
Table 4: Qualifying ICD-9 codes for heart failure

A Discussion of Bilinear Pooling

In Eq. (3), g(di,mi,j) uses a form of bilinear pooling to explicitly capture the interaction between
the Dx code and the treatment code. The original bilinear pooling [37] derives a scalar feature fi
between two embeddings x,y such that fi = xTWiy where Wi is a trainable weight matrix. Since
we typically extract many features f0, . . . , fi, to capture the interaction between two embeddings,
bilinear pooling requires us to train multiple weight matrices (i.e. weight tensor). Due to this
requirement, researchers developed more efficient methods such as compact bilinear pooling [21, 19]
and low-rank bilinear pooling [24], which is used in this work.

B Heart Failure Case-Control Selection Criteria

Case patients were 40 to 85 years of age at the time of HF diagnosis. HF diagnosis (HFDx) is
defined as: 1) Qualifying ICD-9 codes for HF appeared in the encounter records or medication orders.
Qualifying ICD-9 codes are displayed in Table 4. 2) a minimum of three clinical encounters with
qualifying ICD-9 codes had to occur within 12 months of each other, where the date of diagnosis was
assigned to the earliest of the three dates. If the time span between the first and second appearances of
the HF diagnostic code was greater than 12 months, the date of the second encounter was used as the
first qualifying encounter. The date at which HF diagnosis was given to the case is denoted as HFDx.
Up to ten eligible controls (in terms of sex, age, location) were selected for each case, yielding an
overall ratio of 9 controls per case. Each control was also assigned an index date, which is the HFDx
of the matched case. Controls are selected such that they did not meet the operational criteria for
HF diagnosis prior to the HFDx plus 182 days of their corresponding case. Control subjects were
required to have their first office encounter within one year of the matching HF case patient’s first

12

Table 5: HF prediction performance of all models on small datasets. Values in the parentheses denote
standard deviations from 5-fold random data splits. Two best values in each column are marked in
bold.

D1

(Visit complexity 0-15%, 5608 patients)
D2

(Visit complexity 15-30%, 5180 patients)
D3

(Visit complexity 30-100%, 5231 patients)
test loss test PR-AUC test loss test PR-AUC test loss test PR-AUC

raw 0.2553 (0.0084) 0.2669 (0.0314) 0.2203 (0.0186) 0.2388 (0.0460) 0.2144 (0.0127) 0.3776 (0.0589)
linear 0.2562 (0.0108) 0.2722 (0.0354) 0.2200 (0.0187) 0.2403 (0.0229) 0.2021 (0.0176) 0.4339 (0.0411)
sigmoid 0.2594 (0.0062) 0.2637 (0.0374) 0.2198 (0.0220) 0.2445 (0.0363) 0.2029 (0.0118) 0.4358 (0.0585)
tanh 0.2648 (0.0124) 0.2707 (0.0138) 0.2186 (0.0182) 0.2479 (0.0512) 0.2025 (0.0151) 0.4415 (0.0532)
relu 0.2601 (0.0107) 0.2546 (0.0109) 0.2288 (0.0244) 0.1957 (0.0217) 0.2083 (0.0124) 0.4100 (0.0276)
sigmoidmlp 0.2836 (0.0102) 0.1207 (0.0145) 0.2407 (0.0162) 0.1119 (0.0334) 0.2127 (0.0294) 0.3547 (0.1208)
tanhmlp 0.2587 (0.0121) 0.2671 (0.0257) 0.2289 (0.0213) 0.2296 (0.0185) 0.2024 (0.0181) 0.4290 (0.0510)
relumlp 0.2650 (0.0088) 0.2463 (0.0148) 0.2288 (0.0235) 0.1982 (0.0298) 0.2144 (0.0202) 0.3872 (0.0476)
Med2Vec 0.2601 (0.0186) 0.2771 (0.0288) 0.2171 (0.0170) 0.2356 (0.0309) 0.2044 (0.0129) 0.3813 (0.0240)
GRAM 0.2554 (0.0254) 0.2633 (0.0521) 0.2249 (0.0448) 0.2505 (0.0609) 0.2333 (0.0362) 0.3998 (0.0628)
MiME 0.2535 (0.0042) 0.2637 (0.0326) 0.2121 (0.0238) 0.2579 (0.0241) 0.1931 (0.0140) 0.4685 (0.0432)
MiME aux 0.2512 (0.0073) 0.2750 (0.0326) 0.2117 (0.0238) 0.2589 (0.0287) 0.1910 (0.0163) 0.4787 (0.0434)

