
A Other Related Work

In this section, we describe related work in other settings that are similar to the dynamic setting.

Online Learning. Our setting of dynamically growing databases is also closely related to online
learning, where a learner plays a game with an adversary over many rounds. In each round t, the
adversary first gives the learner some input, then the learner chooses an action at and receives loss
function Lt chosen by the adversary, and experiences loss Lt(at). There is a vast literature on online
learning, including several works on differentially private online learning [JKT12, ST13, AS17]. In
those settings, a database is a sequence of loss functions, and neighboring databases differ on a single
loss function. While online learning resembles the dynamic database setting, there are several key
differences. Performance bounds in the online setting are in terms of regret, which is a cumulative
error term. On the other hand, we seek additive error bounds that hold for all of our answers. Such
bounds are not possible in general for online learning, since the inputs are adversarial and the true
answer is not known. In our case, we can achieve such bounds because even though queries are
presented adversarially, we have access to the query’s true answer. Instead of a cumulative error
bound, we manage a cumulative privacy budget.

Private Adaptive Analysis of a Static Database. If we wish to answer multiple queries on the
same database by independently perturbing each answer, then the noise added to each answer must
scale linearly with the number of queries to maintain privacy, meaning only O(n) queries can be
answered with meaningful privacy and accuracy. If the queries are known in advance, however,
[BLR08] showed how to answer exponentially many queries relative to the database size for fixed
✏ and ↵. Later, Private Multiplicative Weights (PMW) [HR10] achieved a similar result in the
interactive setting, where the analyst can adaptively decide which queries to ask based on previous
outputs. Their accuracy guarantee is close to the sample error of

p
log k/n. A recent line of work

[DFH+15, CLN+16, BNS+16] showed deep connections between differential privacy and adaptive
data analysis of a static database. Our results would allow analysts to apply these tools on dynamically
growing databases.

11

B Analysis of PMW for Growing Databases

We present PMWG, the modification of PMW for growing databases, described in Section 3 formally
in Algorithm 1. We separately prove privacy and accuracy in terms of the internal noise function
⇠, which depends on the parameters of the algorithm. We then instantiate these theorems with our
particular choice of ⇠ to prove the our accuracy bound for the (✏, 0)-private version of the algorithm
(Theorem 5 in the body). Later, we describe how to generalize our algorithm by adding a parameter
for the noise function (Equation (B.5)), which allows us to trade accuracy for a larger query budget.
Finally, we use CDP to give our (✏, �)-results for PMWG (Theorem 8 in the body).

Algorithm 1 PMWG(X,F, ✏, �,↵, n)
if � = 0 then

Let ⇠t ↵
2
n
1/2

162 log(Nn)✏t
1/2 for t � n

else

Let ⇠t ↵n
1/2

48 log1/2(Nn) log1/2(1/�)
✏t1/2 for t � n

end if

Start NSG(X, ·, 2↵/3, {⇠t}t�n) # Initialize subroutine
Let yi

n,0 1/N for i 2 [N] # Public histogram
Let ht 0 for t � n # Hard query counters
Let bt logN

t
+ log(t�1)

t
+ log t

t�1 for t � n+ 1 # Hard query bounds
for each incoming query ft,j do

if last query was at time t0 < t then

Set yi
t,0 = t

0

t
yi
t0,`t0

+ t�t
0

t

1
N

Uniform update
end if

Set f 0
t,2j�1 = ft,j � ft,j(yt,j�1), f 0

t,2j = ft,j(yt,j�1)� ft,j
Receive a0

t,2j�i
, a0

t,2j from NSG on f 0
t,2j�1, f

0
t,2j # Check hardness

if a0
t,2j�1 =? and a0

t,2j =? then

Set yt,j = yt,j�1

Set at,j = fj(yt,j) # Compute easy query answer
else

Set ht = ht + 1

if
P

t

⌧=n
h⌧ > 36

↵2

⇣
logN +

P
t

⌧=n+1 b⌧
⌘

then

return ? # Hard query budget exceeded
end if

if a0
t,2j�1 2 R then

Set at,j = ft,j(yt,j�1) + a0
t,2j�1

else

Set at,j = ft,j(yt,j�1)� a0
t,2j

end if # Compute hard query answer
if at,j < ft,j(yt,j�1) then

Set rt,j = ft,j
else

Set rt,j = 1� ft,j
end if

Set ŷi
t,j

= exp
�
�↵

6 r
i

t,j

�
yi
t,j�1 for i 2 [N]

Set yi
t,j

=
ŷ
i
t,jP

i02[N] ŷ
i0
t,j

for i 2 [N] # MW update

end if

end for

B.1 (✏, 0)-DP for PMWG

The (✏, 0)-privacy guarantee of PMWG follows from the NSG analysis in Theorem 24 as well as
Lemma 6 bounding the entropy increase due to new data and Corollary 7 bounding the number of
hard queries received at any given time. We first prove Lemma 6 and then state and prove privacy.

12

Lemma 6. Let x, y, x̄, ȳ 2 �(X) be databases of size t, t, t + 1, t + 1, respectively, where x̄ is
obtained by adding one entry to x and ȳi = t

t+1y
i + 1

(t+1)N for i 2 [N]. Then,

RE (x̄||ȳ)� RE (x||y)  logN

t+1 + log t

t+1 + log(t+1
t
).

Proof. We partition indices i 2 [N] into two sets L,H , where i 2 L whenever yi  1
tN

. For each
S ✓ [N], use xS to denote

P
i2S

xi. Then, by ȳi � 1
(t+1)N for all i,

X

i2L

�
x̄i log(1/ȳi)� xi log(1/yi)

�

X

i2L

�
x̄i log(N(t+ 1))� xi log(1/yi)

�


X

i2L

�
x̄i log(N(t+ 1))� xi log(tN)

�

=
X

i2L

✓
x̄i log(Nt) + x̄i log(

t+ 1

t
)� xi log(tN)

◆

=
X

i2L

(x̄i � xi) log(Nt) + x̄L log(
t+ 1

t
)


X

i2L

max{(x̄i � xi), 0} log(Nt) + x̄L log(
t+ 1

t
)

The last inequality is by ignoring the term i 2 L with x̄i < xi. Next, we use ȳi � t

t+1y
i to get

X

i2H

�
x̄i log(1/ȳi)� xi log(1/yi)

�

X

i2H

✓
x̄i log(

t+ 1

t
(1/yi))� xi log(1/y

i)

◆

=
X

i2H

�
x̄i log(1/yi)� xi log(1/y

i)
�
+ x̄i log(

t+ 1

t
))

=
X

i2H

⇥
(x̄i � xi) log(1/yi)

⇤
+ x̄H log(

t+ 1

t
)


X

i2H

max{(x̄i � xi), 0} log(1/yi) + x̄H log(
t+ 1

t
)


X

i2H

max{(x̄i � xi), 0} log(Nt) + x̄H log(
t+ 1

t
)

The second inequality is by ignoring the term i 2 H with x̄i < xi. Combining two bounds on L,H
gives

X

i2X

�
x̄i log(1/ȳi)� xi log(1/y

i)
�

X

i2X
max{(x̄i � xi), 0} log(Nt) + log(

t+ 1

t
)

Since there are at most one index i 2 [N] such that x̄i � xi � 0 (the index of newly added data
entry), and for that term we have x̄i � xi = 1

t+1 + t

t+1x
i � xi  1

t+1 , we have

X

i2X

�
x̄i log(1/ȳi)� xi log(1/y

i)
�
 1

t+ 1
log(Nt) + log(

t+ 1

t
)

Theorem 11 (PMWG Privacy). PMWG(X,F, ✏, 0,↵, n) is (✏, 0)-DP for ⇠ as defined by the algo-
rithm and

✏ =

✓
1 +

81

2↵2
logN

◆
⇠n�n +

81

2↵2

1X

t=n+1

✓
log(N)

t
+

log(t� 1)

t
+ log(

t

t� 1
)

