a gradient step starting at xt+1. Conversely, for zt+1 we
scale the gradient by a factor of αt and then take a projected gradient step starting at zt. Our method
finally outputs a weighted average of the {yt+1}t sequence.

Our algorithm coincides with the method of [2] upon taking
ηt = 1/β and outputting the last iterate, yT , rather then a weighted average; yet this method is not

2Actually AdaGrad is well known to ensure regret guarantees in the online setting. For concreteness, Thm. 2.1
provides error guarantees in the offline setting.

3



Algorithm 2 Accelerated Adaptive Gradient Method (AcceleGrad)
Input: #Iterations T , x0 ∈ K, diameter D, weights {αt}t∈[T ], learning rate {ηt}t∈[T ]

Set: y0 = z0 = x0
for t = 0 . . . T do

Set τt = 1/αt
Update:

xt+1 = τtzt + (1− τt)yt , and define gt := ∇f(xt+1)

zt+1 = ΠK (zt − αtηtgt)
yt+1 = xt+1 − ηtgt

end for
Output: ȳT ∝

∑T−1
t=0 αtyt+1

universal. Below we present our β-independent choice of learning rate and weights,

ηt =
2D(

G2 +
∑t
τ=0 α

2
τ‖gτ‖2

)1/2 & αt =

{
1 0 ≤ t ≤ 2
1
4 (t+ 1) t ≥ 3

(1)

The learning rate that we suggest adapts similarly to AdaGrad. Differently from AdaGrad we consider
the importance weights, αt, inside the learning rate rule; an idea that we borrow from [21]. The
weights that we employ are increasing with t, which in turn emphasizes recent queries.

Next we state the guarantees of AcceleGrad for the smooth and non-smooth cases,
Theorem 3.1. Assume that f is convex and β-smooth. Let K be a convex set with bounded diameter
D, and assume there exists a global minimizer for f in K. Then Algorithm 2 with weights and
learning rate as in Equation (1) ensures,

f(ȳT )− min
x∈Rd

f(x) ≤ O
(
DG+ βD2 log(βD/G)

T 2

)
Remark: Actually, in the smooth case we do not need a bound on the Lipschitz continuity, i.e., G is
only required in case that the objective is non-smooth. Concretely, if we know that f is smooth then

we may use ηt = 2D
(∑t

τ=0 α
2
τ‖gτ‖2

)−1/2
, which yields a rate of O

(
βD2 log(βD/‖g0‖)

T 2

)
.

Next we show that the exactly same algorithm provides guarantees in the general convex case,
Theorem 3.2. Assume that f is convex and G-Lipschitz. Let K be a convex set with bounded
diameter D, and assume there exists a global minimizer for f in K. Then Algorithm 2 with weights
and learning rate as in Equation (1) ensures,

f(ȳT )− min
x∈Rd

f(x) ≤ O
(
GD

√
log T/

√
T
)

Remark: For non-smooth objectives, we can modify AcceleGrad and provide guarantees for
the constrained setting. Concretely, using Alg. 2 with a projection step for the yt’s, i.e.,
yt+1 = ΠK(xt+1 − ηtgt), then we can bound its error by f(ȳT ) − minx∈K f(x) ≤
O
(
GD
√

log T/
√
T
)

. This holds even in the case where minimizer over K is not a global one.

3.1 Analysis of the Smooth Case

Here we provide a proof sketch for Theorem 3.1. For brevity, we will use z ∈ K to denote a global
mimimizer of f which belongs to K.

Recall that Algorithm 2 outputs a weighted average of the queries. Consequently, we may employ
Jensen’s inequality to bound its error as follow,

f(ȳT )− f(z) ≤ 1∑T−1
t=0 αt

T−1∑
t=0

αt (f(yt+1)− f(z)) . (2)
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Combining this with
∑T−1
t=0 αt ≥ Ω(T 2), implies that in order to substantiate the proof it is sufficient

to show that,
∑T−1
t=0 αt (f(yt+1)− f(z)), is bounded by a constant. This is the bulk of the analysis.

We start with the following lemma which provides us with a bound on αt (f(yt+1)− f(z)),
Lemma 3.1. Assume that f is convex and β-smooth. Then for any sequence of non-negative weights
{αt}t≥0, and learning rates {ηt}t≥0, Algorithm 2 ensures the following to hold,

αt(f(yt+1)− f(z)) ≤ (α2
t − αt)(f(yt)− f(yt+1)) +

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2

+
1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
Interestingly, choosing ηt ≤ 1/β, implies that the above term, α

2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2, does

not contribute to the sum. We can show that this choice facilitates a concise analysis establishing an
error of O(βD2/T 2) for ȳT 3.

Note however that our learning rate does not depend on β, and therefore the mentioned term is not
necessarily negative. This issue is one of the main challenges in our analysis. Next we provide a
proof sketch of Theorem 3.1. The full proof is deferred to Appendix A.

Proof Sketch of Theorem 3.1. Lemma 3.1 enables to decompose
∑T−1
t=0 αt(f(yt+1)− f(z)),

T−1∑
t=0

αt(f(yt+1)− f(z)) ≤
T−1∑
t=0

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
︸ ︷︷ ︸

(A)

+

T−1∑
t=0

(α2
t − αt)(f(yt)− f(yt+1))︸ ︷︷ ︸

(B)

+

T−1∑
t=0

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2︸ ︷︷ ︸

(C)

(3)
Next we separately bound each of the above terms.

(a) Bounding (A) : Using the fact that {1/ηt}t∈[T ] is monotonically increasing allows to show,
T−1∑
t=0

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
≤ 1

2

T−1∑
t=1

‖zt − z‖2
(

1

ηt
− 1

ηt−1

)
+
‖z0 − z‖2

2η0
≤ D2

2ηT−1

(4)
where we used ‖zt − z‖ ≤ D.

(b) Bounding (B) : We will require the following property of the weights that we choose (Eq. (1)),

(α2
t − αt)− (α2

t−1 − αt−1) ≤ αt−1/2 (5)

Now recall that z := arg minx∈Rd f(x), and let us denote the sub-optimality of yt by δt, i.e.
δt = f(yt)− f(z). Noting that δt ≥ 0 we may show the following,

T−1∑
t=0

(α2
t − αt) (f(yt)− f(yt+1)) =

T−1∑
t=0

(α2
t − αt) (δt − δt+1)

≤
T−1∑
t=1

((α2
t − αt)− (α2

t−1 − αt−1))δt

≤ 1

2

T−1∑
t=0

αt (f(yt+1)− f(z)) (6)

Where the last inequality uses Equation (5) (see full proof for the complete derivation).
3While we do not spell out this analysis, it is a simplified version of our proof for Thm. 3.1.
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(c) Bounding (C) : Let us denote τ? := max {t ∈ {0, . . . , T − 1} : 2β ≥ 1/ηt} . We may now
split the term (C) according to τ?,

(C) =

τ?∑
t=0

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2 +

T−1∑
t=τ?+1

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2

≤ β

2

τ?∑
t=0

α2
t ‖yt+1 − xt+1‖2 −

1

4

T−1∑
t=τ?+1

α2
t

ηt
‖yt+1 − xt+1‖2

=
β

2

τ?∑
t=0

η2tα
2
t ‖gt‖2 −

1

4

T−1∑
t=τ?+1

ηtα
2
t ‖gt‖2 (7)

where in the second line we use 2β ≤ 1
ηt

which holds for t > τ?, implying that β − 1
ηt
≤ − 1

2ηt
; in

the last line we use ‖yt+1 − xt+1‖ = ηt‖gt‖.