office visit, and have at least one office encounter 30 days before or any time after the case’s HF
diagnosis date to ensure similar duration of observations among cases and controls.

C Training Details

All models were implemented in TensorFlow 1.4 [36], and trained with a system equipped with Intel
Xeon E5-2620, 512TB memories and 8 Nvidia Pascal Titan X’s. We used Adam [25] for optimization,
with the learning rate 1e� 3.

In all experiments, the reported results are averaged over 5-fold random data splits: training (70%),
validation (10%) and test (20%). All models were trained with the minibatch of 20 patients for
20,000 iterations to guarantee convergence. At every 100 iterations, we evaluated the loss value of
the validation set for early stopping.

For the non-linear activation functions in MiME, we used ReLU in all places except for the one in
Eq. (1) where we used sigmoid to benefit from its regularization effect. We avoid the vanishing
gradient problem by using the skip connections. Note that simply adding skip connections to
sigmoidmlp did not improve performance.

For the first experiment in section 3.5, size of the visit vector v was 128 in all baseline models
except raw. We ran a number of preliminary experiments with values 64, 128, 256 and 512, and
we concluded that 128 was sufficient for all models to obtain optimal performance, as the datasets
D1, D2 and D3 were rather small. For MiME, we adjusted the size of the embeddings z to match
the number of parameters to the baselines. Med2Vec was also trained to obtain 128 dimensional
visit vectors. Note that sigmoidmlp, tanhmlp, relumlp and GRAM used 128⇥ 128 more parameters
than other models. We used L2 regularization with the coefficient 1e� 4 for all models. We did not
use any dropout technique. All models used GRU for the function h(v(1), . . . ,v(T)) as described in
section 3.3, the cell size of which was 128.

For the second experiment in section 3.4, where the models were trained on gradually larger datasets
E1, E2, E3 and E4, the size of v was set to 256 for all baseline models except raw. The same
adjustments were made to MiME as before, and the cell size of GRU was also set to 256.

D Heart Failure Prediction Performance on Datasets D1, D2 and D3, Full
Version

Table 5 shows the performance of all models on datasets D1, D2 and D3. An interesting finding is
that both sigmoid and tanh mostly outperform relu in both measures in D1, D2 and D3, although
ReLU is the preferred nonlinear activation for hidden layers in many studies . This seems due to the
regularizing effect of sigmoid and tanh functions. Whereas ReLU can produce outputs as high as
infinity, sigmoid and tanh have bounded outputs. Considering that sigmoid, tanh and relu all sum
up the code embeddings in a visit V(t) before applying the nonlinear activation, constraining the
output of the nonlinear activation seems to work favorably, especially in D3 where there are more

13

codes per visit. This regularization benefit, however, diminishes as the dataset grows, which can be
confirmed by Table 7 in section F. In addition, as can be seen by the performance of sigmoidmlp,
sigmoid clearly suffers from the vanishing gradient problem as opposed to tanh or ReLU that have
larger gradient values.

E ROC-AUC of Heart Failure Prediction on Datasets D1, D2 and D3

Table 6: ROC-AUC of all models for HF prediction on small datasets. Values in the parentheses
denote standard deviations from 5-fold random data splits. Two best values in each column are
marked in bold.