◆
⇠t�t (B.1)

13

Proof. Performing uniform update and MW update does not use any information about X , and
therefore does not leak any privacy. Hence, the only privacy leaked is by NSG. By Theorem 24, NSG
is ✏-DP for

✏ = ⇠n�n +
9

8

1X

t=n

ht⇠t�t

For convenience, let bn = log N . Because the algorithm checks for the hard query budget so thatP
⌧t

ht  36
↵2

P
⌧t

bt (which is motivated by Corollary 7), and that ⇠t�t is non-increasing, we
may upper bound

P1
t=n

ht⇠t�t by setting ht =
36
↵2 bt. Hence,

✏ 
✓
1 +

81

2↵2
logN

◆
⇠n�n +

81

2↵2

1X

t=n+1

✓
log(N)

t
+

log(t� 1)

t
+ log(

t

t� 1
)

◆
⇠t�t

Next we show the accuracy of PMWG.
Theorem 12 (PMWG Accuracy). Let k : {n, n + 1, . . .} ! R. On query stream F such thatP

t

⌧=n
`⌧ 

P
t

⌧=n
k⌧ , PMWG(X,F, ✏, 0,↵, n) returns an answer at,i such that |ft,i(Dt)�at,i|  ↵

except with probability

�  exp(�↵⇠n
24

) + 3
X

t�n

kt exp(�
↵⇠t
24

) (B.2)

Proof. By the exact same proof in [DR14]: PMWG’s ↵-accuracy follows if NSG returns answers
that are ↵/3-accurate. Hence, we can take the � from the NSG accuracy analysis in Theorem 26.

Finally, we describe how we choose our noise scaling function ⇠ such that PMWG is private and
accurate. That is, both ✏ and � in lines (B.1) and (B.2) of PMWG converges.
Observation 13. The dominating term in the hard query bound bt in the algorithm is log(t� 1)/t.
For (B.1) to converge, this means that we want

X

t�n+1

log(t� 1)⇠t�t

t
=
X

t�n+1

log(t� 1)⇠t
t2


Z 1

t=n

log(t� 1)⇠t
t2

dt

to converge, so we may pick ⇠ = O(t1�c) for any c > 0. For (B.2) to converge, we want

X

t�n

kt exp(�
↵⇠t
24

)

to converge exponentially quickly in ↵ to get a bound logarithmic in number of queries `t. For
example, we may pick kt = O(exp(↵⇠t48)) and ⇠t = ⌦(tc) for any c > 0.

By the observation, we pick ⇠t = ct1/2 and kt =  exp(↵ct
1/2

48) for some constant c,, and state our
main result with this choice. Of course, other choices of ⇠t and kt are possible. We will discuss other
choices of ⇠t and kt and their consequences after proving the following main result.
Theorem 5. The algorithm PMWG(X,F, ✏, 0,↵, n) is (✏, 0)-differentially private, and for any time-
independent  � 1 and � > 0 it is (↵,�)-accurate for any query stream F such that

P
t

⌧=n
`⌧ 


P

t

⌧=n
exp(↵

3
✏
p
n⌧

C log(Nn)) for all t � n and sufficiently large constant C as long as N � 3, n � 21
and

↵ � C
⇣

log(Nn) log(n/�)
n✏

⌘1/3
.

We prove this without suppressing constants in the query budget and the ↵ bound, i.e., we prove thatP
t

⌧=n
`⌧  

P
t

⌧=n
exp(↵

3
✏
p
n⌧

8262 log(Nn)) and ↵ � (8262 log(Nn) log(192n/�)
n✏

)1/3 suffice for accuracy.
Note that with this choice of ↵, the query budget is


tX

⌧=n

exp

✓
↵3✏
p
n⌧

8262 log(Nn)

◆
� 

tX

⌧=n

✓
192n

�

◆ 17
16

p
⌧
n

14

Proof. Our main result is an instantiation of the more general results in Theorems 11 and 12. In what
follows, let c denote the time-independent quantity such that ⇠(t) = ct1/2. Applying Theorem 11,
the privacy loss of PMWG is

✏0 =

✓
1 +

81

2↵2
logN

◆
cn�1/2 +

81

2↵2

1X

t=n+1

✓
log(N)

t
+

log(t� 1)

t
+ log(

t

t� 1
)

◆
ct�1/2


✓
81

↵2
logN

◆
cn�1/2 +

81c

2↵2

Z 1

t=n

✓
log(N)

t3/2
+

log(t)

t3/2
+

1

(t� 1)3/2

◆
dt

=
81c logN

↵2n1/2
+

81c

2↵2


�2 logN

t1/2
� 4 + 2 log t

t1/2
� 2

(t� 1)1/2

�1

t=n

=
81c

↵2

✓
2 logN

n1/2
+

2 + log n

n1/2
+

1

(n� 1)1/2

◆

 81c

↵2
· 2(logN + log n)

n1/2

where approximate the sum by integral and use log(t/(t � 1))t�1/2 = log(1 + 1
t�1)t

�1/2 
1

t�1 (t � 1)�1/2 for the first inequality. The last inequality is true for n � 21. Finally, setting

c = ↵
2
n
1/2

162 log(Nn)✏ gives ✏0 = ✏.

Applying Theorem 12, PMWG is (↵,�0) -accurate for

�0 = exp(�c↵n1/2

24
) + 3

X

t�n

exp(
c↵t1/2

48
) exp(�c↵t1/2

24
)

 exp(�c↵n1/2

24
) + 3

Z 1

t=n�1
exp(�c↵t1/2

48
)dt

= exp(�c↵n1/2

24
) + 3

"
�
96
�
↵c
p
t+ 48

�
exp(�↵c

p
t

48)

↵2c2

#1

t=n�1

= exp(�c↵n1/2

24
) + 288

�
↵c
p
n� 1 + 48

�

↵2c2
exp(�↵c

p
n� 1

48
)

To get �0  �, we can require exp(� c↵n
1/2

24)  �/2 and 288

�
↵c
p
n� 1 + 48

�

↵2c2
exp(�↵c

p
n�1

48) 
�/2. The first is equivalent to

c↵n1/2

24
� log(2/�) () c↵ � 24 log(2/�)

n1/2
() ↵ �

✓
3888 log(Nn) log(2/�)

n✏

◆1/3

(B.3)

We assume that ↵ satisfies (B.3) before proceeding. Secondly, (B.3) gives c↵ � 24 log(2/�)
n1/2 , which

implies
�
↵c
p
n� 1 + 48

�

↵2c2
 n1/2

p
n� 1

24 log(2/�)
+

n

12 log2(2/�)
 n(log(2/�) + 2)

24 log2(2/�)
 n(2 + log 2)

24 log2(2)
<

n

3

Hence, it’s enough to require 96n exp(�↵c
p
n�1

48)  �/2. This is equivalent to

↵c
p
n� 1

48
� log(192n/�)

For n � 9,
p
n�1
48 � n

1/2

51 , so we only need

↵c

51
� log(192n/�)

n1/2
() ↵ �

✓
8262 log(Nn) log(192n/�)

n✏

◆1/3

(B.4)

(B.4) is a stronger bound than (B.3) for  � 1.

15

What if we choose different ⇠t and query budget? The earlier proof shows that as long as we have
⇠t�t = O(t�p) for p > 0, the privacy loss will still converge. We state a lemma for such case here
and the proof for completeness.
Lemma 14. Let ⇠t�t = ct�q for some constant c independent of t and 1 � q > 0. Then, for n � 5,
N � 3,

✏0 :=

✓
1 +

81

2↵2
logN

◆
⇠n�n +

81

2↵2

1X

t=n+1

✓
log(N)

t
+

log(t� 1)

t
+ log(

t

t� 1
)

◆
⇠t�t

 126c log(Nn)

↵2q2nq

Proof.