Final Bound : Combining the bounds in Equations (4),(6),(7) into Eq. (3), and re-arranging gives,

1

2

T−1∑
t=0

αt(f(yt+1)− f(z)) ≤ D2

2ηT−1
− 1

4

T−1∑
t=τ?+1

ηtα
2
t ‖gt‖2︸ ︷︷ ︸

(∗)

+
β

2

τ?∑
t=0

η2tα
2
t ‖gt‖2︸ ︷︷ ︸

(∗∗)

(8)

We are now in the intricate part of the proof where we need to show that the above is bounded by
a constant. As we show next this crucially depends on our choice of the learning rate. To simplify

the proof sketch we assume to be using , ηt = 2D
(∑t

τ=0 α
2
τ‖gτ‖2

)−1/2
, i.e. taking G = 0 in the

learning rate. We will require the following lemma before we go on,

Lemma. For any non-negative numbers a1, . . . , an the following holds:√√√√ n∑
i=1

ai ≤
n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai .

Equipped with the above lemma and using ηt explicitly enables to bound (∗),

(∗) =
D

4

(
T−1∑
t=0

α2
t ‖gt‖2

)1/2

− D

2

T−1∑
t=τ?+1

α2
t ‖gt‖2(∑t

τ=0 α
2
τ‖gτ‖2

)1/2
≤ D

4

T−1∑
t=0

α2
t ‖gt‖2(∑t

τ=0 α
2
τ‖gτ‖2

)1/2 − D

2

T−1∑
t=τ?+1

α2
t ‖gt‖2(∑t

τ=0 α
2
τ‖gτ‖2

)1/2
≤ D

4

τ?∑
t=0

α2
t ‖gt‖2(∑t

τ=0 α
2
τ‖gτ‖2

)1/2
≤ D

2

(
τ?∑
τ=0

α2
τ‖gτ‖2

)1/2

=
D2

ητ?
≤ 2βD2

where in the last inequality we have used the definition of τ? which implies that 1/ητ? ≤ 2β.

Using similar argumentation allows to bound the term (∗∗) by O(βD2 log (βD/‖g0‖)). Plugging
these bounds back into Eq. (8) we get,

T−1∑
t=0

αt(f(yt+1)− f(z)) ≤ O(βD2 log (βD/‖g0‖)) .

Combining this with Eq. (2) and noting that
∑T−1
t=0 αt ≥ T 2/32, concludes the proof.
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4 Stochastic Setting

This section discusses the stochastic optimization setup which is prevalent in Machine Learning
scenarios. We formally describe this setup and prove that Algorithm 2, without any modification, is
ensured to converge in this setting (Thm. 4.1). Conversely, the universal gradient methods presented
in [27] rely on a line search procedure, which requires exact gradients and function values, and are
therefore inappropriate for stochastic optimization.

As a related result we show that the AdaGrad algorithm (Alg. 1) is universal and is able to exploit
small variance in order to ensure fast rates in the case of stochastic optimization with smooth expected
loss (Thm. 4.2). We emphasize that AdaGrad does not require the smoothness nor a bound on the
variance. Conversely, previous works with this type of guarantees, [35, 18], require the knowledge of
both of these parameters.

Setup: We consider the problem of minimizing a convex function f : Rd 7→ R. We assume that
optimization lasts for T rounds; on each round t = 1, . . . , T , we may query a point xt ∈ Rd, and
receive a feedback. After the last round, we choose x̄T ∈ Rd, and our performance measure is the
expected excess loss, defined as,

E[f(x̄T )]− min
x∈Rd

f(x) .

Here we assume that our feedback is a first order noisy oracle such that upon querying this oracle
with a point x, we receive a bounded and unbiased gradient estimate, g̃, such

E[g̃|x] = ∇f(x); & ‖g̃‖ ≤ G (9)

We also assume that the internal coin tosses (randomizations) of the oracle are independent. It is well
known that variants of Stochastic Gradient Descent (SGD) are ensured to output an estimate x̄T such
that the excess loss is bounded by O(1/

√
T ) for the setups of stochastic convex optimization, [24].

Similarly to the offline setting we assume to be given a set K with bounded diameter D, such that
there exists a global optimum of f in K.

The next theorem substantiates the guarantees of Algorithm 2 in the stochastic case,
Theorem 4.1. Assume that f is convex andG-Lipschitz. LetK be a convex set with bounded diameter
D, and assume there exists a global minimizer for f in K. Assume that we invoke Algorithm 2 but
provide it with noisy gradient estimates (see Eq. (9)) rather then the exact ones. Then Algorithm 2
with weights and learning rate as in Equation (1) ensures,

E[f(ȳT )]− min
x∈Rd

f(x) ≤ O
(
GD

√
log T/

√
T
)

The analysis of Theorem 4.1 goes along similar lines to the proof of its offline counterpart (Thm. 3.2).

It is well known that AdaGrad (Alg. 1) enjoys the standard rate of O(GD/
√
T ) in the stochastic

setting. The next lemma demonstrates that: (i) AdaGrad is universal, and (ii) AdaGrad implicitly
make use of smoothness and small variance in the stochastic setting.
Theorem 4.2. Assume that f is convex and β-smooth. Let K be a convex set with bounded diameter
D, and assume there exists a global minimizer for f in K. Assume that we invoke AdaGrad (Alg. 1)
but provide it with noisy gradient estimates (see Eq. (9)) rather then the exact ones. Then,

E[f(x̄T )]− min
x∈Rd

f(x) ≤ O
(
βD2

T
+
σD√
T

)
where σ2 is a bound on the variance of noisy gradients, i.e., ∀x ∈ Rd; E

[
‖g̃ −∇f(x)‖2|x

]
≤ σ2 .

5 Experiments

In this section we compare AcceleGrad against AdaGrad (Alg. 1) and universal gradient methods
[27], focusing on the effect of tuning parameters and the level of adaptivity.

We consider smooth (p = 2) and non-smooth (p = 1) regression problems of the form

min
x∈Rd

F (x) := ‖Ax− b‖pp .
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Figure 1: Comparison of universal methods at a smooth (top) and a non-smooth (bottom) problem.

We synthetically generate matrix A ∈ Rn×d and a point of interest x\ ∈ Rd randomly, with entries
independently drawn from standard Gaussian distribution. Then, we generate b = Ax\ + ω, with
Gaussian noise, w ∼ N (0, σ2) and σ2 = 10−2. We fix n = 2000 and d = 500.

Figure 1 presents the results for the offline optimization setting, where we provide the exact gradients
of F . All methods are initialized at the origin, and we choose K as the `2 norm ball of diameter D.

Universal gradient methods are based on an inexact line-search technique that requires an input
parameter ε. Moreover, these methods have convergence guarantees only up to ε

2 -suboptimality. For
smooth problems, these methods perform better with smaller ε. In stark contrast, for the non-smooth
problems, small ε causes late adaptation, and large ε ends up with early saturation. Tuning is a major
problem for these methods, since it requires rough knowledge of the optimal value.

Universal gradient method (also the fast version) provably requires two line-search iterations on
average at each outer iteration. Consequently, it performs two data pass at each iteration (four for the
fast version), while AdaGrad and AcceleGrad require only a single data pass.

The parameter ρ denotes the ratio betweenD/2 and the distance between initial point and the solution.
Parameter D plays a major role on the step-size of AdaGrad and AcceleGrad. Overestimating D
causes an overshoot in the first iterations. AcceleGrad consistently overperforms AdaGrad in the
deterministic setting. As a final note, it needs to be mentioned that the iterates yt of AcceleGrad
empirically converge faster than the averaged sequence ȳT . Note that for AcceleGrad we always take

G = 0, i.e., use ηt = 2D
(∑t

τ=0 α
2
τ‖gτ‖2

)−1/2
.