D1

(Visit complexity 0-15%, 5608 patients)
D2

(Visit complexity 15-30%, 5180 patients)
D3

(Visit complexity 30-100%, 5231 patients)
raw 0.7424 (0.0153) 0.7508 (0.0254) 0.8130 (0.0315)
linear 0.7298 (0.0187) 0.7241 (0.0220) 0.8209 (0.0130)
sigmoid 0.7220 (0.0098) 0.7331 (0.0475) 0.8280 (0.0128)
tanh 0.7273 (0.0050) 0.7244 (0.0175) 0.8171 (0.0151)
relu 0.7326 (0.0133) 0.7078 (0.0181) 0.8166 (0.0211)
sigmoidmlp 0.5520 (0.0136) 0.5770 (0.0416) 0.7718 (0.0826)
tanhmlp 0.7215 (0.0188) 0.7058 (0.0261) 0.8080 (0.0258)
relumlp 0.7205 (0.0122) 0.7014 (0.0177) 0.7993 (0.0212)
Med2Vec 0.7447 (0.0194) 0.7515 (0.0243) 0.8325 (0.0254)
GRAM 0.7586 (0.0240) 0.6930 (0.0379) 0.7785 (0.0260)
MiME 0.7433 (0.0127) 0.7723 (0.0232) 0.8393 (0.0281)
MiME aux 0.7449 (0.0117) 0.7741 (0.0209) 0.8437 (0.0244)

Table 6 shows ROC-AUC of all models on datasets D1, D2 and D3. Except for D1 where patients
have low visit complexity, MiME again consistently outperforms all baseline models. However, the
ROC-AUC gap between MiME and baselines is not as great as PR-AUC. This is because ROC-AUC is
determined by sensitivity (i.e. recall, or true positive rate) and specificity (i.e. true negative rate). A
model achieves a high specificity if it can correctly identify as many negative samples as possible,
which is easier for problems with many negative samples and few positive samples. PR-AUC, on the
other hand, is determined by precision and recall. Therefore, for a model to achieve a high PR-AUC,
it must correctly retrieve as many positive samples as possible while ignoring negative samples,
which is harder for problems with few positive samples.

For heart failure (HF) prediction, achieving high specificity is relatively easy as there are way more
controls (i.e. negative samples) than cases (i.e. positive samples). However, correctly identifying
cases while ignoring controls requires a model to recognize what differentiates cases from controls.
This means paying attention to the details of the patient records, such as the relationship between the
diagnosis codes and treatment codes. That is why MiME shows significant improvement in PR-AUC
while showing moderate improvement in ROC-AUC. Also, this also explains why Med2Vec shows
very poor PR-AUC as opposed to its competitive ROC-AUC. Med2Vec only pays attention to the
co-occurrence of codes within a single visit, and not the interaction between diagnosis codes and
treatment codes. It can work as a very efficient code grouper (codes that often appear in the same visit
end up having similar code embeddings), leading to a increased ROC-AUC. But it cannot achieve a
high PR-AUC, as that code grouping loses much of the subtle interaction between diagnosis codes
and medication codes.

F Test PR-AUC on Datasets E1, E2, E3 and E4, Full Version

Table 7 shows the PR-AUC of all models on datasets E1, E2, E3 and E4. It is notable that some
baseline models show fluctuating performance as dataset grows. For example, tanhmlp showed
competitive performance in small datasets, but weaker performance in large datasets. relumlp, on the
other hand, did not stand out in small datasets, but became the best baseline in large datasets. Such
behaviors, along with the finding in Appendix D regarding the regularization effect, suggest that we
should carefully choose activation functions of our model depending on the dataset size.

G Test Loss and Test ROC-AUC on Datasets E1, E2, E3 and E4

Table 8 and Table 9 respectively shows the test loss and test ROC-AUC of all models on datasets of
varying sizes E1, E2, E3 and E4. Both MiME and MiME aux consistently outperformed all baselines

14

Table 7: Test PR-AUC of HF prediction for increasing data size. Parentheses denote standard
deviations from 5-fold random data splits. The two strongest values in each column are marked bold.

