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A Appendix

A.1 Posterior regularization

Proof of Theorem 1. Let D = (X, yr, Xy) be a collection of observed data. Let X = (X, Xy/)
be the observed input data points. As in [1], we assume that F is a complete separable metric space
and I is an absolutely continuous probability measure (with respect to background measure 1) on
(F,B(F)), where B(F) is the the Borel o-algebra, such that a density 7 exists where dII = wdn. Let
O be a space of parameters to the model, where we treat § € © as random variables. With regards to
the notation in the RegBayes framework, the model is the pair M = (f, ). We assume as in [1] that
the likelihood function P(-| M) is the likelihood distribution which is dominated by a o-finite measure
A for all M with positive density, such that a density p(-|M) exists where dP(-|M) = p(-|M)d\.

We would like to compute the posterior distribution

p(DI|f,0)m(f,0)
[1o0(f,0,D)dn(f,0)

p(f,0|D) =

which involves an intractable integral.
We claim that the solution of the following optimization problem is precisely the Bayesian posterior

p(f,0/D):
inf DKL(q(fﬂID)ﬂ(fﬁ))—/faq(fﬁD)logp(leﬁ)dn(f,@)

q(£,0|D)

By adding the constant log p(D) to the objective,

argint Dics (o(£.0D)(£,6)) = | a(7.01D)logp(DIL.0)dn(£,6) +logp(D) (1)
a(f,0|D) f,0
o q(f,0|D)
= argint /f 90 01D)log %G5 dn(1,0) + log (D) @)

— arginf [ q(7,6/D)10g LUD) gk g 3

argint /f 001D log ST an(1,0) 3)

— arginf Dicz(a(f, 6/D)|p(/,6/D)) )
q(f,0|D)

— arginf £(¢(f,6/D)), 5)
q(f,0|D)

*denotes equal contribution
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where by definition p(f, 60, D) = p(D|f,0)n(f, ) and we see that the objective is minimized when
q(f,0)D) = p(f,0|D) as claimed. We note that the objective is equivalent to the first term of the
RegBayes objective (Section 2.3).

We introduce a variational approximation ¢ € P, Which approximates p( f, 8|D), where Pprop =
{q:q(f,0|D) = q(f|0,D)d5(0|D)} is the family of approximating distributions such that ¢(6|D) is
restricted to be a Dirac delta centered on 6. When we restrict ¢ € Pprop,

arginf  Dicr(a(f,01D) |7 (f.0)) — / a(f,01D) log p(D| 1, 0)di(f, 0) ©)
qa(f,0|D)EPprob f,0
o s , q(f\w)é@(e)) )
qs{r‘g’lg)é al )/fQ(f| ,D) (logi(ﬁem) dn(f,6) )
= argnt [ 50 (Dm (/16 D) Ip( 1. D>>+1og<se<9>—logpwm))dnw) ®)
q(f16,D),0
— arginf / 55(0 (DKL< (716, D) |p(f10.D)) logp(9|D))d77(9) ©)
q(£16,D),0

where 1n equation (7) we use the form from equation (3), and in equation (9) we note that
/. Jo 05(0) log 65(6) does not vary with 6 or ¢, and can be removed from the optimization. For every
0, the optimizing distribution is ¢*(f|0, D) = p(f|0, D), which is the Bayesian posterior given the
model parameters. Substituting this optimal value into

angint [ 3(0) (DKL@*(fw,D)Hp(fw,zv)) - logpwm))dn(e) (10)

a(£16,0),8 /6

= arginf — /(55(9) log p(0|D)dn(0) (11)
5 0

= arginf — /95é(9)(10gp(9\X, yz) +logp(yr|X))dn(0) (12)
0

— arginf — /9 55(6) log ply 1., 6].X)dn(6) (13)
0

= arginf — log p(y.|0, X) (14)
0

using that Dgr,(¢*(f|0,D)|p(f16,D)) = 0in (11) and [, 65(0) logp(yL|X) is a constant. The
optimization problem over @ reflects maximizing the likelihood of the data.