We also study the stochastic setup (Appendix E), where we provide noisy gradients of F based on
minibatches. As expected, universal line search methods fail in this case, while AcceleGrad converges
and performs similarly to AdaGrad.

Large batches: In the appendix we show results on a real dataset which demonstrate the appeal
of AcceleGrad in the large-minibatch regime. We show that with the increase of batch size the
performance of AcceleGrad verses the number of gradient calculations does not degrade and might
even improve. This is beneficial when we like to parallelize a stochastic optimization problem.
Conversely, for AdaGrad we see a clear degradation of the performance as we increase the batch size.

6 Conclusion and Future Work

We have presented a novel universal method that may exploit smoothness in order to accelerate
while still being able to successfully handle noisy feedback. Our current analysis only applies to
unconstrained optimization problems. Extending our work to the constrained setting is a natural

8



future direction. Another direction is to implicitly adapt the parameter D, this might be possible
using ideas in the spirit of scale-free online algorithms, [29, 11].

Acknowledgments

The authors would like to thank Zalán Borsos for his insightful comments on the manuscript.

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no 725594 - time-data).
K.Y.L. is supported by the ETH Zurich Postdoctoral Fellowship and Marie Curie Actions for People
COFUND program.

References
[1] Z. Allen-Zhu. Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. In

STOC, 2017. Full version available at http://arxiv.org/abs/1603.05953.

[2] Z. Allen-Zhu and L. Orecchia. Linear Coupling: An Ultimate Unification of Gradient and Mirror
Descent. In Proceedings of the 8th Innovations in Theoretical Computer Science, ITCS ’17,
2017. Full version available at http://arxiv.org/abs/1407.1537.

[3] Y. Arjevani, S. Shalev-Shwartz, and O. Shamir. On lower and upper bounds in smooth and
strongly convex optimization. The Journal of Machine Learning Research, 17(1):4303–4353,
2016.

[4] H. Attouch and Z. Chbani. Fast inertial dynamics and fista algorithms in convex optimization.
perturbation aspects. arXiv preprint arXiv:1507.01367, 2015.

[5] J. Aujol and C. Dossal. Optimal rate of convergence of an ode associated to the fast gradient
descent schemes for b> 0. 2017.

[6] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[7] S. Bubeck, Y. T. Lee, and M. Singh. A geometric alternative to nesterov’s accelerated gradient
descent. arXiv preprint arXiv:1506.08187, 2015.

[8] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

[9] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

[10] M. B. Cohen, J. Diakonikolas, and L. Orecchia. On acceleration with noise-corrupted gradients.
arXiv preprint arXiv:1805.12591, 2018.

[11] A. Cutkosky and F. Orabona. Black-box reductions for parameter-free online learning in banach
spaces. arXiv preprint arXiv:1802.06293, 2018.

[12] J. Diakonikolas and L. Orecchia. Accelerated extra-gradient descent: A novel accelerated
first-order method. arXiv preprint arXiv:1706.04680, 2017.

[13] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[14] N. Flammarion and F. Bach. From averaging to acceleration, there is only a step-size. In
Conference on Learning Theory, pages 658–695, 2015.

[15] S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing, volume 1.
Birkhäuser Basel, 2013.

[16] R. Frostig, R. Ge, S. Kakade, and A. Sidford. Un-regularizing: approximate proximal point and
faster stochastic algorithms for empirical risk minimization. In International Conference on
Machine Learning, pages 2540–2548, 2015.

9

http://arxiv.org/abs/1603.05953
http://arxiv.org/abs/1407.1537


[17] C. Hu, W. Pan, and J. T. Kwok. Accelerated gradient methods for stochastic optimization and
online learning. In Advances in Neural Information Processing Systems, pages 781–789, 2009.

[18] G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming,
133(1-2):365–397, 2012.

[19] G. Lan. Bundle-level type methods uniformly optimal for smooth and nonsmooth convex
optimization. Mathematical Programming, 149(1-2):1–45, 2015.

[20] L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

[21] K. Levy. Online to offline conversions, universality and adaptive minibatch sizes. In Advances
in Neural Information Processing Systems, pages 1612–1621, 2017.

[22] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In
Advances in Neural Information Processing Systems, pages 3384–3392, 2015.

[23] H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization.
COLT 2010, page 244, 2010.

[24] A. Nemirovskii, D. B. Yudin, and E. Dawson. Problem complexity and method efficiency in
optimization. 1983.

[25] Y. Nesterov. A method of solving a convex programming problem with convergence rate o
(1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

[26] Y. Nesterov. Introductory lectures on convex optimization. 2004, 2003.

[27] Y. Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1-2):381–404, 2015.

[28] A. Neumaier. Osga: a fast subgradient algorithm with optimal complexity. Mathematical
Programming, 158(1-2):1–21, 2016.

[29] F. Orabona and D. Pál. Scale-free algorithms for online linear optimization. In International
Conference on Algorithmic Learning Theory, pages 287–301. Springer, 2015.

[30] D. Scieur, A. d’Aspremont, and F. Bach. Regularized nonlinear acceleration. In Advances In
Neural Information Processing Systems, pages 712–720, 2016.

[31] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. In International Conference on Machine Learning, pages 64–72,
2014.

[32] W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov’s accelerated
gradient method: Theory and insights. In Advances in Neural Information Processing Systems,
pages 2510–2518, 2014.

[33] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, pages 1139–
1147, 2013.

[34] A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated methods
in optimization. Proceedings of the National Academy of Sciences, 113(47):E7351–E7358,
2016.

[35] L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11(Oct):2543–2596, 2010.

[36] A. Yurtsever, Q. T. Dinh, and V. Cevher. A universal primal-dual convex optimization framework.
In Advances in Neural Information Processing Systems, pages 3150–3158, 2015.

10



A Proofs for the Smooth Case (Thm. 3.1)

Here we provide the complete proof of Theorem 3.1, and of the related lemmas. For brevity, we will
use z ∈ K to denote a global mimimizer of f which belongs to K.

Recall that Algorithm 2 outputs a weighted average of the queries. Consequently, we may employ
Jensen’s inequality to bound its error as follow,

f(ȳT )− f(z) ≤ 1∑T−1
t=0 αt

T−1∑
t=0

αt (f(yt+1)− f(z)) . (10)

Combining this with
∑T−1
t=0 αt ≥ Ω(T 2), implies that in order to substantiate the proof it is sufficient

to show that,
∑T−1
t=0 αt (f(yt+1)− f(z)), is bounded by a constant. This is the bulk of the analysis.

We start by recalling Lemma 3.1 which provides us with abound on αt (f(yt+1)− f(z)),

Lemma (Lemma 3.1). Assume that f is convex and β-smooth. Then for any sequence of non-negative
weights {αt}t≥0, and learning rates {ηt}t≥0, Algorithm 2 ensures the following to hold,

αt(f(yt+1)− f(z)) ≤ (α2
t − αt)(f(yt)− f(yt+1)) +

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2

+
1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
The proof Lemma 3.1 is provided in Appendix A.1. We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. According to Lemma 3.1,

T−1∑
t=0

αt(f(yt+1)− f(z))

≤
T−1∑
t=0

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
︸ ︷︷ ︸

(A)

+

T−1∑
t=0

(α2
t − αt)(f(yt)− f(yt+1))︸ ︷︷ ︸

(B)

+

T−1∑
t=0

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2︸ ︷︷ ︸

(C)

(11)

It is natural to separately bound each of the sums above.

(a) Bounding (A) : Using the fact that {1/ηt}t∈[T ] is monotonically increasing we may bound (A)
as follows,

T−1∑
t=0

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
≤ 1

2

T−1∑
t=1

‖zt − z‖2
(

1

ηt
− 1

ηt−1

)
+
‖z0 − z‖2

2η0

≤ D2

2ηT−1
(12)

where we used ‖zt − z‖ ≤ D.