E1 (6299 patients) E2 (15794 patients) E3 (21128 patients) E4 (27428 patients)
raw 0.2374 (0.0514) 0.3149 (0.0367) 0.3816 (0.0290) 0.4865 (0.0219)
linear 0.2303 (0.0467) 0.3200 (0.0353) 0.3806 (0.0271) 0.4939 (0.0159)
sigmoid 0.2354 (0.0355) 0.3260 (0.0392) 0.3851 (0.0235) 0.4823 (0.0195)
tanh 0.2192 (0.0407) 0.3235 (0.0441) 0.3884 (0.0310) 0.4973 (0.0262)
relu 0.2293 (0.0459) 0.3274 (0.0359) 0.3793 (0.0291) 0.4957 (0.0160)
sigmoidmlp 0.0843 (0.0154) 0.0919 (0.0110) 0.1333 (0.0047) 0.2221 (0.0146)
tanhmlp 0.2462 (0.0675) 0.3333 (0.0387) 0.3834 (0.0209) 0.4847 (0.0172)
relumlp 0.2353 (0.0335) 0.3111 (0.0494) 0.3976 (0.0235) 0.4983 (0.0229)
Med2Vec 0.2404 (0.0228) 0.3057 (0.0508) 0.3861 (0.0343) 0.4756 (0.0148)
GRAM 0.2349 (0.0424) 0.3118 (0.0337) 0.4002 (0.0113) 0.4936 (0.0199)
MiME 0.2711 (0.0308) 0.3589 (0.0533) 0.4041 (0.0231) 0.5129 (0.0204)
MiME aux 0.2831 (0.0425) 0.3651 (0.0473) 0.4047 (0.0276) 0.5142 (0.0210)

in terms of both test loss and test ROC-AUC, except Med2Vec. Moreover, MiME aux always showed
better performance than MiME except test loss in E4, especially for the smallest dataset E1, confirming
our assumption that auxiliary tasks can train a robust model when large datasets are unavailable.
tanhmlp consistently showed good performance in terms of ROC-AUC across all datasets, as opposed
to showing fluctuating PR-AUC in Table 7. Med2Vec again showed a competitive ROC-AUC in all
datasets, even outperforming MiME aux in E3. This suggests that initializing MiME’s code embeddings
with Med2Vec can be an interesting future direction as it may lead to an even better performance.

Table 8: Test loss of HF prediction for increasing data size. Parentheses denote standard deviations
from 5-fold random data splits. Two best values in each column are marked bold.

E1 (6299 patients) E2 (15794 patients) E3 (21128 patients) E4 (27428 patients)
raw 0.2204 (0.0090) 0.2236 (0.0166) 0.2387 (0.0045) 0.2658 (0.0095)
linear 0.2229 (0.0078) 0.2245 (0.0160) 0.2395 (0.0068) 0.2642 (0.0099)
sigmoid 0.2229 (0.0064) 0.2215 (0.0135) 0.2373 (0.0034) 0.2655 (0.0095)
tanh 0.2232 (0.0082) 0.2217 (0.0142) 0.2396 (0.0068) 0.2629 (0.0098)
relu 0.2253 (0.0058) 0.2236 (0.0134) 0.2436 (0.0104) 0.2637 (0.0104)
sigmoidmlp 0.2487 (0.0109) 0.2681 (0.0140) 0.2964 (0.0054) 0.3335 (0.0063)
tanhmlp 0.2198 (0.0058) 0.2259 (0.0156) 0.2358 (0.0024) 0.2616 (0.0111)
relumlp 0.2175 (0.0067) 0.2263 (0.0144) 0.2402 (0.0037) 0.2668 (0.0090)
Med2Vec 0.2162 (0.0091) 0.2141 (0.0171) 0.2340 (0.0043) 0.2631 (0.0106)
GRAM 0.2321 (0.0118) 0.2291 (0.0154) 0.2382 (0.0036) 0.2663 (0.0071)
MiME 0.2128 (0.0075) 0.2153 (0.0126) 0.2331 (0.0039) 0.2559 (0.0096)
MiME aux 0.2111 (0.0089) 0.2122 (0.0115) 0.2326 (0.0048) 0.2557 (0.0095)

Table 9: Test ROC-AUC of HF prediction for increasing data size. Parentheses denote standard
deviations from 5-fold random data splits. Two best values in each column are marked bold.