✏0 =

✓
1 +

81

2↵2
logN

◆
cn�q +

81

2↵2

1X

t=n+1

✓
log(N)

t
+

log(t� 1)

t
+ log(

t

t� 1
)

◆
ct�q


✓
81

↵2
logN

◆
cn�q +

81c

2↵2

Z 1

t=n

�
t�q�1 log(N) + t�q�1 log(t) + (t� 1)�q�1

�
dt

=
81c logN

↵2
n�q +

81c

2↵2


� log(N)t�q + log(t)t�q + (t� 1)�q

q
� t�q

q2

�1

t=n

 81c logN

↵2
n�q +

81c

2↵2

✓
log(N)n�q + log(n)n�q + 2n�q

q
+

n�q

q2

◆

 81c logN

↵2
n�q +

81c

2↵2

✓
log(N) + log(n) + 3

q2

◆
n�q

 81cn�q

2↵2

✓
2 logN +

log(N) + log(n) + 3

q2

◆

 81cn�q

2↵2

✓
3 log(Nn)

q2

◆
 126c log(Nn)

↵2q2nq

where we use the fact that (n � 1)�q  2n�q and logN  logN

q2
for n � 2, 0  q  1, and that

3  2 log n for n � 5.

We also know that for ⇠t = ⌦(tp) for some p > 0,
R1
t=n�1 exp(�

c↵⇠t

48)dt = Pp,c↵(n �
1) exp(� c↵⇠n�1

48) for some polynomial Pp,c↵(n) dependent on p, c↵. Stating the exact bound for
this integral, however, involve approximating an upper incomplete gamma function. To keep the
mathematical rigor, we restrict to the case p � 1/4. Smaller p involves better optimization of
constants in the proof.
Lemma 15. Let 1 � p � 1/4, n � 17 and c,↵ be constants independent of t such that c↵np �
24 log(2/�) and � < 2�15/2. Then

Z 1

t=n�1
exp

✓
�c↵tp

48

◆
dt  6ne�

c↵np

51

p

Proof. We have

Z 1

t=n�1
exp(�c↵tp

48
)dt =

�
⇣

1
p
, c↵

48 (n� 1)p
⌘

p(c↵48)
1
p

where �(s, x) =
R1
x

ts�1e�tdt is an upper incomplete gamma function. We now use the bound in
[Jam16]4 that for any a > 1, ex > 2a, we have � (a, x)  2axa�1e�x. With n � 17, c↵

48 (n� 1)p �
4Proposition 10 from the extended version http://www.maths.lancs.ac.uk/jameson/gammainc.pdf

16

c↵n
p

51 � 8 log(2/�)
17 . Choosing � < 2�15/2 gives exp(8 log(2/�)

17) � 24 � 21/p, so we can apply the
bound

�

✓
1

p
,
c↵

48
(n� 1)p

◆
 �

✓
1

p
,
c↵np

51

◆
 21/p

✓
c↵np

51

◆ 1
p�1

e�
c↵np

51

Therefore,

�
⇣

1
p
, c↵

48 (n� 1)p
⌘

p(c↵48)
1
p

 51(32/17)1/pne�
c↵np

51

pc↵np
 17(32/17)1/pne�

c↵np

51

8p log(2/�)

 6ne�
c↵np

51

p

where we use p � 1/4 and � < 2�15/2 to get the last inequality.

Finally, we state a generalized result in a class of noise function ⇠ and corresponding query budget.
Here we modify PMWG(X,F, ✏, 0,↵, n, p) to include another parameter p. The modified version
only changes the definition of noise function ⇠ to be

⇠t =

8
<

:

↵
2(1�p)2n1�p

126 log(Nn) ✏tp if � = 0
↵(1�p)n1�p

24 log1/2(Nn) log1/2(1/�)
✏tp if � > 0

(B.5)

Theorem 16 (Generalized-Noise PMWG ✏-DP Result). Let p 2 [1/4, 1). The algorithm
PMWG(X,F, ✏, 0,↵, n, p) is (✏, 0)-differentially private, and for any time-independent  � 1
and � 2 (0, 2�15/2) it is (↵,�)-accurate for any query stream F such that

P
t

⌧=n
`⌧ 


P

t

⌧=n
exp(↵

3(1�p)2✏n1�p
⌧
p

6048 log(Nn)) for all t � n as long as N � 3, n � 17 and

↵ �
✓
6426 log(Nn) log(144n/�)

(1� p)2n✏

◆1/3

(B.6)

Proof. Applying Theorem 11 and Lemma 14, the privacy loss of PMWG is

✏0  126c log(Nn)

↵2q2nq

where q = 1� p > 0. Setting c = ↵
2(1�p)2n1�p

126 log(Nn) ✏ gives ✏0 = ✏.

Applying Theorem 12, PMWG is (↵,�0) -accurate for

�0  exp(�c↵np

24
) + 3

Z 1

t=n�1
exp(�c↵tp

48
)dt

Again, we require the first term to be at most �/2:

c↵np

24
� log(2/�) () (1� p)2↵3n

126 log(Nn)
✏ � 24 log(2/�) () ↵ �

✓
3024 log(Nn) log(2/�)

(1� p)2n✏

◆1/3

(B.7)

We assume that ↵ satisfies this requirement before proceeding. Now we apply Lemma 15:

Z 1

t=n�1
exp(�c↵tp

48
)dt  6ne�

c↵np

51

p
 24ne�

c↵np

51

17

So it’s enough to require 3 · 24ne� c↵np

51  �/2. This is equivalent to

c↵np

51
� log

✓
144n

�

◆
() (1� p)2↵3n

126 log(Nn)
✏ � 51 log

✓
144n

�

◆
(B.8)

() ↵ �
✓
6426 log(Nn) log(144n/�)

(1� p)2n✏

◆1/3

(B.9)

Clearly the second requirement is stronger than the first for  � 1.

Observation 17. Note that with the choice of ↵ from Theorem 16, we have the query budget


tX

⌧=n

exp

✓
↵3(1� p)2✏n1�p⌧p

6048 log(Nn)

◆
� 

tX

⌧=n

✓
144n

�

◆ 17
16 (⌧

n)
p

(B.10)

These bounds tell us that as p approaches 1, the query budget approaches exponential in t, but
accuracy suffers proportionally to (1� p)�2/3. The accuracy bound (B.6) is comparable to the static
PMW ([HR10]), which is

↵static = ⇥

✓
logN log(k/�)

n✏

◆1/3

.

Therefore, we suffer only a constant loss in accuracy as long as n is bounded polynomially in N
and k/�. Note that, however, our query budget in the growing setting allows a generous additional
number of queries to be asked upon each arrival of new data entry.

A similar observation can be made for (✏, �)-DP. Theorem 19 in Section B.2 (PMWG result for
(✏, �)-DP) tell us that as we increase p closer to 1, we increase the query budget (lower bounded by
(B.10) as well) and suffer the accuracy loss proportional to (1 � p)�1/2. Similarly, the accuracy
bound (B.11) in Theorem 19 for (✏, �)-DP show that we suffer only a constant loss in accuracy as long
as n is bounded polynomially in N and k/� compared to the accuracy of the static PMW ([HR10]),
which is

↵static = ⇥

log1/2 N log(k/�) log(1/�)

✏n

!1/2

.