We defined the regularization function as
Qa(£.6D)) = o Z( [, P10 DIOID) (S0 = Byl (X0 1.0) ).

Note that the regularization function only depends on &, through q(0 | D) = 59(9) Therefore
the optimal post-data posterior ¢ in the regularized objective is still in the form ¢*(f,0|D) =
p(f10, D)dg(0), and ¢ is modified by the regularization function only through é5(0).

Thus, using the optimal post-data posterior g ( f, 0|D) = p(f|0,D)d5(6), the RegBayes problem is
equivalent to the objective optimized by SSD

arginf  L(q(f,0|D)) + Qg (f,OID))

a(f, G‘D)epprob

_arglnffIOgP(YLw X)+a Z(/j (Xv)i — Ep[f(Xv)i] /59 p(f16, D)dn(f, ))
= srgint ~1ogpyul0,X) 4! 3 [ 10 DS~ Byl 50t

—argmf—logp(yLw X))+« ZVal”p (Xv)q))

i=1

= arg}nf Lsemisup(é)'
0



A.2 Virtual Adversarial Training

Virtual adversarial training (VAT) is a general training mechanism which enforces local distributional
smoothness (LDS) by optimizing the model to be less sensitive to adversarial perturbations of the
input [2]. The VAT objective is to augment the marginal likelihood with an LDS objective:

1 — I _
=37 X..0)+ 2 S LDS(X;, 8
n; ogp(yr|Xr, )+n; (Xi,0)

where
LDS<XH é) = _AKL (rv—adv(i)a Xia é)

Agr(r, Xi,0) = Drr(p(y|Xi, 0)||lp(y|X; +,0))
Pvady(i) = arg max{As (r, Xi,0);|Ir]l2 < €}

and y is the output of the model given the input X; (or perturbed input X; 4 r) and parameters
6. Note that the LDS objective does not require labels, so that unlabeled data can be incorporated.
The experiments in the original paper are for classification, although VAT is general. We use VAT
for regression by choosing p(y|X;,0) = N (hg(X;),0?) where hy : R — R¥ is a parameterized
mapping (a neural network), and o is fixed. Optimizing the likelihood term is then equivalent to
minimizing the squared error and the LDS term is the KL-divergence between the model’s Gaussian
distribution and a perturbed Gaussian distribution, which is also in the form of a squared difference.
To calculate the adversarial perturbation ry_aqy(;), first we take the second-order Taylor approximation

atr = 0 of Agr(r, X;,0), assuming that p(y|X;, 0) is twice differentiable:

Dir(p(y|Xi, 0)|p(y| X; +7,0) ~ —r" Hyr (15)

DN =

where H; = V'V, D, (p(y| X, 0)|-—o. Note that the first derivative is zero since D 1. (p(y|X;, 0)
is minimized at 7 = 0. Therefore 7,_,4y(;) can be approximated with the first dominant eigenvector of
the H; scaled to norm €. The eigenvector calculation is done via a finite-difference approximation to
the power iteration method. As in [2]], one step of the finite-difference approximation was used in all
of our experiments.

A.3 Training details

In our reported results, we use the standard squared exponential or radial basis function (RBF) kernel,

1% — %3
kXZ',X‘ :¢2 exp (_ 4 )

where ¢?c and ¢? represent the signal variance and characteristic length scale. We also experimented

with polynomial kernels, k(x;, x;) = (¢ X2 x;+¢;)P, p € Z, but found that performance generally
decreased. To enforce positivity constraints on the kernel parameters and positive definiteness of
the covariance, we train these parameters in the log-domain. Although the information capacity
of a non-parametric model increases with the dataset size, the marginal likelihood automatically
constrains model complexity without additional regularization [3|]. The parametric neural networks
are regularized with L2 weight decay to reduce overfitting, and models are implemented and trained
in TensorFlow using the ADAM optimizer [4}, 5]

A.4 UCI results

In section 4.2 of the main text, we include results on the UCI datasets for n = 100 and n = 300.
Here we include the rest of the experimental results, for n € {50,200, 400, 500}. For n = 50, we
note that both COREG and label propagation perform quite well — we expect that this is true because
these methods do not require learning neural network parameters from data.