E1 (6299 patients) E2 (15794 patients) E3 (21128 patients) E4 (27428 patients)
raw 0.7585 (0.0202) 0.8003 (0.0265) 0.8165 (0.0146) 0.8330 (0.0111)
linear 0.7411 (0.0252) 0.7945 (0.0181) 0.8129 (0.0140) 0.8377 (0.0119)
sigmoid 0.7236 (0.0286) 0.7978 (0.0163) 0.8154 (0.0167) 0.8343 (0.0121)
tanh 0.7419 (0.0247) 0.7943 (0.0186) 0.8121 (0.0146) 0.8388 (0.0117)
relu 0.7366 (0.0267) 0.7891 (0.0197) 0.8105 (0.0210) 0.8353 (0.0123)
sigmoidmlp 0.5191 (0.0269) 0.5356 (0.0365) 0.6013 (0.0082) 0.6628 (0.0176)
tanhmlp 0.7429 (0.0330) 0.7796 (0.0283) 0.8172 (0.0084) 0.8431 (0.0128)
relumlp 0.7496 (0.0425) 0.7837 (0.0217) 0.8047 (0.0131) 0.8331 (0.0100)
Med2Vec 0.7633 (0.0151) 0.8141 (0.0213) 0.8301 (0.0138) 0.8445 (0.0115)
GRAM 0.7575 (0.0218) 0.7828 (0.0228) 0.8077 (0.0107) 0.8313 (0.0083)
MiME 0.7676 (0.0292) 0.8109 (0.0223) 0.8267 (0.0106) 0.8471 (0.0100)
MiME aux 0.7824 (0.0213) 0.8154 (0.0193) 0.8281 (0.0159) 0.8478 (0.0108)

15

H Sequential Disease Prediction

Sequential disease prediction In order to test if leveraging EHR’s inherent structure is a strategy
generalizable beyond heart failure prediction, we test MiME’s prediction performance in another
context, namely sequential disease prediction. The objective is to predict the diagnosis codes
occurring in visit V(t+1), given all past visits V(1),V(2), . . . ,V(t). The input features are diagnosis
codes A and treatment codes B, while the output space only consists of diagnosis codes A. This task
is useful for preemptively assessing the patient’s potential future risk [10], but is also appropriate for
assessing how well a model captures the progression of the patient status over time. We used GRU as
the mapping function h(·), and hidden vectors from all timesteps were fed to the softmax function
with |A| output classes to perform sequential prediction.

I Experiment Results for Sequential Disease Prediction

Table 10: Prediction performance for sequential disease prediction. Values in the parentheses denote
standard deviations from 5-fold random data splits. The best value in each column is marked in bold.

Test loss Test recall@5 Test recall@10 Test recall@20
raw 7.2121 (0.0319) 0.5329 (0.0016) 0.6600 (0.0016) 0.7749 (0.0019)
linear 7.1474 (0.0321) 0.5443 (0.0008) 0.6749 (0.0010) 0.7876 (0.0009)
sigmoid 7.3494 (0.0438) 0.5110 (0.0054) 0.6338 (0.0052) 0.7529 (0.0029)
tanh 7.1439 (0.0313) 0.5456 (0.0016) 0.6755 (0.0012) 0.7879 (0.0010)
relu 7.1576 (0.0285) 0.5427 (0.0011) 0.6716 (0.0016) 0.7846 (0.0015)
sigmoidmlp 8.7886 (0.0257) 0.2132 (0.0038) 0.3466 (0.0031) 0.5158 (0.0044)
tanhmlp 7.1392 (0.0302) 0.5470 (0.0010) 0.6788 (0.0006) 0.7926 (0.0009)
relumlp 7.1719 (0.0334) 0.5433 (0.0010) 0.6744 (0.0010) 0.7876 (0.0012)
Med2Vec 7.2429 (0.0283) 0.5317 (0.0011) 0.6583 (0.0020) 0.7752 (0.0016)
GRAM 7.1738 (0.0361) 0.5390 (0.0016) 0.6685 (0.0025) 0.7830 (0.0015)
MiME 7.1224 (0.0326) 0.5496 (0.0010) 0.6815 (0.0009) 0.7945 (0.0014)

