
Supplementary Material for “Learning to Multitask”

Details in the Unified Formulation (1)

In [14, 13], the priori information about the similarity between a pair of tasks Ti and Tj denoted by
sij is used to define a regularizer

∑m
i=1

∑m
j=1 sij‖wi−wj‖22 to enforce similar tasks to have similar

model parameters, where ‖ · ‖2 denotes the `2 norm of a vector. It is easy to see that such regularizer

equals the second term of problem (1) by setting g(Ω) =

{
0 if Ω = L−1

s
+∞ otherwise , where Ls is the

Laplacian matrix of a graph whose (i, j)th entry equals sij . Here g(Ω), an extended real-value
function, acts as a constraint to constrain Ω to be L−1

s .

Jacob et al. [18] propose a clustered multitask learning method, which can be viewed as an instance
of problem (1), to group all the tasks in the spirit of the k-means clustering algorithm by setting g(·)
as

g(Ω) =

{
0 if tr(Ω) = a, bI � Ω � cI
+∞ otherwise ,

where a, b, c are additional hyperparameters and I denotes an identity matrix with appropriate size.

Inspired by the graphical Lasso method [5], we consider an instance of problem (1) by setting g(·) as
g(Ω) = λ1d

2λ2
ln |Ω|+ ‖Ω−1‖1, where ‖ · ‖1 denotes the `1 norm of a vector or matrix, the sum of the

absolute values of all entries in it. This setting of g(·) encourages the inverse of Ω to be sparse and
has been investigated in [36, 29].

Zhang and Yang [37] observe that when there are a large number of tasks, it is better to learn sparse
task relations. Then based on problem (1), they aim to learn a sparse Ω, leading to an implementation
of g(·) as g(Ω) = ‖Ω‖1.

In [21], wi is assumed to lie in the space spanned by W, i.e., wi ≈Wai or equivalently W ≈WA,
leading to a regularizer ‖W −WA‖2F , where ‖ · ‖F denote the Frobenius norm. By assuming that
the linear spanning A is sparse, the corresponding g(·) is formulated as

g(Ω) =

{
‖A‖1 if Ω−1 = (I−A)(I−A)T

+∞ otherwise . (9)

In Eq. (9), we make several modifications to the original work. Firstly, different tasks are assumed to
be equally important. Secondly, to capture the negative correlations between tasks, A here is allowed
to have negative values while in the original work A is nonnegative. Thirdly, diagonal entries in A
can be zero via the `1 regularization to avoid a trivial solution where A equals I.

The aforementioned multitask models with the corresponding g(·) are summarized in Table 1.

Table 1: Representative multitask models with the corresponding g(·) in problem (1).

Multitask Model g(·)

[14, 13] g(Ω) =

{
0 if Ω = L−1

s
+∞ otherwise

[18] g(Ω) =

{
0 if tr(Ω) = a, bI � Ω � cI
+∞ otherwise

[36, 29] g(Ω) = λ1d
2λ2

ln |Ω|+ ‖Ω−1‖1
[37] g(Ω) = ‖Ω‖1

Schatten norm regularization g(Ω) = tr(Ωr)

Squared Schatten norm regularization g(Ω) =

{
0 if tr(Ωr) ≤ 1
+∞ otherwise

[21] g(Ω) =

{
‖A‖1 if Ω−1 = (I−A)(I−A)T

+∞ otherwise
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Proof for Theorem 1

Proof. By setting the derivative of problem (1) with respect to Ω to be zero, we can obtain the
solution for Ω as

Ω =

(
λ1

2λ2r

) 1
r+1 (

WTW
) 1

r+1 .

By plugging this solution into problem (1), we can get an equivalent problem as

min
W,b

m∑
i=1

1

ni

ni∑
j=1

l
(
wT
i xij + bi, y

i
j

)
+ λrtr

(
(WTW)

r
r+1
)
.

By defining the singular value decomposition (SVD) of W as W = UWΣWVT
W where k is the rank

of W, Oa×b denotes the set of orthogonal matrices with size a × b, UW ∈ Od̂×k, VW ∈ Om×k,
and ΣW is a k × k diagonal matrix containing the singular values of W, we have

tr
(
(WTW)

r
r+1
)

= tr
(
(VT

WΣ2
WVW )

r
r+1
)

= tr(VT
WΣ

2r
r+1

W VW )

= tr(Σ
2r

r+1

W )

= ‖W‖
2r

r+1

S( 2r
r+1 )

,

in which we reach the conclusion. �

Proof for Theorem 2

Proof. The regularizer R(W) is defined as

R(W) = min
tr(Ωr)≤1

tr(Ω−1WTW).