Percent reduction in RMSE compared to DKL

n =50
Dataset N d SSDKL COREG Label Prop VAT  Mean Teacher VAE
Skillcraft 3,325 18 5.67 8.52 7.60 3.92 -12.01  -19.93
Parkinsons 5,875 20 -8.34  -18.18 -32.85  -83.51 -69.98  -95.57
Elevators 16,599 18 4.92 5.83 11.28 -8.19 -2091  -16.35
Protein 45,730 9 -0.54 5.05 7.52 0.22 5.51 4.57
Blog 52,397 280 7.69 8.66 8.71 8.40 6.89 6.26
CTslice 53,500 384  -13.92 -2.14 -17.83  -36.95 23545 -33.24
Buzz 583,250 77 5.56 22.21 18.52 1.64 -62.65  -41.81
Electric 2,049,280 6 3241 -34.82 -64.45 -105.74 -179.13  -201.51
Median 5.24 5.44 7.56 -3.99 -28.18  -26.59

Table 1: Percent reduction in RMSE compared to baseline supervised deep kernel learning (DKL)
model for semi-supervised deep kernel learning (SSDKL), COREG, label propagation, variational
auto-encoder (VAE), mean teacher, and virtual adversarial training (VAT) models. Results are
averaged across 10 trials for each UCI regression dataset. Here IV is the total number of examples, d
is the input feature dimension, and n = 50 is the number of labeled training examples. Final row
shows median percent reduction in RMSE achieved by using unlabeled data.

Percent reduction in RMSE compared to DKL

n = 200
Dataset N d  SSDKL COREG Label Prop VAT Mean Teacher VAE
Skilleraft 3,325 18 7.79 0.51 7.96 4.43 22226 -20.11
Parkinsons 5,875 20 1.45 -29.86 -48.93  -160.51 -132.12 -195.88
Elevators 16,599 18 12.80  -10.23 -5.51  -33.00 23294 4274
Protein 45,730 9 2.49 -0.56 1.99 -8.96 -8.57 -8.65
Blog 52,397 280 4.16 9.87 14.78 14.01 8.09 7.88
CTslice 53,500 384  -11.96 -3.05 2782 -43.25 -67.95  -55.53
Buzz 583,250 77 4.78 8.60 -2.93  -30.94 -106.85  -103.69
Electric 2,049,280 6 272 -166.86 -292.88  -432.04 -580.78 -722.28
Median 3.32 -1.81 -422  -31.97 -5045  -49.13

Table 2: See Table 1 above and section 4.2 in the main text for details, results for n = 200 labeled
examples.

A.5 Poverty prediction

High-resolution satellite imagery offers the potential for cheap, scalable, and accurate tracking of
changing socioeconomic indicators. The United Nations has set 17 Sustainable Development Goals
(SDGs) for the year 2030—the first of these is the worldwide elimination of extreme poverty, but a
lack of reliable data makes it difficult to distribute aid and target interventions effectively. Traditional
data collection methods such as large-scale household surveys or censuses are slow and expensive,
requiring years to complete and costing billions of dollars [[6]. Because data on the outputs that we
care about are scarce, it is difficult to train models on satellite imagery using traditional supervised
methods. In this task, we attempt to predict local poverty measures from satellite images using limited
amounts of poverty labels. As described in [[7], the dataset consists of 3,066 villages across five
Africa countries: Nigeria, Tanzania, Uganda, Malawi, and Rwanda. These countries include some of
the poorest in the world (Malawi, Rwanda) as well as regions of Africa that are relatively better off
(Nigeria), making for a challenging and realistically diverse problem. The raw satellite inputs consist
of 400 x 400 pixel RGB satellite images downloaded from Google Static Maps at zoom level 16,
corresponding to 2.4 m ground resolution. The target variable that we attempt to predict is a wealth
index provided in the publicly available Demographic and Health Surveys (DHS) [8. 9].
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Percent reduction in RMSE compared to DKL
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n = 500
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