(b) Bounding (B) : We will require the next lemma regarding the specific choice of the weights,

Lemma A.1. The following holds for the αt’s which are described in Eq. (1),

(α2
t − αt)− (α2

t−1 − αt−1) ≤ αt−1/2

11



Its proof appears in Appendix A.3.

We are now ready to bound (B). Recall that z := arg minx∈Rd f(x), and let us denote the sub-
optimality of yt by δt, i.e. δt = f(yt)− f(z). Noting that δt ≥ 0 we may show the following,

T−1∑
t=0

(α2
t − αt) (f(yt)− f(yt+1))

=

T−1∑
t=0

(α2
t − αt) (δt − δt+1)

=

T−1∑
t=1

((α2
t − αt)− (α2

t−1 − αt−1))δt + (α2
0 − α0)δ0 − (α2

T−1 − αT−1)δT

≤ 1

2

T−1∑
t=1

αt−1δt

≤ 1

2

T−1∑
t=1

αt−1δt +
1

2
αT−1δT

=
1

2

T−1∑
t=0

αtδt+1

=
1

2

T−1∑
t=0

αt (f(yt+1)− f(z)) (13)

where in the fourth line we use Lemma A.1, we also use α2
0 − α0 = 0 and α2

T−1 − αT−1 ≥ 0.

(c) Bounding (C) : Let us denote τ? as follows,

τ? = max {t ∈ {0, . . . , T − 1} : 2β ≥ 1/ηt} .

We may now split the last term as follows,

T−1∑
t=0

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2

=

τ?∑
t=0

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2 +

T−1∑
t=τ?+1

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2

≤ β

2

τ?∑
t=0

α2
t ‖yt+1 − xt+1‖2 −

1

4

T−1∑
t=τ?+1

α2
t

ηt
‖yt+1 − xt+1‖2

=
β

2

τ?∑
t=0

η2tα
2
t ‖gt‖2 −

1

4

T−1∑
t=τ?+1

ηtα
2
t ‖gt‖2 (14)

where in the third line we use 2β ≤ 1
ηt

which holds for t > τ?, implying that β − 1
ηt
≤ − 1

2ηt
; in the

fourth line we use ‖yt+1 − xt+1‖ = ηt‖gt‖.

Final Bound : Combining the bounds in Eq. (12)-(14) into Eq. (11), we obtain,

T−1∑
t=0

αt(f(yt+1)− f(z)) ≤ D2

2ηT−1
+

1

2

T−1∑
t=0

αt (f(yt+1)− f(z))

+
β

2

τ?∑
t=0

η2tα
2
t ‖gt‖2 −

1

4

T−1∑
t=τ?+1

ηtα
2
t ‖gt‖2

12



Re-arranging we get,

1

2

T−1∑
t=0

αt(f(yt+1)− f(z)) ≤ D2

2ηT−1
− 1

4

T−1∑
t=τ?+1

ηtα
2
t ‖gt‖2︸ ︷︷ ︸

(∗)

+
β

2

τ?∑
t=0

η2tα
2
t ‖gt‖2︸ ︷︷ ︸

(∗∗)

(15)

This is the intricate part of the proof where we show that the above is bounded by a constant. This

crucially depends on our choice of the learning rate, i.e., ηt = 2D
(
G2 +

∑t
τ=0 α

2
τ‖gτ‖2

)−1/2
. We

require the following lemma (proof is found in Appendix A.4) before we go on,

Lemma A.2. For any non-negative numbers a1, . . . , an the following holds:

√√√√ n∑
i=1

ai ≤
n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai .

Equipped with the above lemma and using ηt explicitly enables to bound (∗),

(∗) =
D

4

(
G2 +

T−1∑
t=0

α2
t ‖gt‖2

)1/2

− D

2

T−1∑
t=τ?+1

α2
t ‖gt‖2(

G2 +
∑t
τ=0 α

2
τ‖gτ‖2

)1/2
≤ D

4

 G2

(G2)1/2
+

T−1∑
t=0

α2
t ‖gt‖2(

G2 +
∑t
τ=0 α

2
τ‖gτ‖2

)1/2
− D

2

T−1∑
t=τ?+1

α2
t ‖gt‖2(

G2 +
∑t
τ=0 α

2
τ‖gτ‖2

)1/2
≤ DG

4
+
D

4

τ?∑
t=0

α2
t ‖gt‖2(

G2 +
∑t
τ=0 α

2
τ‖gτ‖2

)1/2
≤ DG

4
+
D

2

(
τ?∑
τ=0

α2
τ‖gτ‖2

)1/2

=
DG

4
+
D2

ητ?

≤ DG/4 + 2βD2 (16)

where in the second line we use the left hand nequality of Lemma A.2; in the fourth line we use the
right hand inequality of Lemma A.2 ; and in the last line we have used the definition of τ? which
implies that 1/ητ? ≤ 2β.

We will also require the following lemma (proof is found in Appendix A.5),

Lemma A.3. For any non-negative real numbers a1, . . . , an,

n∑
i=1

ai

1 +
∑i
j=1 aj

≤ 1 + log

(
1 +

n∑
i=1

ai

)
.
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Equipped with the above lemma and using ηt explicitly enables to bound (∗∗),

β

2

τ?∑
t=0

η2tα
2
t ‖gt‖2 =

4βD2

2

τ?∑
t=0

α2
t ‖gt‖2

G2 +
∑t
τ=0 α

2
τ‖gτ‖2

= 2βD2
τ?∑
t=0

α2
t (‖gt‖/G)2

1 +
∑t
τ=0 α

2
τ (‖gτ‖/G)2

≤ 2βD2

(
1 + log

(
(G/G)2 +

τ?∑
τ=0

α2
τ (‖gτ‖/G)2

))

= 2βD2

(
1 + log

(
4D2/G2

η2τ?

))
≤ 2βD2 (1 + 2 log (4βD/G)) (17)

where in the third line we used Lemma A.3, and in the last line we have used the definition of
τ? which implies that 1/ητ? ≤ 2β. Combining Equations (16), (17) back into Eq. (15) and using
Jensen’s inequality we are now ready to establish the final bound,

f(ȳT )− f(z) ≤
∑T−1
t=0 αt(f(yt+1)− f(z))∑T−1

t=0 αt

≤ DG/2 + 8βD2 (1 + log (4βD/G))

T 2/32

= O

(
DG+ βD2 log(βD/G)

T 2

)
.

where we have used αt ≥ 1
4 (t+ 1) and therefore

∑T−1
t=0 αt ≥ T 2/32.

A.1 Proof of Lemma 3.1

Proof. Our starting point is bounding αt(f(xt+1)− f(z)) which can be decomposed as follows,

αt(f(xt+1)− f(z)) ≤ αtgt · (xt+1 − z)
= αtgt · (zt − z) + αtgt · (xt+1 − zt) (18)

where we use gt = ∇f(xt+1) in conjunction with the gradient inequality. Let us now bound the
terms in the above equation.