After training all models until convergence, performance was measured by sorting the predicted
diagnosis codes for V

(t+1) by their prediction values, and calculating Recall@k using the true
diagnosis codes of V(t+1).

Table 10 shows the performance of all models for sequential disease prediction. MiME demonstrated
the best performance in all metrics, showing that MiME can properly capture the temporal progression
of the patient status. It is noteworthy that linear displayed very competitive performance compared
to the best performing models. This is due to the fact that chronic conditions such as hypertension or
diabetes persist over a long period of time, and sequentially predicting them becomes an easy task
that does not require an expressive model. This was also reported in [10] where a strategy to choose
the most frequent diagnosis code as the prediction showed competitive performance in a similar task.

In order to study whether explicitly incorporating the structure of EHR helps when there are small data
volume, we calculated the test performance in terms of Precision@5 for predicting each diagnosis
(Dx) code of A. In Table 11, we report average Precision@5 for four different groups of Dx codes,
where the groups were formed by the rarity/frequency of the Dx codes in the training data. For
example, the first column represents the Dx codes that appear in the 0.01%-0.05% of the entire visits
(433407) in the training data, which are very rare diseases. On the other hand, the Dx codes in the last
column appear in maximum 13.39% of the visits, indicating high-prevalence diseases. We selected
the best performing activation function tanh among the three.

As can be seen from Table 11, except for the rarest Dx codes, MiME outperforms all other baseline
models, as much as 11.6% relative gain over tanhmlp. It is notable that Med2Vec demonstrated
the greatest performance for the rarest Dx code group. However, the benefit of using pre-trained
embedding vectors quickly diminishes to the point of degrading the performance when there are at
least several hundred training samples.

Overall, MiME demonstrated good performance in prediction tasks in diverse settings, and it is notable
that they significantly outperformed the baseline models in the more complex task, namely HF

16

Table 11: Accuracy@5 for predicting diseases grouped by their rarity. The prevalence percentages
are calculated by dividing the number of occurrences of each disease by 433407, the total number of
visits in the training data. All values are averaged from 5-fold cross validation.

Model 20th-40th percentile
(0.01%-0.05% preval)

40th-60th percentile
(0.05%-0.2% preval)

60th-80th percentile
(0.2%-0.8% preval)

80th-100th percentile
(0.8%-13.4% preval)

raw 0.0530 (0.0156) 0.1907 (0.0128) 0.2999 (0.0039) 0.4304 (0.0052)
linear 0.0633 (0.0203) 0.2162 (0.0163) 0.3266 (0.0053) 0.4388 (0.0051)
tanh 0.0674 (0.0182) 0.2101 (0.0143) 0.3218 (0.0045) 0.4379 (0.0033)
tanhmlp 0.0723 (0.0165) 0.2353 (0.0118) 0.3388 (0.0044) 0.4381 (0.0034)
Med2Vec 0.1156 (0.0101) 0.2240 (0.0155) 0.3177 (0.0076) 0.4217 (0.0046)
GRAM 0.0574 (0.0121) 0.1634 (0.0057) 0.3053 (0.0089) 0.4409 (0.0039)
MiME 0.0965 (0.0154) 0.2625 (0.0209) 0.3597 (0.0082) 0.4447 (0.0034)

prediction, where the relationship between the label and the features (i.e. codes) from the data was
more than straightforward.

17