B.2 (✏, �)-DP for PMWG

With Theorem 4, the total privacy loss from compositions may come from the sum of square of
privacy losses, rather than the sum. We mimic the proof for ✏-DP, except that the sum is now on the
square of privacy losses of all background algorithms (ATG combined with Laplace mechanism). It
is straight forward to compute the sum of squares of all privacy loss of NATG, of NSG, and then of
PMWG. That sum for PMWG is:

⌧ :=

✓
1 +

585

16↵2
logN

◆
(⇠n�n)

2 +
585

16↵2

1X

t=n+1

✓
log(N)

t
+

log(t� 1)

t
+ log(

t

t� 1
)

◆
(⇠t�t)

2

We now state how to upper bound this sum, which is in a similar form to Lemma 14.
Lemma 18. Let ⇠t�t = ct�q for some constant c independent of t and 1 � q > 0. Then, for n � 3,
N � 3, if

⌧ :=

✓
1 +

585

16↵2
logN

◆
(⇠n�n)

2 +
585

16↵2

1X

t=n+1

✓
log(N)

t
+

log(t� 1)

t
+ log(

t

t� 1
)

◆
(⇠t�t)

2

Then,

p
⌧  12cn�q log1/2(Nn)

↵q

18

Proof. By a similar calculation as in Lemma 14 but with c2n�2q in place of cn�q ,

⌧  585c2 logN

8↵2
n�2q +

585c2

16↵2

✓
log(N)n�2q + log(n)n�2q + 2n�2q

2q
+

n�2q

4q2

◆

 5852 logN

8↵2
n�2q +

585c2

16↵2

✓
2 log(N) + 2 log(n) + 5

4q2

◆
n�2q

 c2n�2q

↵2

✓
585

8
· logN

q2
+

585

64
· 2 log(N) + 10 log(n)

q2

◆

=
c2n�2q

↵2

✓
2925 log(Nn)

32q2

◆

where we use the bounds 5  8 log(n) and logN  logN

q2
. The result now follows.

With the bound by Lemma 18 and Theorem 4, we achieve a (✏, �)-DP version of SPMW result.
Theorem 19 (Generalized-Noise PMWG (✏, �)-DP Result). Let p 2 [1/4, 1), � 2 (0, e�1). The
algorithm PMWG(X,F, ✏, �,↵, n, p) is (✏, �)-differentially private, and for any time-independent
 � 1 and � 2 (0, 2�15/2) it is (↵,�)-accurate for any query stream F such that

P
t

⌧=n
`⌧ 


P

t

⌧=n
exp(↵

2(1�p)✏n1�p
⌧
p

1152 log1/2(Nn) log1/2(1/�)
) for all t � n as long as N � 3, n � 17 and

↵ �

1224 log1/2(Nn) log(144n/�) log1/2(1/�)

(1� p)n✏

!1/2

(B.11)

Note that with this choice of ↵, we have the query budget


tX

⌧=n

exp(
↵2(1� p)✏n1�p⌧p

1152 log1/2(Nn) log1/2(1/�)
) � 

tX

⌧=n

✓
144n

�

◆ 17
16 (⌧

n)
p

(B.12)

Proof. Applying Lemma 18 and Theorem 4, PMWG is (✏, �)-DP for

✏0  24cn�q log1/2(Nn) log1/2(1/�)

↵q

where q = 1�p > 0. Setting c = ↵(1�p)n1�p

24 log1/2(Nn) log1/2(1/�)
✏ gives ✏0 = ✏. The rest of the proof now fol-

lows similarly exactly in same way as in Theorem 16, except that now ↵cnp = ↵
2(1�p)n✏

24 log1/2(Nn) log1/2(1/�)

instead of ↵cnp = ↵
3(1�p)2n✏

126 log(Nn) .

Theorem 8 instantiates this previous result with p = 1/2.

19

C Sparse Vector Algorithms for Growing Databases

In this section, we give descriptions of three primitive algorithms applying the sparse vector technique
modified for the dynamic setting of growing databases, which we call above threshold for growing
databases (ATG), numeric above threshold for growing databases (NATG), and numeric sparse for
growing databases (NSG). The main difference in analyzing privacy and accuracy for dynamic
algorithms is that the results now depend on a changing database size. In this section, the database
has size t0 and the initialization time t0 and it grows by one entry each time step. This is why results
are usually stated in terms dependent on time such as t0, t.

C.1 Above Threshold for Growing Databases

Before analyzing numeric above threshold for growing databases (NATG, Algorithm C.2), we
consider the simpler above threshold algorithm (ATG). This algorithm is simply NATG when > is
output for above threshold queries rather than noisy numeric answers.
Theorem 20 (Privacy of ATG). Let D = {Dt0 , Dt0+1 . . .}, D0 = {D0

t0
, D0

t0+1 . . .} be two se-
quences of databases of size t0, t0+1, . . . such that for each t, Dt ⇠ D0

t
. Let ⇠,� : {t0, t0+1, . . .}!

R+ be such that both �, ⇠ ·� are non-increasing and ⇠ is non-decreasing. Let F = {{ft,j}`tj=1}t�n

be the stream of queries such that the sensitivity �ft,j  �t for all t, j. Then for all possible output
a by ATG,

Pr [ATG(D,F, T, ⇠) = a]  exp(⇠t0�t0) Pr [ATG(D0, F, T, ⇠) = a]

Proof. We follow the proof as in [DR14], but modify it slightly. Let A,A0 represent the random
variables of output of ATG running on D,D0, respectively. Suppose ATG halts at the last query ft0,i0 .
Let a denote this output, i.e. at,i = ? for all (t, i) < (t0, i0) (i.e. indices of all queries that comes
before (t0, i0)) and at0,i0 = >. Define

H(D) = max
(t,i)<(t0,i0)

⇠t · (ft,i(Dt) + ⌫t,i � T)

Fix ⌫t,i for all (t, i) < (t0, i0) , so that H(D) is a deterministic quantity. Then,

Pr
⌘,⌫t0,i0

[A = a] = Pr
⌘,⌫t0,i0

h
ft,i(Dt) + ⌫t,i < T̂t, 8(t, i) < (t0, i0) and ft0,i0(Dt0) + ⌫t0,i0 � T̂t0

i

= Pr
⌘,⌫t0,i0

[H(D) < ⌘ and ⇠t0 · (ft0,i0(Dt0) + ⌫t0,i0 � T) � ⌘]

= Pr
⌘,⌫t0,i0

[⌘ 2 (H(D), ⇠t0 · (ft0,i0(Dt0) + ⌫t0,i0 � T)]

=

Z 1

�1

Z 1

�1
Pr
⌫t0,i0

[⌫t0,i0 = v]

· Pr
⌘

[⌘ = ⌘0] [⌘0 2 (H(D), ⇠t0 · (ft0,i0(Dt0) + v � T)] dv d⌘0

:= ⇤

Change the variable as follows:

v̂ = v +
H(D)�H(D0)

⇠t0
+ ft0,i0(Dt0)� ft0,i0(D

0
t0)

⌘̂0 = ⌘0 +H(D)�H(D0)

We have |H(D) � H(D0)|  maxt�t0 ⇠t�t = ⇠t0�t0 (by ⇠t�t being non-increasing), and
|ft0,i0(Dt0)� ft0,i0(D0

t0)|  �t0 . Therefore,

|v̂ � v|  ⇠t0�t0

⇠t0
+�t0 , |⌘̂0 � ⌘0|  ⇠t0�t0

Apply this change of variable to get

20

⇤ =
Z 1

�1

Z 1

�1
Pr
⌫t0,i0

[⌫t0,i0 = v̂] Pr
⌘

[⌘ = ⌘̂0] [⌘0 +H(D)�H(D0) 2

(H(D), ⇠t0 · (ft0,i0(Dt0) + v̂ � T)] dv d⌘0

=

Z 1

�1

Z 1

�1
Pr
⌫t0,i0

[⌫t0,i0 = v̂] Pr
⌘

[⌘ = ⌘̂0] [⌘0 2

(H(D0), ⇠t0 · (ft0,i0(Dt0) + v̂ � T) +H(D0)�H(D)] dv d⌘0

=

Z 1

�1

Z 1

�1
Pr
⌫t0,i0

[⌫t0,i0 = v̂] Pr
⌘

[⌘ = ⌘̂0] [⌘0 2

(H(D0), ⇠t0 · (ft0,i0(D0
t0) + v � T)] dv d⌘0


Z 1

�1

Z 1

�1
exp

✓
⇠t0

4

✓
⇠t0�t0

⇠t0
+�t0

◆◆
Pr
⌫t0,i0

[⌫t0,i0 = v] exp

✓
⇠t0�t0

2

◆
Pr
⌘

[⌘ = ⌘0]

· [⌘0 2 (H(D0), ⇠t0 · (ft0,i0(D0
t0) + v � T)] dv d⌘0

= exp

✓
⇠t0

4

✓
⇠t0�t0

⇠t0
+�t0

◆
+

⇠t0�t0

2

◆

· Pr
⌘,⌫t0,i0

[H(D0) < ⌘ and ⇠t0 · (ft0,i0(D0
t0) + ⌫t0,i0 � T) � ⌘]

= exp

✓
⇠t0�t0

4
+

⇠t0�t0

4
+

⇠t0�t0

2

◆
Pr

⌘,⌫t0,i0
[A0 = a]

 exp (⇠t0�t0) Pr
⌘,⌫t0,i0

[A0 = a]

The first inequality comes from the bounds on |v̂ � v|, |⌘̂0 � ⌘0| and the pdf of Laplace distribution.
The last inequality is by ⇠t�t being non-increasing.