(a) Bounding αtgt · (zt − z): The next lemma enables to bound this term,

Lemma A.4. The following holds,

αtgt · (zt − z) ≤
(
αtgt · (zt − zt+1)− 1

2ηt
‖zt − zt+1‖2

)
+

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)

The proof of Lemma A.4 is provided in Appendix A.2.
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We can now relate the first term in the above lemma to yt+1. Define v = τtzt+1 + (1− τt)yt ∈ K,
and notice that xt+1 − v = τt(zt − zt+1). Using this we may write,

αtgt · (zt − zt+1)− 1

2ηt
‖zt − zt+1‖2

=
αt
τt
gt · (xt+1 − v)− 1

2ηtτ2t
‖xt+1 − v‖2

= α2
t

(
gt · (xt+1 − v)− 1

2ηt
‖xt+1 − v‖2

)
= α2

t gt · xt+1 − α2
t

(
gt · v +

1

2ηt
‖xt+1 − v‖2

)
≤ α2

t gt · xt+1 − α2
t

(
gt · yt+1 +

1

2ηt
‖xt+1 − yt+1‖2

)
= α2

t gt · (xt+1 − yt+1)− α2
t

2ηt
‖xt+1 − yt+1‖2 (19)

where we use τt = 1/αt; also in the inequality we use the following equivalent form for the update
rule of yt+1,

yt+1 = arg min
x∈Rd

gt · x+
1

2ηt
‖x− xt+1‖2 .

this equivalence can be directly validated by finding the global optimum of the above objective and
showing that it is obtained by choosing yt+1 = xt+1 − ηtgt.
Combining Eq. (19) with Lemma A.4 gives,

αtgt · (zt − z) ≤ α2
t gt · (xt+1 − yt+1)− α2

t

2ηt
‖xt+1 − yt+1‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
(20)

(b) Bounding αtgt · (xt+1 − zt): Notice that re-arranging the relation between xt+1, yt, zt (recall
xt+1 = τtzt + (1− τt)yt) gives,

xt+1 − zt = rt(yt − xt+1) (21)

where we denote rt = (1− τt)/τt. Also note that the smoothness of f implies,

f(yt+1)− f(xt+1) ≤ gt · (yt+1 − xt+1) +
β

2
‖yt+1 − xt+1‖2 (22)

Combining Eq. (21) and (22) we get,

gt · (xt+1 − zt)
= rt∇f(xt+1) · (yt − xt+1)

≤ rt (f(yt)− f(xt+1))

= rt (f(yt)− f(yt+1)) + (rt + 1) (f(yt+1)− f(xt+1))− (f(yt+1)− f(xt+1))

≤ (αt − 1) (f(yt)− f(yt+1)) + αt

(
gt · (yt+1 − xt+1) +

β

2
‖yt+1 − xt+1‖2

)
− (f(yt+1)− f(xt+1)) (23)

where second line uses the gradient inequality. We have also used rt = (1− τt)/τt = αt − 1 (see
Alg. 2).
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(c) Bounding αt · (f(yt+1)− f(z)): Combining Equations (18), (20) and (23) we get,

αt(f(xt+1)− f(z))

≤ αtgt · (zt − z) + αtgt · (xt+1 − zt)

≤
{
α2
t gt · (xt+1 − yt+1)− α2

t

2ηt
‖xt+1 − yt+1‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)}
+ (α2

t − αt) (f(yt)− f(yt+1)) + α2
t

(
gt · (yt+1 − xt+1) +

β

2
‖yt+1 − xt+1‖2

)
− αt (f(yt+1)− f(xt+1))

= (α2
t − αt)(f(yt)− f(yt+1)) +

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2

+
1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
− αt (f(yt+1)− f(xt+1))

Re-arranging the above equation implies,

αt(f(yt+1)− f(z))

≤ (α2
t − αt)(f(yt)− f(yt+1)) +

α2
t

2

(
β − 1

ηt

)
‖yt+1 − xt+1‖2

+
1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
which concludes the proof.

A.2 Proof of Lemma A.4

Proof. Writing the update of the zt’s explicitly we have,

zt+1 ← arg min
x∈K

‖x− (zt − ηtαtgt) ‖2 .

Simplifying the above implies the following equivalent form,

zt+1 ← arg min
x∈K

αtgt · x+
1

ηt
Rzt(x) ,

whereRzt(x) := ‖x−zt‖2/2. Since zt+1 is a solution of the above minimization problem it satisfies
the first order optimality conditions, i.e. ∀z ∈ K,

αtgt · (z − zt+1) +
1

ηt
∇Rzt(zt+1) · (z − zt+1) ≥ 0 (24)

which follows by the first order optimality conditions for zt+1. We are now ready to complete the
proof,

αtgt · (zt − z) = αtgt · (zt − zt+1) + αtgt · (zt+1 − z)

≤ αtgt · (zt − zt+1)− 1

ηt
∇Rzt(zt+1) · (zt+1 − z)

= αtgt · (zt − zt+1)− 1

2ηt
‖zt − zt+1‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
where the second line follows due to Eq. (24), and the second line is due to following lemma (which
may be easily extended to general Bergman divergences),

Lemma A.5. Let u, v, z ∈ Rd, and letRv(x) := 1
2‖x− v‖

2, then

−∇Rv(u) · (u− z) =
1

2
‖v − z‖2 − 1

2
‖u− z‖2 − 1

2
‖u− v‖2

Below we provide the proof of this lemma.
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A.2.1 Proof of Lemma A.5

Proof. Noticing that −∇Rv(u) = v− u the lemma may be validated by a direct calculation. Indeed,
−∇Rv(u) · (u− z) = −v · z + u · z + u · v − ‖u‖2. Also,

‖v − z‖2 − ‖u− z‖2 − ‖u− v‖2 = −2v · z + 2u · z + 2u · v − 2‖u‖2

A.3 Proof of Lemma A.1

Proof. For t ≤ 3 we have α2
t − αt = 0 and the lemma immediately follows. For t > 3 we have,

(α2
t − αt)− (α2

t−1 − αt−1) =
(t+ 1)2 − 4(t+ 1)

16
− t2 − 4t

16
=

2t− 3

8
≤ αt−1/2

A.4 Proof of Lemma A.2

Proof. First direction: We will prove this part by induction. The base case, n = 1, immediately
holds. For the induction step assume that the lemma holds for n− 1 and let us show it holds for n.
By the induction assumption,

n∑
i=1

ai√∑i
j=1 aj

≥

√√√√n−1∑
i=1

ai +
an√∑n
i=1 ai

=
√
Z − x+

x√
Z

where we denote x := an and Z =
∑n
i=1 ai (note that x ≤ Z). Thus, in order to prove the lemma it

is sufficient to show that,
√
Z − x+

x√
Z
≥
√
Z ,

which we do next. Multiplying both sides by
√
Z we get that the above is equivalent to,

√
Z2 − xZ ≥ Z − x

Taking the square of the above an re-ordering we get that the above is equivalent to,

x ≤ Z

Which holds in our case since x = an ≤
∑n
i=1 ai = Z. This concludes the first part of the proof.

Second direction: The second inequality in the lemma is due to Lemma 7 in [23]. For completeness
we include their proof.

This part is also proved by induction. The base case, n = 1, immediately holds. For the induction step
assume that the lemma holds for n− 1 and let us show it holds for n. By the induction assumption,

n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√n−1∑
i=1

ai +
an√∑n
i=1 ai

= 2
√
Z − x+

x√
Z

where we denote x := an and Z =
∑n
i=1 ai (note that x ≤ Z). The derivative of the right hand side

with respect to x is − 1√
Z−x + 1√

Z
, which is negative for x ≥ 0. Thus, subject to the constraint

x ≥ 0, the right hand side is maximized at x = 0, and is therefore at most 2
√
Z. This concludes the

second part of the proof.
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A.5 Proof of Lemma A.3

Proof. We will prove the statement by induction over n. The base case n = 1 holds since,
a1

1 + a1
≤ 1 ≤ 1 + log(1 + a1) .

For the induction step, let us assume that the guarantee holds for n− 1, which implies that for any
a1, . . . , an ≥ 0,

n∑
i=1

ai

1 +
∑i
j=1 aj

≤ 1 + log(1 +

n−1∑
i=1

ai) +
an

1 +
∑n
i=1 ai

.