Since

tr(Ω−1WTW) ≥
m∑
i=1

µ2
i (W)

µi(Ω)
,

where the inequality holds due to the von Neumann’s trace inequality, then we can get

R(W) ≥ min
tr(Ωr)≤1

m∑
i=1

µ2
i (W)

µi(Ω)
≥ ‖W‖2S(r̂),

where µi(·) denotes the ith singular value of a matrix, the second inequality holds due to Lemma 26

in [24], and the equality holds when µi(Ω) = µi(W)
2

r+1(∑
j µj(W)

2r
r+1

) 1
r

. �

Proof for Theorem 3

Proof. When ρ > 0, the Lagrangian of problem (7) is defined as

L(Ω, φ) = ρtr(Ω2) + tr(ΦΩ)− φ(tr(Ω)− 1),

where φ is the Lagrange multiplier corresponding to the equality constraint. Since Ω is PSD, by
setting the derivative of L(Ω, φ) with respect to Ω to zero, we can get

Ω̃ = max(0, (φI−Φ)/2ρ),

where the max function operates on the spectral of the matrix. Based on this equation, we can see
that Ω̃ shares eigenvectors with Φ and by plugging this observation into problem (7), it is easy to
check that the eigenvalues of Ω̃ satisfy problem (8).
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When ρ equals 0, based on the Lagrange multiplier method, problem (7) can be reformulated as

min
Ω

max
Ξ�0,φ

tr(ΦΩ)− tr(ΩΞ)− φ(tr(Ω)− 1),

which is equal to the dual form as

max
Ξ�0,φ

min
Ω

tr ((Φ−Ξ− φI)Ω) + φ.

Since the inner minimization is linear in terms of Φ, the dual form can be simplified as

max
Ξ,φ

φ s.t. Ξ � 0, Ξ = Φ− φI.

It is easy to see that the optimal solution for this dual problem is that φ equals the minimum eigenvalue
of Φ and Ξ = Φ− φI. So the null space of Ξ is spanned by um̃−t+1, . . . ,um̃. Based on the KKT
condition, we have tr(Ω̃Ξ) = 0 which implies that Ω̃ is in the null space of Ξ, leading to the solution
Ω̃ lying in the convex hull of {um̃−t+1u

T
m̃−t+1, . . . ,um̃uTm̃} which satisfies the equality constraint

in problem (7).

When ρ < 0, problem (7) is non-convex and we cannot use the Lagrange multiplier method to analyze
it. Since the objective function of problem (7) consists of two terms, we can decompose problem (7)
into two subproblems:

min
Ω

ρtr(Ω2) s.t. Ω � 0, tr(Ω) = 1, (10)

and
min
Ω

tr(ΦΩ) s.t. Ω � 0, tr(Ω) = 1. (11)

If these two subproblems have some common solution, then this solution will also be the solution to
problem (7). Problem (11) is just problem (7) when ρ equals 0 and hence based on the above analysis,
its optimal solutions are in the convex hull of um̃−t+1u

T
m̃−t+1, . . . ,um̃uTm̃. As ρ < 0, problem (10)

is equivalent to the following problem

max
Ω

tr(Ω2) s.t. Ω � 0, tr(Ω) = 1,

which can be reformulated as

max
ϕ

m̃∑
i=1

ϕ2
i s.t. ϕi ≥ 0,

m̃∑
i=1

ϕi = 1, (12)

where ϕi denotes the ith eigenvalue of Ω and ϕ = (ϕ1, . . . , ϕm̃)T . The equivalence holds since
the trace function can be expressed in terms of eigenvalues of a PSD matrix and independent of
eigenvectors. For problem (12), we have

m̃∑
i=1

ϕ2
i ≤

m̃∑
i=1

ϕi = 1,

where the inequality holds since ϕi is in [0, 1] implied by the constraints and the equality holds due to
the equality constraint in problem (12). So the optimal value for problem (12) is 1, which is achieved
when only one entry in ϕ equals 1 while others are 0. It is easy to check that some optimal solutions
of problem (11), including um̃−t+1u

T
m̃−t+1, . . . ,um̃uTm̃, satisfy this condition, making them optimal

solutions of problem (7). �

Algorithm for Solving Problem (8)