Next, we define and prove the accuracy statement.
Definition 5 (Accuracy of Threshold Answers). An algorithm which outputs answers at,i 2 {>,?}⇤
to queries F = (ft,i)(t,i)(t0,i0) over a sequence of growing database D = {Dt0 , Dt0+1, . . .} is
(↵,�)-accurate with respect to threshold T and stream of queries F if with probability at least 1� �,
the algorithm does not halt before (t0, i0), and that for all at,i = >,

ft,i(Dt) � T � ↵

and for all at,i = ?,
ft,i(Dt)  T + ↵

We define the algorithm to be ↵-accurary if this event (which is true with probability at least 1� �)
is satisfied.

Now we prove that ATG is accurate.
Theorem 21 (Accurary of ATG). Use the same notation and with the same assumptions as in Theorem
20. For any stream of queries F = (ft,i)(t,i)(t0,i0) and growing database D = {Dt0 , Dt0+1, . . .}
such that for all (t, i) < (t0, i0), ft,i(Dt) < T � ↵ and ft0,i0(Dt0) � T + ↵, ATG(D,F, T, ⇠) is
(↵,�)-accurate with respect to threshold T and stream of queries F for

� =
t
0X

t=t0

`t exp(�
↵⇠t
8

) + exp(�↵⇠t0
8

)

Proof. First, we want to show that at,i = ? if and only if (t, i) < (t0, i0) with high probability. This
is true if we can show that for all (t, i),

|⌫t,i �
⌘

⇠t
|  ↵ (C.1)

21

Because if so, we have that for all (t, i) < (t0, i0), ft,i(Dt)+⌫t,i < (T �↵)+(↵+ ⌘

⇠t
) = T̂t, so ATG

will output?, and that ft0,i0(Dt0)+⌫t0,i0 � (T+↵)+(⌘

⇠t
�↵) = T̂t, so ATG will output at0,i0 = >. To

show (C.1), it is sufficient to require |⌫t,i|  ↵/2 and | ⌘
⇠t
|  ↵/2 for all (t, i). The first requirement

is false with probability exp(�↵

2
⇠t

4) = exp(�↵⇠t

8) for each (t, i). The second requirement is
equivalent to | ⌘

⇠t0
|  ↵/2 for a single time step t0, which is false with probability exp(�↵⇠t0

4).

By union bound, (C.1) is true except probability at most exp(�↵⇠t0
4) +

P
t
0

t=t0
`t exp(�↵⇠t

8) 
exp(�↵⇠t0

8) +
P

t
0

t=t0
`t exp(�↵⇠t

8).

C.2 Numeric Above Threshold for Growing Databases

Next we analyze privacy loss for NATG (Algorithm C.2).

Algorithm 2 NATG(D,F, T, ⇠)
for each query ft,i do

if i = 1 then

T̂t = T + Lap(2
⇠t
). # same noisy threshold for all ft,·

end if

⌫t,i = Lap(4
⇠t
).

if ft,i(Dt) + ⌫t,i � T̂t then

Output at,i = ft,i(Dt) + Lap(8
⇠t
).

Halt.
else

Output at,i = ?.
end if

end for

Theorem 22 (Privacy of NATG). Using the same notation and with the same assumptions as in
Theorem 20, and let t0 denote the time step that NATG(D,F, T, ⇠) halts. then for all possible output
a by NATG,

Pr [NATG(D,F, T, ⇠) = a]  exp

✓
⇠t0�t0 +

⇠t0�t0

8

◆
Pr [NATG(D0, F, T, ⇠) = a]

Proof. NATG privacy loss is the sum of ATG privacy loss and the loss by Laplace noise Lap(8
⇠t0

)

added to the numeric answer at0,i0 . The first is �t0⇠t0 by Theorem 20 and the latter is ⇠t0�t0/8
because ft0,i has sensitivity at most 1/�t0 .

Next, we define and prove the accuracy statement.
Definition 6 (Accuracy of Threshold and Numeric Answers). An algorithm which outputs answers
at,i 2 (R [?)⇤ to a stream of queries F = (ft,i)(t,i)(t0,i0) over a sequence of growing database
D = {Dt0 , Dt0+1, . . .} is (↵,�)-accurate with respect to threshold T and stream of queries F if with
probability at least 1� �, the algorithm does not halt before (t0, i0), and that for all at,i 2 R,

|ft,i(Dt)� at,i|  ↵ and ft,i(Dt) � T � ↵

and for all at,i = ?,
ft,i(Dt)  T + ↵

We define the algorithm to be ↵-accurary if this event (which is true with probability at least 1� �)
is satisfied.

Now we prove that NATG is accurate.
Theorem 23 (Accurary of NATG). Use the same notation and with the same assumptions as
in Theorem 20. For any sequence of queries F = (ft,i)(t,i)(t0,i0) and growing database

22

D = {Dt0 , Dt0+1, . . .} such that for all (t, i) < (t0, i0), ft,i(Dt) < T � ↵ and ft0,i0(Dt0) � T + ↵,
NATG(D,F, T, ⇠) is (↵,�)-accurate with respect to threshold T and stream of queries F for

� =
t
0X

t=t0

`t exp(�
↵⇠t
8

) + exp(�↵⇠t0
8

) + exp(�↵⇠t0

8
)

Proof. We apply Theorem 21 so that except with at most probability
P

t
0

t=t0
`t exp(�↵⇠t

8) +

exp(�↵⇠t0
8), NATG is accurate for threshold answers, i.e. ft,i(Dt) � T � ↵ and ft,i(Dt)  T + ↵

hold for at,i 2 R and at,i = ?, respectively.

It’s left to show that |ft0,i0(Dt0) � at0,i0 |  ↵. This is true except with probability exp(�↵⇠t0
8) by

Laplace mechanism. Therefore,

� 
t
0X

t=t0

`t exp(�
↵⇠t
8

) + exp(�↵⇠t0
8

) + exp(�↵⇠t0

8
)

C.3 Numeric Sparse for Growing Databases

We now compose NATG multiple times into numeric sparse for growing databases (NSG). Note that
we may run NATG infinitely many times as long as there is input coming online. Any query that
causes NATG to output a number and halt is called hard; any other query is called easy.

Algorithm 3 NSG(D,F, T, ⇠)
for Each query ft,i do

if no NATG subroutine is currently running then

Initialize a NATG subroutine with the same arguments
end if

Output the NATG subroutine’s output for ft,i.
end for

Analysis of privacy of NSG can be done by simply summing up the privacy loss stated for NATG.
Since privacy for NATG changes over time, this privacy loss is then dependent on the time that NATG
starts and ends, i.e. when hard queries come.
Theorem 24 (Privacy of NSG). Using the same notation and with the same assumptions as in
Theorem 20. Suppose that NSG starts at time n with ht hard queries arriving at time t for each t � n,
then NSG is (✏, 0)-DP for

✏ = ⇠n�n +
9

8

1X

t=n

ht⇠t�t

Proof. Let tj0, t
j

1 be the start and end time of jth round of NATG in NSG. Then by Theorem 22, the
privacy loss is at most

✏ :=
X

j

⇠
t
j
0
�

t
j
0
+

⇠
t
j
1
�

t
j
1

8

!