The above suggests that establishing following inequality concludes the proof,

1 + log(1 +

n−1∑
i=1

ai) +
an

1 +
∑n
i=1 ai

≤ 1 + log(1 +

n∑
i=1

ai) . (25)

Using the notation x = an/(1 +
∑n−1
i=1 ai), Equation (25) is equivalent to the following,

log(x+ 1)− x

1 + x
≥ 0 .

However, it is immediate to validate that the function M(x) = log(x+ 1)− x
1+x , is non-negative for

any x ≥ 0, which establishes the lemma.
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B Proofs for the General Convex Case (Thm. 3.2)

Here we provide the complete proof of Theorem 3.2, and of the related lemmas. For brevity, we will
use z ∈ K to denote a global mimimizer of f which belongs to K.

Recall that Algorithm 2 outputs a weighted average of the queries. Consequently, we may employ
Jensen’s inequality to bound its error as follow,

f(ȳT )− f(z) ≤ 1∑T−1
t=0 αt

T−1∑
t=0

αt (f(yt+1)− f(z)) . (26)

Combining this with
∑T−1
t=0 αt ≥ Ω(T 2), implies that in order to substantiate the proof it is sufficient

to show that,
∑T−1
t=0 αt (f(yt+1)− f(z)), is bounded by Õ(T 3/2). This is the bulk of the analysis.

We start with the following lemma which provides us with a bound on αt (f(yt+1)− f(z)),
Lemma B.1. Assume that f is convex and G-Lipschitz. Then for any sequence of non-negative
weights {αt}t≥0, and learning rates {ηt}t≥0, Algorithm 2 ensures the following to hold,

αt(f(yt+1)− f(z))

≤ ηtα2
t ‖gt‖2 + ηtα

2
t ‖gt‖G+

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+ (α2

t − αt) (f(yt)− f(yt+1))

The proof of Lemma B.1 is provided in Appendix B.1. We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. According to Lemma B.1,

T−1∑
t=0

αt(f(yt+1)− f(z))

≤
T−1∑
t=0

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
︸ ︷︷ ︸

(A)

+

T−1∑
t=0

(α2
t − αt)(f(yt)− f(yt+1))︸ ︷︷ ︸

(B)

+

T−1∑
t=0

ηtα
2
t ‖gt‖2︸ ︷︷ ︸

(C)

+

T−1∑
t=0

ηtα
2
t ‖gt‖G︸ ︷︷ ︸

(D)

(27)

It is natural to separately bound each of the sums above.

(a) Bounding (A) : Similarly to part (a) in the proof of Theorem 3.1 we can show the following to
hold,

T−1∑
t=0

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
≤ D2

ηT−1
(28)

(b) Bounding (B) : Similarly to part (b) in the proof of Theorem 3.1 we can show the following to
hold for z = arg minz∈Rd f(x),

T−1∑
t=0

(α2
t − αt) (f(yt)− f(yt+1)) ≤ 1

2

T−1∑
t=0

αt (f(yt+1)− f(z)) (29)

(c) Bounding (C) : Note that by the definition of ηt we have

ηt =
2D(

G2 +
∑t
τ=1 α

2
τ‖gτ‖2

)1/2 ≤ 2D(∑t
τ=1 α

2
τ‖gτ‖2

)1/2 .
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Using the above ineuality we get,

T−1∑
t=0

ηtα
2
t ‖gt‖2 ≤ 2D

T−1∑
t=0

α2
t ‖gt‖2(∑t

τ=0 α
2
τ‖gτ‖2

)1/2 ≤ 4D

√√√√T−1∑
t=0

α2
t ‖gt‖2 (30)

where the second inequality uses Lemma A.2.

(d) Bounding (D) : Writing down ηt explicitly we get,

T−1∑
t=0

ηtα
2
t ‖gt‖G = 2DG

T−1∑
t=0

α2
t ‖gt‖(

G2 +
∑t
τ=0 α

2
τ‖gτ‖2

)1/2
≤ 2DGT

T−1∑
t=0

αt‖gt‖(
G2 +

∑t
τ=0 α

2
τ‖gτ‖2

)1/2
= 2DGT

T−1∑
t=0

αt(‖gt‖/G)(
1 +

∑t
τ=0 α

2
τ (‖gτ‖/G)2

)1/2
≤ 10DG

√
log T · T 3/2 . (31)

where we used ∀t ≤ T ; αt ≤ T . The last line uses the following lemma (see proof in Appendix B.2),

Lemma B.2. Consider the αt’s used by our algorithm, i.e.,

αt =

{
1 0 ≤ t ≤ 2
1
4 (t+ 1) t ≥ 3

And assume a sequence of non-negative numbers, b0, b1, . . . , bT−1 ∈ [0, 1]. Then the following holds,

T−1∑
t=0

αtbt(
1 +

∑t
τ=0 α

2
τ b

2
τ

)1/2 ≤ 5
√

log T
√
T

Final Bound : Combining the bounds on the different terms, Eq. (28)-(31), together with Eq. (27),
we have,

T−1∑
t=0

αt(f(yt+1)− f(z))

≤ D2

ηT−1
+

1

2

T−1∑
t=0

αt (f(yt+1)− f(z))

+ 4D

√√√√T−1∑
t=0

α2
t ‖gt‖2 + 10DG

√
log T · T 3/2

Re-arranging and using the explicit expression for ηT−1 we get,

1

2

T−1∑
t=0

αt(f(yt+1)− f(z))

≤ 5D

√√√√G2 +

T−1∑
t=0

α2
t ‖gt‖2 + 10DG

√
log T · T 3/2

≤ 5DG
√

1 + T 3 + 10DG
√

log T · T 3/2

≤ 20DG
√

log T · T 3/2 .
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where we have used ‖gt‖ ≤ G, and also, αt ≤ t+ 1 implying that
∑T−1
t=0 α2

t ≤ T 3.

Using Jensen’s inequality we are now ready to establish the final bound,

f(ȳT )− f(z) ≤
∑T−1
t=0 αt(f(yt+1)− f(z))∑T−1

t=0 αt

≤ 40 ·DG
√

log T · T 3/2

T 2/32

= O
(
DG

√
log T/

√
T
)

where we have used αt ≥ 1
4 (t+ 1) and therefore

∑T−1
t=0 αt ≥ T 2/32.

B.1 Proof of Lemma B.1

Proof. Our starting point is bounding αt(f(xt+1)− f(z)) which can be decomposed as follows,

αt(f(xt+1)− f(z)) ≤ αtgt · (xt+1 − z)
= αtgt · (zt − z) + αtgt · (xt+1 − zt) (32)

where we use gt = ∇f(xt+1) in conjunction with the gradient inequality. Let us now bound the
terms in the above equation.

(a) Bounding αtgt · (zt − z): Similarly to the proof of Lemma 3.1 we can show the following to
hold (see Eq. (20) in Lemma 3.1),

αtgt · (zt − z) ≤ α2
t gt · (xt+1 − yt+1)− α2

t

2ηt
‖xt+1 − yt+1‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
Combining the above with ‖xt+1 − yt+1‖ = ηt‖gt‖ implies,

αtgt · (zt − z) ≤ ηtα2
t ‖gt‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
(33)

(b) Bounding αtgt · (xt+1 − zt): Notice that re-arranging the relation between xt+1, yt, zt (recall
xt+1 = τtzt + (1− τt)yt) gives,

xt+1 − zt = rt(yt − xt+1)

where we denote rt = (1− τt)/τt. Using the above we get,

gt · (xt+1 − zt)
= rt∇f(xt+1) · (yt − xt+1)

≤ (αt − 1) (f(yt)− f(xt+1))

≤ αt (f(yt+1)− f(xt+1))− (f(yt+1)− f(xt+1)) + (αt − 1) (f(yt)− f(yt+1))

≤ αtGηt‖gt‖ − (f(yt+1)− f(xt+1)) + (αt − 1) (f(yt)− f(yt+1)) (34)

where second line uses the gradient inequality, in the third line we used rt = (1− τt)/τt = αt − 1
(see Alg. 2); and in the last line we used |f(yt+1)− f(xt+1)| ≤ G‖yt+1−xt+1‖ ≤ Gηt‖gt‖, which
follows by the G-Lipschitzness of f .