Obviously problem (8) is a quadratic program (QP) problem. Many off-the-shelf solvers such as CVX
could be used to solve it in polynomial time. To achieve further speedup, we propose a more efficient
solution by exploiting the special structure of this problem. Note that the only variable coupling in
problem (8) comes from the equality constraint. The Lagrangian corresponding to this constraint is
given by

L(µ, τ) = ρ‖µ‖22 + µTκ+ τ(µT1− 1).
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Setting the derivative of L with respect to µi to 0, we can see that the minimum is reached when
µi = − 1

2ρ (κi + τ). Since each µi is required to be nonnegative and L(µ, τ) is a quadratic function
of µ, the optimal solution for µi is given by

µi = max

(
0,−κi + τ

2ρ

)
. (13)

Plugging the optimal solution of µi into L(µ, τ), we can obtain the dual problem as

min
τ

4ρτ +
∑
τ≤−κi

(τ + κi)
2. (14)

Obviously, the objective function of problem (14) is a piecewise linear or quadratic function over
regions determined by the sequences {−κi}. The main idea of our method is to determine the
functional form of problem (14) over each region, then compute the local optimum over each region
which has an analytical solution, and finally obtain the global optimum by comparing all the local
optima. So the main problem is to determine the coefficients of problem (14) over each region
efficiently.

When τ ∈ (−∞,−κ1], the objective function of problem (14) is c2τ2 + c1τ + c0, where c2 = m̃,
c1 = 2(

∑m̃
i=1 κi+2ρ), and c0 =

∑m̃
i=1 κ

2
i , and it has an analytical solution as τ = min(−κ1,− c1

2c2
).

When τ ∈ (−κm̃,+∞), problem (14) has no well-defined solution since the objective function
becomes 4ρτ . So we only need to consider the situation where τ ∈ (−κ1,−κm̃]. We summarize the
algorithm for solving problem (14) in Algorithm 1. This algorithm needs to scan the sequence {κi}
at most twice which costs O(m̃). So the complexity of the whole algorithm is O(m̃) which is much
more efficient than existing QP solvers.

Algorithm 1 Algorithm for problem (14)

1: c0 :=
∑m̃
i=1 κ

2
i ; % coefficient for constant term

2: c1 := 2(
∑m̃
i=1 κi + 2ρ); % coefficient for linear term

3: c2 := m̃; % coefficient for quadratic term
4: τ := min(−κ1,− c1

2c2
);

5: v := c0 + c1τ + c2τ
2; % value of current minimum

6: for i = 2 to m̃ do
7: % Determine the coefficients over (−κi−1,−κi];
8: c0 := c0 − κ2

i ;
9: c1 := c1 − 2κi;

10: c2 := c2 − 1;
11: τ0 := min(−κi,max(−κi−1,− c1

2c2
));

12: v0 := c0 + c1τ0 + c2τ
2
0 ;

13: if v0 < v then
14: τ := τ0;
15: v := v0;
16: end if
17: i := i+ 1;
18: end for

Proof for Theorem 4

Proof. According to [6], we have

E ≤ Ê +

√
2π

q
G(S) +

√
9 ln(2/δ)

2q
,

where S = {l̄(f̄(Ei), υ(oi)) : f̄ ∈ F̄ , h ∈ H}. By the Lipschitz property of the loss function and
Corollary 11 in [23], we have G(S) ≤ G(S′) where S′ = {f̄(Ei) : f̄ ∈ F̄ , h ∈ H}. Note that Ei is
defined by h. According to Theorem 2 in [22], we have

G(S′) ≤ c′1LG({Ei}) + c′2D({Ei})Q+ min
E
G(F (E)),
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where c′1, c
′
2 are universal constants, D({Ei}) denotes the diameter among {Ei} and equals the

longest distance between any two entries. It is easy to show that D({Ei}) ≤ 2 suph∈H ‖E‖F based
on the triangular inequality in the Euclidean distance metric. Since minEG(F (E)) is assumed to
equal 0, by setting c1 =

√
2πc′1 and c2 = 2

√
2πc′2, we reach the conclusion. �

Statistics for Datasets

The statistics for the four datasets are recorded in Table 2.

Table 2: Statistics for the four datasets.

Dataset # instances # classes # instances per class
MIT-Indoor-Scene 15620 67 [99,734]
Caltech256 29781 256 [61,800]
20newsgroup 18774 20 [627,997]
RCV1 36423 21 [400,5000]
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