The start time tj0 of round j is at least the end time of last round tj�1
1 for each j � 2, and t10 � n, so

✏  ⇠n�n +
X

j

⇠
t
j
1
�

t
j
1
+

⇠
t
j
1
�

t
j
1

8

!

= ⇠n�n +
9

8

1X

t=n

ht⇠t�t

23

The last equality is by the fact that the end times of NATG are exactly when hard queries come.

Now we apply Theorem 24 to a more specific setting of linear queries.
Corollary 25. For two neighboring sequences of growing databases D ⇠ D0 and adaptively chosen
linear queries ft,i, NSG which starts at time n, with noise function ⇠t = tp for some p 2 [0, 1], is
(np�1 + 9

8

P1
t=n

http�1, 0)-DP.

Proof. From the fact that ⇠t is non-decreasing, that linear queries have sensitivity �t = 1/t, and that
⇠t�t = tp�1 is non-increasing, the conditions satisfy Theorem 20’s assumption, so we can apply
Theorem 24.

Corollary 25 suggests that, in order to bound privacy loss, we need to bound the number of hard
queries, especially those arriving early in time. These arrival times of hard queries, of course, depend
on specific application of NSG.

Now we state the accuracy for NSG. Note that we use the same Definition 6 from NATG, since the
output of NSG and NATG are in the same format (R [{?})⇤.
Theorem 26 (Accuracy of NSG). Use the same notation and with the same assumptions as in
Theorem 20. Let k : {t0, t0 + 1, . . .} ! R. For a growing database D = {Dn, Dn+1, . . .}, let
ht = |{i : ft,i(Dt) � T � ↵}|. Then for any sequence of queries F = {{ft,j}`tj=1}t�n such that
P

t

⌧=t0
`t 

P
t

⌧=t0
kt for all t � t0, NSG(D,F, T, ⇠) is (↵,�)-accurate with respect to threshold T

and stream of queries F for

� = exp(�↵⇠n
8

) +
1X

t=n

(`t + 2ht) exp(�
↵⇠t
8

) (C.2)

 exp(�↵⇠n
8

) + 3
1X

t=n

kt exp(�
↵⇠t
8

) (C.3)

Proof. We need to show that except with probability at most �:

1. For each at,i = ?, ft,i(Dt)  T + ↵

2. For each at,i 2 R, ft,i(Dt) � T � ↵

3. For each at,i 2 R, |ft,i(Dt)� at,i|  ↵

Suppose the jth round of NATG starts and ends at time tj0, t
j

1, and answers `j
t

queries at time t. The
set of three conditions is equivalent to requiring that jth NATG round satisfies Definition 6 with
respect to threshold T and stream of queries that jth round of NATG answers. By Theorem 23 and
union bound, the rest of the proof is a calculation: we can take � to be

� =
X

j

 1X

t=n

`j
t
exp(�↵⇠t

8
) + exp(�

↵⇠
t
j
0

8
) + exp(�

↵⇠
t
j
1

8
)

!


X

j

 1X

t=n

kj
t
exp(�↵⇠t

8
)

!
+
X

j

exp(�

↵⇠
t
j�1
1

8
) + exp(�

↵⇠
t
j�1
1

8
)

!


 1X

t=n

`t exp(�
↵⇠t
8

)

!
+ exp(�↵⇠n

8
) +

X

j

2 exp(�
↵⇠

t
j
1

8
)

The first inequality is by the fact that start time of the next round is after the end of the current round,
and we let t01 = n for convenience. By condition (2), NATG can only halt on queries ft,i such that
ft,i(Dt) � T � ↵, so there are at most ht rounds of NATG halting at time t. Therefore,

2
X

j

exp(�
↵⇠

t
j
1

8
)  2

1X

t=n

ht exp(�
↵⇠t
8

)

24

which finishes the proof for (C.2). C.3 is noting that `t � ht, the definition of query budget, and that
exp(�↵⇠t

8) is a non-increasing function of t.

25

D Analysis of Black Box Schedulers

In this appendix we present the algorithms and proofs that were omitted in Section 4. Section D.1
contains BBSCHEDULER and related proofs. Section D.2 contains BBIMPROVER and related proofs.

D.1 Fixed Accuracy as Data Accumulate

Algorithm 4 BBSCHEDULER(X,F,M, ✏, �,�, n, p, g)
if � = 0 then

Let � g
1

2p+1

⇣
log 1

�

✏n

⌘ p
2p+1

else

Let � g
1

1.5p+1

⇣
log 1

�

✏n

⌘ p
1.5p+1

end if

Let i �1
for t n, n+ 1, ... do

if t = (1 + �)i+1n then

i i+ 1
if � = 0 then

Let ✏i �
2(i+1)

(1+�)i+2 ✏
else

Let ✏i �
1.5(i+1)

(1+�)i+1.5
✏

3
p

log(1/�)

end if

Let �i
⇣

�

1+�

⌘i+1

Let ↵i g

✓
log 1

�i
✏i(1+�)in

◆p

Let yi M (xt, ✏i,↵i,�i)
end if

for j 1, ..., `t do

Output yi(ft,j)
end for

end for

Theorem 27. Let M be a (p, g)-black box for query class F . Then for any database stream X and
stream of linear queries F over F , BBSCHEDULER(X,F,M, ✏, �,�, n, p, g) is (✏, �)-differentially
private for ✏ < 1 and (↵,�)-accurate for sufficiently large constant C and

↵ �

8
>><

>>:

Cg
1

2p+1

⇣
log(1/�)

✏n

⌘ p
2p+1

if � = 0

Cg
1

1.5p+1

✓p
log(1/�) log(1/�)

✏n

◆ p
1.5p+1

if � > 0
.

Proof. We begin with the privacy guarantees of BBSCHEDULER. When � = 0, BBSCHEDULER runs
M in each epoch i with privacy parameter ✏i =

�
2(i+1)

(1+�)i+2 ✏. Then by Basic Composition (Theorem 3),
BBSCHEDULER is (

P1
i=0 ✏i, 0)-differentially private, where

1X

i=0

✏i =
�2

1 + �
✏

1X

i=0

i+ 1

(1 + �)i+1
= ✏.

The sum
P1

i=0
i+1

(1+�)i+1 converges to 1+�

�2 , so BBSCHEDULER is (✏, 0)-differentially private.

When � > 0, BBSCHEDULER runs M with privacy parameter ✏i = �
1.5(i+1)

(1+�)i+1.5
✏

3
p

log(1/�)
in

each epoch i. By CDP composition (Theorem 4), the total privacy loss is at most 1
2

P1
i=0 ✏

2
i
+p

2 (
P1

i=0 ✏
2
i
) log(1/�). Note that

26

1X

i=0

✏2
i
=

✏2

9 log(1/�)

�3

1 + �

1X

i=0

(i+ 1)2

(1 + �)2(i+1)
=

✏2

9 log(1/�)

�3

1 + �

(1 + �)2(�2 + 2� + 2)

�3(� + 2)3
 2✏2

9 log(1/�)

where we used the fact that � 2 (0, 1). Then the total privacy loss is at most

✏2

9 log(1/�)
+

2✏

3
p
log(1/�)

p
log(1/�)  ✏

since ✏ < 1.

To prove the accuracy of BBSCHEDULER we require the following lemma, which bounds the
additive error introduced by answering queries that arrive mid-epoch using the slightly outdated
database from the end of the previous epoch.

Lemma 28. For any linear query f and databases xt and x⌧ from a database stream X , where
⌧ 2 [t, (1 + �)t] for some � 2 (0, 1), we have |x⌧ (f)� xt(f)|  �

1+�
.