(c) Bounding αt · (f(yt+1)− f(z)): Combining Equations (32), (33), (34) we get,

αt(f(xt+1)− f(z))

≤ αtgt · (zt − z) + αtgt · (xt+1 − zt)

≤
{
ηtα

2
t ‖gt‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)}
+ (α2

t − αt) (f(yt)− f(yt+1)) + ηtα
2
t ‖gt‖G− αt (f(yt+1)− f(xt+1))
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Re-arranging the above equation and we get,

αt(f(yt+1)− f(z))

≤ ηtα2
t ‖gt‖2 + ηtα

2
t ‖gt‖G+

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+ (α2

t − αt) (f(yt)− f(yt+1))

which concludes the proof.

B.2 Proof of Lemma B.2

Proof. Let us define the following time variables,

T0 = max

{
t ∈ {0, . . . , T − 1} :

t∑
τ=0

α2
τ b

2
τ ≤ 1

}

and for any k ≥ 1

Tk = max

{
t ∈ {0, . . . , T − 1} : 4k−1 <

t∑
τ=0

α2
τ b

2
τ ≤ 4k

}

By the definition of T0, the following applies,

T0∑
τ=0

ατ bτ ≤
√
T0 + 1

(
T0∑
τ=0

α2
τ b

2
τ

)1/2

≤
√
T . (35)

where in the first inequality we use ‖u‖1 ≤
√
n‖u‖2, ∀u ∈ Rn, in the second inequality we use the

definition of T0 together with T0 ≤ T − 1.

For the other time variables we can similarly show the following bounds, i.e., ∀k ≥ 1,

Tk∑
τ=Tk−1+1

ατ bτ ≤
√
Tk − Tk−1

 Tk∑
τ=Tk−1+1

α2
τ b

2
τ

1/2

≤
√
Tk − Tk−1 · 2k (36)

where in the first inequality we use ‖u‖1 ≤
√
n‖u‖2, ∀u ∈ Rn, in the second inequality we use the

definition of Tk.

Using the definition of the time variables together with Equations (35),(36) we get,

T−1∑
t=0

αtbt(
1 +

∑t
τ=0 α

2
τ b

2
τ

)1/2
=

T0∑
t=0

αtbt(
1 +

∑t
τ=0 α

2
τ b

2
τ

)1/2 +
∑
k≥1

Tk∑
t=Tk−1+1

αtbt(
1 +

∑t
τ=0 α

2
τ b

2
τ

)1/2
≤

T0∑
t=0

αtbt +
∑
k≥1

Tk∑
t=Tk−1+1

αtbt

(1 + 4k−1)
1/2

≤
√
T +

∑
k≥1

1

2k−1

Tk∑
t=Tk−1+1

αtbt

≤
√
T + 2

∑
k≥1

√
Tk − Tk−1

where in the third line we use
∑t
τ=0 α

2
τ b

2
τ > 4k−1 which by definition holds for any Tk−1 < t ≤ Tk.
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Thus, we are left to show that
∑
k≥1

√
Tk − Tk−1 ≤ 2

√
log T

√
T . To do so, first notice that the

maximal value of k is bounded as follows,

4kmax−1 ≤
T−1∑
t=0

α2
t

≤
T−1∑
t=0

(t+ 1)2

≤ T 3

Thus, assuming T ≥ 2 we have kmax ≤ 3 log2 T , and therefore,

∑
k≥1

√
Tk − Tk−1 =

kmax∑
k=1

√
Tk − Tk−1

≤
√
kmax

(
kmax∑
k=1

(Tk − Tk−1)

)1/2

≤
√

3 log T (T − T0)
1/2

≤
√

3 log T
√
T .

where we used ‖u‖1 ≤
√
n‖u‖2, ∀u ∈ Rn and also Tkmax = T−1. This established the lemma.
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C Proof of Theorem 4.1

Proof. For brevity we will not rehearse all of the details which are similar to the proof of the offline
setting, but rather only emphasize the differences compared to the analysis of Theorem 3.2. First note
the following which is analogous to Lemma B.1,

Lemma C.1. Assume that f is convex and G-Lipschitz. Assume that we invoke Algorithm 2 but
provide it with noisy gradient estimates (see Eq. (9)) rather then the exact ones. Then for any sequence
of non-negative weights {αt}t≥0, and learning rates {ηt}t≥0, the following holds,

αt(f(yt+1)− f(z))

≤ ηtα2
t ‖g̃t‖2 + ηtα

2
t ‖g̃t‖G+

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+ (α2

t − αt) (f(yt)− f(yt+1))

+ αt(gt − g̃t) · (zt − z)

We prove this lemma in Appendix C.1.

Now, focusing on the term αt(gt − g̃t) · (zt − z), the unbaisdness of g̃t immediately implies,

E[αt(gt − g̃t) · (zt − z)] = 0 .

Ignoring this term and comparing the bound in the above lemma to Lemma B.1, one can see that the
expression are identical up to replacing, gt ↔ g̃t. This identity in the expressions applies also to the
learning rate, ηt (again up to replacing, gt ↔ g̃t). Thus, the exact same analysis as of Lemma B.1
shows that w.p. 1 we have,

T−1∑
t=0

αt(f(yt+1)− f(z))−
T−1∑
t=0

αt(gt − g̃t) · (zt − z) ≤ O(GD
√

log T · T 3/2) .

Taking expectations and using the above in conjunction with the definition of ȳT and Jensen’s
inequality concludes the proof.

C.1 Proof of Lemma C.1

Proof. The proof follows similar lines to the proof of Lemmas B.1 and 3.1. Here we will highlight
the changes due to the stochastic setting.

Our starting point is bounding αt(f(xt+1)− f(z)) which can be decomposed as follows,

αt(f(xt+1)− f(z)) ≤ αtgt · (xt+1 − z)
= αtg̃t · (zt − z) + αtgt · (xt+1 − zt) + αt(gt − g̃t) · (zt − z) (37)

Due to the unbiasedness of g̃t then the expectation of the last term αt(gt − g̃t) · (zt − z) is zero. Let
us now bound the remaining two terms in the above equation.

(a) Bounding αtg̃t · (zt − z): Similarly to the proof of Lemma 3.1 we can show the following to
hold (see Eq. (20) in Lemma 3.1),

αtg̃t · (zt − z) ≤ α2
t g̃t · (xt+1 − yt+1)− α2

t

2ηt
‖xt+1 − yt+1‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
Combining the above with ‖xt+1 − yt+1‖ = ηt‖g̃t‖ implies,

αtg̃t · (zt − z) ≤ ηtα2
t ‖g̃t‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
(38)

(b) Bounding αtgt · (xt+1 − zt): Similarly to the proof of Lemma B.1 we can show the following
to hold (see Eq. (34) therein),

gt · (xt+1 − zt) ≤ αtGηt‖g̃t‖ − (f(yt+1)− f(xt+1)) + (αt − 1) (f(yt)− f(yt+1)) (39)
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(c) Bounding αt · (f(yt+1)− f(z)): Combining Equations (38), (39) and (37) we get,

αt(f(xt+1)− f(z))

≤
{
ηtα

2
t ‖g̃t‖2 +

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)}
+ αt(gt − g̃t) · (zt − z)

+ (α2
t − αt) (f(yt)− f(yt+1)) + ηtα

2
t ‖g̃t‖G− αt (f(yt+1)− f(xt+1))

Re-arranging the above equation and we get,

αt(f(yt+1)− f(z))

≤ ηtα2
t ‖g̃t‖2 + ηtα

2
t ‖g̃t‖G+

1

2ηt

(
‖zt − z‖2 − ‖zt+1 − z‖2

)
+ (α2

t − αt) (f(yt)− f(yt+1))

+ αt(gt − g̃t) · (zt − z)

which concludes the proof.
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D Proof of Theorem 4.2

Proof of Theorem 4.2. Lets us denote by g̃t the noisy gradients received by AdaGrad upon querying
xt. In this case, by applying the regret guarantees of AdaGrad, [13], in conjunction to standard online
to batch conversion technique, [8], implies,

T∑
t=1

E
(
f(xt)−min

x∈K
f(x)

)
≤ E

√√√√2D2

T∑
t=1

‖g̃t‖2 (40)

Now decomposing, ‖g̃t‖ ≤ ‖gt‖+ ‖g̃t − gt‖, gives,√√√√ T∑
t=1

‖g̃t‖2 ≤

√√√√2

T∑
t=1

‖gt‖2 + 2

T∑
t=1

‖g̃t − gt‖2 ≤

√√√√2

T∑
t=1

‖gt‖2 +

√√√√2

T∑
t=1

‖g̃t − gt‖2 .

where the first inequality uses (a+ b)2 ≤ 2a2 + 2b2, and the second inequality uses (a+ b)1/2 ≤
a1/2 + b1/2 for non-negative a, b ∈ R. Combining the above with Eq. (40) and applying Jensen’s
inequality with respect to the function H(u) =

√
u, gives,

T∑
t=1

E
(
f(xt)−min

x∈K
f(x)

)
≤ 2

√√√√D2

T∑
t=1

E‖gt‖2 + 2

√√√√D2

T∑
t=1

E‖g̃t − gt‖2

≤ 2

√√√√2βD2

T∑
t=1

E
(
f(xt)−min

x∈K
f(x)

)
+ 2
√
σ2D2T (41)

the last line uses the lemma below, which holds since we assume K contains a global minimum.

Lemma D.1. Let F : Rd 7→ R be a β-smooth function, and let x∗ = arg minx∈Rd F (x), then,

‖∇F (x)‖2 ≤ 2β (F (x)− F (x∗)) , ∀x ∈ Rd .

Eq. (40) enables to show,
∑T
t=1 E (f(xt)−minx∈K f(x)) ≤ 4βD2 + 2σD

√
T . Combining this

together with the definition of x̄T and Jensen’s inequality concludes the proof.

D.1 Proof of Lemma D.1

Proof. The β smoothness of F means the following to hold ∀x, u ∈ Rd,

F (x+ u) ≤ F (x) +∇F (x)>u+
β

2
‖u‖2 .

Taking u = − 1
β∇F (x) we get,

F (x+ u) ≤ F (x)− 1

β
‖∇F (x)‖2 +

1

2β
‖∇F (x)‖2 .

Thus:

‖∇F (x)‖ ≤
√

2β
(
F (x)− F (x+ u)

)
≤
√

2β
(
F (x)− F (x∗)

)
,

where in the last inequality we used F (x∗) ≤ F (x+ u) which holds since x∗ is the global minimum.
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E Additional Numerical Experiments

Here, we present numerical experiments on the stochastic setting, and on a practical variant that
neglects the projection steps.

E.1 Numerical Experiments on the Stochastic Setting

We consider the same problem setup as in Section 5. Rather than using the exact gradients, we
compute the unbiased estimates evaluated by a single data point (i.e. minibatch of size 1) The results
are shown in Figure 2.
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Figure 2: Comparison of AdaGrad and AcceleGrad in stochastic setting for smooth (top) and
non-smooth (bottom) problems. Epoch denotes one full data pass, hence 500 iterations.

AdaGrad and AcceleGrad perform similar empirically for most of the parameter choices. AdaGrad
overperforms AcceleGrad only for the smooth problem with ρ = 1. This bahavior is caused by the
projection step, and slightly increasing D cures the problem for AcceleGrad.

Universal gradient methods [27] are based on a line-search technique that relies on the exact first order
oracle information. Thus, it is not so surprising that in practice these methods fail upon receiving
stochastic feedback, and we therefore do not present their performance.

E.2 Numerical Experiments Neglecting the Projections

We observed that the methods work well in practice even if we ignore the projection step in the
unconstrained setting. In some cases, this simple tweak may even improve the performance. We used
the same test setup as in Section 5, and the results are shown in Figures 3 and 4 for the deterministic
and stochastic settings respectively. Note that the method works also when we underestimate D.
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Figure 3: Comparison of universal methods at a smooth (top) and a non-smooth (bottom) problem.
Adaptive methods are tweaked to ignore the projection.
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Figure 4: Comparison of AdaGrad and AcceleGrad in stochastic setting for smooth (top) and non-
smooth (bottom) problems. Methods are tweaked to ignore the projection. Epoch denotes one full
data pass, hence 500 iterations.

E.3 Experiments with Large Minibatch

In this section we apply AcceleGrad to a real world stochastic optimization problem and compare
its performance with AdaGrad. We examine the effect of minibatch size verses performance. The
large minibatch regime is important when one likes to apply SGD using several machines in parallel.
This is done by dividing the minibatch computation between the machines. Unfortunately, it is well
known that the performance of SGD degrades with the increase of minibatch size b. Here, we show
that AcceleGrad might be more appropriate in this case.

Concretely we consider the RCV14 dataset which is a binary labeled set with 20424 datapoints
samples and 47366 features. We train a classifier for this dataset using logistic loss (smooth case)
as well as using the hinge loss (SVM). We compare the performance of AcceleGrad with AdaGrad.

4available in the UCI repository website (https://archive.ics.uci.edu/ml/)
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Figure 5: Comparison of AdaGrad and AcceleGrad for logistic regression task using different
minibatch sizes. We display the averaged iterates, ȳT (top), as well as the non-averaged iterates, yt
(bottom). Both methods use the same parameter D = 104.

For each method we examine several minibatch sizes, and observe the performance of each method
verses the number of epochs (total number of gradients that we have computed).

The results for logistic regression appear in Figure 6. For AdaGrad we see that the performance
degrades as we increase the minibatch size beyond b = 1000. This actually agrees with theory that
predicts a degradation with the increase of b.

For AcceleGrad we observe an interesting phenomenon: if we aim for a very small error (in this
case smaller than 10−2) then as we increase the minibatch size the performance actually improves.
The intuition behind this is the following: upon using small b the gradients are noisy and both
AcceleGrad and AdaGrad will obtain the slow O(1/

√
T ) rate, where T is the number of iterations.

However, as b increases the gradients are becoming more accurate and AcceleGrad with obtain a
rate approaching O(1/T 2) while AdaGrad will approach O(1/T ) rate. Now note that the number of
gradient calculations S, depends on b and T as follows, T = S/b .

Thus, for small minibatch, both methods will ensure a rate of O(
√
b/
√
S), which clearly degrades

with b. As b increases AcceleGrad will obtain a rate approaching O(b2/S2) while AdaGrad will
approach O(b/S) rate.

We have observed similar behaviour when train an SVM (i.e., using hinge loss). This can be seen in
Figure 5.

Note that we have performed several other experiments with differentD parameters, and also different
`3 regularization parameters. In all experiments we have seen the same qualitative behaviour that we
describe above.
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Figure 6: Comparison of AdaGrad and AcceleGrad for training SVM using different minibatch sizes.
We display the averaged iterates, ȳT (top), as well as the non-averaged iterates, yt (bottom). Both
methods use the same parameter D = 104.
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