Proof. (Lemma 28) The linear query xt(f) can be written in the following form: xt(f) =
1
t

P
N

i=1 tx
i

t
f i. Then since x⌧ (f)� xt(f) =

1
⌧

P
N

i=1 ⌧x
i

⌧
f i � 1

t

P
N

i=1 tx
i

t
f i, we have,

x⌧ (f)� xt(f) 
(⌧ � t) + txi

t

⌧
� txi

t

t
 (⌧ � t) + txi

t

⌧
� txi

t

⌧
= 1� t

⌧
,

x⌧ (f)� xt(f) �
txi

t

⌧
� txi

t

t
� t

✓
1

⌧
� 1

t

◆
=

t

⌧
� 1.

The last inequality follows because 1
⌧
� 1

t
 0 and txi

t
 t. Thus, |x⌧ (f)� xt(f)|  1� t

⌧
. Since

⌧ 2 [t, (1 + �)t], then,

1� t

⌧
 1� t

(1 + �)t
= 1� 1

1 + �
=

�

1 + �
.

We now continue to prove the accuracy of BBSCHEDULER. Let ti = (1 + �)in. Recall that epoch
i is defined as the time interval where t 2 {ti, ti + 1, ..., ti+1 � 1}. Let Fi denote the set of all
queries received during epoch i. All queries f 2 Fi will be answered using yi, which is computed on
database xti .

We want to show that yi(f) is close to xt(f) for all f 2 Fi. Since yi is the output of M(xti , ✏i,↵i,�i),
we know that for f 2 Fi,

|yi(f)� xti(f)|  ↵i.

By the triangle inequality and Lemma 28, for any f 2 Fi,

|yi(f)� xt(f)|  |yi(f)� xti(f)|+ |xti(f)� xt(f)|

= ↵i +
�

1 + �
. (D.1)

When � = 0, we have

↵i = g

log 1

�i

✏ini

!p

= g

0

@ (i+ 1) log 1+�

�

�2(i+1)
(1+�)i+2 ✏(1 + �)in

1

A
p

= g

✓
(1 + �)2

�2✏n
log

1 + �

�

◆p

Let Z =
log 1+�

�

✏n
. Note that since � < 1, we have (1 + �) 2 (1, 2). Then (D.1) becomes

(D.1)  ↵i + �  gZp

✓
1

2
�

◆�2p

+ �.

27

Since we set � = g
1

2p+1Z
p

2p+1 , we have:

gZp

✓
1

2
�

◆�2p

+ � = gZp

✓
1

2
g

1
2p+1Z

p
2p+1

◆�2p

+ g
1

2p+1Z
p

2p+1

= C1g
1� 2p

2p+1Zp� p2

2p+1 + g
1

2p+1Z
p

2p+1

= C2g
1

2p+1Z
p

2p+1

where C1 and C2 are positive absolute constants.

When � > 0, BBSCHEDULER uses a different setting of � and ✏i. Let Z =
3
p

log(1/�) log 1+�
�

✏n
. In

this case, we have

↵i = g

log 1

�i

✏ini

!p

= g

0

B@
(i+ 1) log 1+�

�

�1.5(i+1)
(1+�)i+1.5

✏

3
p

log(1/�)
(1 + �)in

1

CA

p

= gZp

✓
1 + �

�

◆1.5p

 gZp

✓
1

2
�

◆1.5p

Since we set � = g
1

1.5p+1Z
p

1.5p+1 , we have:

(D.1)  gZp

✓
1

2
g

1
1.5p+1Z

p
1.5p+1

◆�1.5p

+ g
1

1.5p+1Z
p

1.5p+1

 C1g
1� 1.5p

1.5p+1Zp� 1.5p2

1.5p+1 + g
1

1.5p+1Z
p

1.5p+1

 C2g
1

1.5p+1Z
p

1.5p+1

where C1 and C2 are positive absolute constants.

The final accuracy bound for any � � 0 follows by substitution and by noting that log 1+�

�
= O(log 1

�
)

since � 2 (0, 1). Each of the ↵i bounds holds with probability 1� �i, so by a union bound, all will
hold simultaneously with probability 1�

P1
i=0 �i, where,

1X

i=0

�i =
�

2n2
i


1X

t=n

�

2t2
 ⇡2

12
�  �.

Then with probability at least 1� �, all queries are answered with accuracy Cg
1

2p+1Z
p

2p+1 for � = 0

and Cg
1

1.5p+1Z
p

1.5p+1 for � > 0 for some positive absolute constant C.

D.2 Improving Accuracy as Data Accumulate

Algorithm 5 BBIMPROVER(X,F,M, ✏, �,↵,�, n, p, p0, p00, g, c)
for t n, n+ 1, ... do

Let ✏t
p
c

3
p

log(1/�)

✏

t
1
2
+c

.

Let �t �

2t2

Let ↵t g
⇣

1
✏it

⌘p
logp

00
n logp

0 1
�

Let yt M(xt, ✏t,↵t,�t)
for j 1, ..., `t do

Output yt(ft,j)
end for

end for

Theorem 29. Let c > 0 and let M be a (p, p0, p00, g)-black box. Then for any database stream X and
stream of linear queries F , BBIMPROVER(X,F,M, ✏, �,�, n, p, p0, p00, g, c) is (✏, �)-differentially
private for ✏ < 1 and ({↵t}t�n,�)-accurate for sufficiently large constant C and

↵t � Cg

✓
log(p0/p)(1/�)

p
log(1/�)

p
c✏t

1
2
�2c

◆p

.

28

Proof. We start with the privacy guarantee. BBIMPROVER runs M at each time t with privacy param-
eters ✏t = ✏

t
1
2
+c

. By Theorem 4, the total privacy loss is at most 1
2

P1
t=n

✏2
t
+
p

2 (
P1

t=n
✏2
t
) log(1/�).

Note:
1X

t=n

✏2
t
=

c✏2

9 log(1/�)

1X

t=n

1

t1+2c
 c✏2

9 log(1/�)

1

cn2c
 ✏2

9 log(1/�)
.

since n � 1 and c > 0. Then the privacy loss is at most:

1

18 log(1/�)
✏2 +

2✏

3
p

log(1/�)

p
log(1/�)  ✏ (D.2)

since ✏ < 1.

We next prove the accuracy of BBIMPROVER. For each time t, M(xt, ✏t,↵t,�t) is⇣
g
⇣

1
✏tt

⌘p
logp

00
t logp

0 1
�t
,�t

⌘
-accurate. We simply plug in ✏t and �t to get our accuracy bound at

time t:

↵t = g

✓
1

✏tt

◆p

logp
00
t logp

0 1

�t

= g

3
p

log(1/�)t
1
2+c

p
c✏t

!p

logp
00
t logp

0 2t2

�

 C1g

 p
log(1/�)
p
c✏t

1
2�c

!p

logp
00+p

0
t logp

0 1

�

 C2g

 p
log(1/�)
p
c✏t

1
2�2c

!p

logp
0 1

�
,

for positive constants C1 and C2. The last line holds since logp
00+p

0
t = o(tc) for any positive

constants c, p0, and p00.

The accuracy of M(xt, ✏t,�t) at time t holds with probability 1��t. By a union bound, all accuracy
guarantees will be satisfied with probability 1�

P1
t=n

�t, where,
1X

t=n

�t =
1X

t=n

�

2t2
 ⇡2

12
�  �.

29

E ERM for Growing Databases

E.1 ERM Background

Empirical risk minimization (ERM) is one of the most fundamental tasks in machine learning. In
ERM, the task is to find a classifier from some set C that minimizes a loss function L on the sample
data. Formally, we are given some data set xn = {z1, ..., zn} 2 Xn, where each zi is sampled
independently from some distribution P . We are also given some set C such that for ✓ 2 C, the loss
function L is defined as:

L(✓;xn) =
1

n

nX

i=1

L(✓; zi)

where for all z 2 X , L(·; z) maps from C to R. Common choices for L include the 0� 1 loss, hinge
loss, and the squared loss. We seek to find a ✓̂ with small excess empirical risk, defined as

R̂n(✓̂) = L(✓̂;xn)�min
✓2C

L(✓;xn) (E.1)

In convex ERM, we assume that L(·;x) is convex for all x 2 X and that C is a convex set. We will
also assume that X ✓ Rp. Convex ERM is convenient because finding a suitable ✓̂ reduces to a
convex optimization problem, for which there exist many fast algorithms. Some examples of ERM
include finding a d-dimensional median and SVM.

ERM is useful due to its connections to the true risk, also known as the generalization error, which
we define as:

R(✓) = E
x⇠P

[L(✓;x)]

That is, the loss function will be low in expectation on a new data point sampled from P . We can
also define the excess risk of a classifier ✓̂:

ExcessRisk(✓̂) = E
x⇠P

h
L(✓̂;x)

i
�min

✓2C
E

x⇠P

[L(✓;x)]

ERM finds classifiers with low excess empirical risk, which in turn often have low excess risk. The
following theorem relates the two. For completeness, we first give some definitions relating to
convex empirical risk minimization sections. A convex body C is a set such that for all x, y 2 C
and all � 2 [0, 1], �x + (1 � �)y 2 C. A vector v is a subgradient of a function L at x0 if for all
x 2 C, L(x)� L(x0) � hv, x� x0i. A function L : C ! R is G-Lipschitz if for all pairs x, y 2 C,
|L(x)� L(y)|  G ||x� y||2 L is �-strongly convex on C if for all x 2 C and all subgradients z at
x and all y 2 C, we have L(y) � L(x) + hz, y � xi + �

2 ||y � x||22. L is B-smooth on C if for all
x 2 C, for all subgradients z at x and for all y 2 C, we have L(y)  L(x)+ hz, y�xi+ B

2 ||y � x||22.
We denote the diameter of a convex set C by ||C||2 = argmaxx,y2C ||x� y||2.

Theorem 30 ([SSSSS09]). For G-Lipschitz and �-strongly convex loss functions, with probability
at least 1� � over the randomness of sampling the data set Xn, the following holds:

ExcessRisk(✓̂) 
r

2G2

�
R̂n(✓̂) +

4G2

��n

Moreover, we can generalize this result to any convex and Lipschitz loss function L by defining a
regularized version of L, called L̃, such that L̃(✓;x) = L(✓;x) + �

2 ||✓||22. Then L̃ is (L+ ||C||2)-
Lipschitz and �-strongly convex. Also note that:

ExcessRiskL(✓)  ExcessRisk
L̃
(✓) +

�

2
||C||22

Thus, ERM finds classifiers with low true risk in these settings.

30

E.2 BBIMPROVER for ERM

For ERM in the dynamic setting, we want a classifier yt at every time t � n that achieves low
empirical risk on the current database, and we want the empirical risk of our classifiers to improve
over time, as in the static case. Note that the dynamic variant of the problem is strictly harder because
we must produce classifiers at every time step, rather than waiting for sufficiently many new samples
to arrive. Releasing classifiers at every time step degrades privacy, and thus requires more noise
to be added to preserve the same overall privacy guarantee. Nonetheless, we will compare our
private growing algorithm, which provides accuracy bounds for every time step from n to infinity
simultaneously, to private static algorithms, which are only run once.

In ERMG, our algorithm for ERM in the dynamic setting, the sole query of interest is the loss
function L evaluated on the current database. At each time t, ERMG receives a single query ft,
where ft evaluated on the database is xt(ft) = min✓2C L(✓;xt). The black box outputs yt, which is
a classifier from C that can be used to evaluate the single query yt(ft) = L(yt;xt). Our accuracy
guarantee at time t is the difference between yt(ft) and xt(ft):

↵t = L(yt;xt)�min
z2C

L(z;xt).

This expression is identical to the excess empirical risk R̂t(yt) defined in Equation (E.1). Thus
accurate answers to queries are equivalent to minimizing empirical risk. Our accuracy bounds are
stated in Theorem 31. The results come from instantiating (the more general) Theorem 29. The
differing assumptions on L allow us to use different (p, g)-black boxes with different input parameters
in each case. We use the static (✏, 0)-DP algorithms of [BST14] as black boxes. We compare our
growing bounds to these static bounds in Table 3.5 Since ERMG provides (✏, �)-differential privacy,
we also include static (✏, �)-DP bounds from [BST14, KST+12] for comparison in Table 3. The
static bounds are optimal in d, t, and ✏ up to log factors.
Theorem 31. Let L be a convex loss function that is 1-Lipschitz over some set C with ||C||2 = 1. Then
for any stream of databases X with points in Rd, ERMG(X,L, C, ✏, �,�, n) is (✏, �)-differentially
private and with probability at least 1 � � produces classifiers yt for all t � n that have excess
empirical risk bounded by:

R̂t(yt) 
d
p
log(1/�) log 1

�p
c✏t

1
2�c

If L is also �-strongly convex,

R̂t(yt) 
d2 log(1/�) log2 1

�p
c�✏2t1�c

where c is any positive constant.

Proof. When the loss function is 1-Lipschitz and ||C||2 = 1, the ✏-differentially private static
algorithm from [BST14] is a (p, g)-black box for p = 1 and g = d. When the loss function is also
�-strongly convex, the ✏-differentially private static algorithm from [BST14] is a (p, p0, p00, g)-black
box for p = 2, p0 = 2, p00 = 1, and g = d2/�. The bounds of Theorem 31 come from instantiating
Theorem 29 using each of these black boxes.

Note that the bounds we get for the growing setting have the same dependence on ✏,�, and � and
better dependence on �. The dependence on t in our bound is roughly the square root of that in the
static bounds. Compared to the static (✏, 0)-DP bounds, our dependence on d is the same, while the
dependence is squared relative to the static (✏, �)-DP bounds.

Given that the growing setting is strictly harder than the static setting, it is somewhat surprising that
we have no loss in most of the parameters, and only minimal loss in the size of the database t. Thus,
for ERM, performance in the static setting largely carries over to the growing setting.

5To get the static bounds, we use Appendix D of [BST14], which converts bounds on expected excess
empirical risk to high probability bounds.

31

Table 3: Comparison of excess empirical risk upper bounds in the static case ([BST14]) versus the
dynamic case (this work) for a database of size t for different assumptions on the loss function
L. (Database entries are sampled from Rd, and c is any positive constant. We ignore leading
multiplicative constants and factors of log log 1

�
in the static bounds. As in [BST14], we assume

� < 1/n for simplicity.)

Assumptions Static (✏, 0)-DP Static (✏, �)-DP Dynamic (✏, �)-DP (our results)

1-Lipschitz and
||C|| = 1

d log 1
�

✏t

p
d log2(t/�) log 1

�

✏t

d

p
log(1/�) log 1

�
p
c✏t

1
2
�c

... and �-
strongly convex
(implies �  2)

d
2(log t) log2 1

�

�✏2t2

d log3(t/�) log2 1
�

�✏2t2

d
2 log(1/�) log2 1

�p
c�✏2t1�c

32

	Introduction
	Our results
	Related Work

	Preliminaries
	Differential privacy and composition lemmas

	Adaptive linear queries for growing databases
	Private multiplicative weights for growing databases (PMWG)

	General transformations from static to dynamic settings
	Fixed accuracy as data accumulate
	Improving accuracy as data accumulate

	Other Related Work
	Analysis of PMW for Growing Databases
	(,0)-DP for PMWG
	(,)-DP for PMWG

	Sparse Vector Algorithms for Growing Databases
	Above Threshold for Growing Databases
	Numeric Above Threshold for Growing Databases
	Numeric Sparse for Growing Databases

	Analysis of Black Box Schedulers
	Fixed Accuracy as Data Accumulate
	Improving Accuracy as Data Accumulate

	ERM for Growing Databases
	ERM Background
	BBImprover for ERM

