
1 Appendix

1.1 Update in M-step

For µ, we choose the gradient ascent method. The gradient of µtj for one rating
point ytij is:

∂L

∂µtj
= (1− ytij)

Qij − 1

µtj(Qij − 1) + 1
+ ytij

1

µtj
+
at − 1

µtj
− bt − 1

1− µtj
, (1)

where Qij =
N (0|UT

i Vj ,λ
−1
y )

N (0|UT
i Vj ,λ

−1
y )+N (1|UT

i Vj ,λ
−1
y )

. This process is repeated until con-

vergence. For U and V , we set their derivatives to zero and get the following
update formulas:

Ui ← (λy
∑
j

ᾱijVjV
T
j + λV IK)−1(

∑
j

λyᾱijy
t
ijVj), (2)

Vj ← (λy
∑
i

ᾱijUiU
T
i + λUIK)−1(

∑
i

λyᾱijy
t
ijUi), (3)

where

ᾱij =
µ̄ijN (0|UTi Vj , λ−1

y )

µ̄ijN (0|UTi Vj , λ
−1
y ) + 1− µ̄ij

,

µ̄ij =

{
µtij , if ytij = 1∑D
d=1 µ

d
j/D, otherwise

(4)

When ytij is not rated (ytij = 0), the µ̄ij is set as the average of all possible µdj .

1.2 Recommendation Overlaps

Below we show the recommendation overlaps when D = 4 and D = 5.

Recommendation Overlaps of Different User Intents
Dataset Movielens-100K Movielens-1M LastFM

User Intent
D=4 D=5 D=4 D=5 D=4 D=5

H4MF H4MFc H4MF H4MFc H4MF H4MFc H4MF H4MFc H4MF H4MFc H4MF H4MFc

U1 vs U2 78% 22% 74% 10% 86% 10% 86% 0% 30% 4% 30% 0%
U1 vs U3 72% 44% 64% 10% 84% 0% 84% 0% 44% 10% 38% 0%
U1 vs U4 70% 18% 66% 0% 86% 8% 86% 0% 28% 2% 32% 4%
U2 vs U3 66% 24% 66% 20% 90% 0% 82% 0% 46% 6% 28% 6%
U2 vs U4 72% 16% 72% 0% 90% 16% 88% 8% 48% 10% 24% 2%
U3 vs U4 70% 16% 64% 0% 84% 0% 92% 2% 32% 2% 30% 0%
U1 vs U5 - - 70% 0% - - 90% 4% - - 26% 2%
U2 vs U5 - - 72% 0% - - 88% 4% - - 32% 10%
U3 vs U5 - - 78% 0% - - 84% 2% - - 26% 2%
U4 vs U5 - - 66% 0% - - 84% 0% - - 28% 8%

Table 1: Recommendation overlaps of different user intents on three datasets
when D = 4 and D = 5. U1, U2, U3, U4, and U5 indicate the indices of user
intents.

1



1.3 Experimental Runtime Results

Below we show the experimental runtime results of H4MFc. We implement
the model with Python and our machine settings are listed as follows: Ubuntu
16.04.4 LTS, Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, and 12GB 2600
MHz memory. We can see that the runtime is heavily influenced by the state
number and the length of the data sequence. When D increases, the runtime
increases dramatically. As expected, Movielens-1M costs much more time than
Movielens-100K because users in Movielens-1M have longer length of the data
sequence.

Experimental Runtime Results (In Seconds)
State number MovieLens-100K MovieLens-1M LastFM

D=1 1102 ± 5 23359 ± 100 13639± 34
D=2 2442 ± 23 36350 ± 134 18268± 41
D=3 3239 ± 40 42461 ± 200 24694± 45
D=4 4856± 54 54461 ± 389 29545± 50

Table 2: Runtime results of H4MFc.

1.4 Notation

Symbol Description

yti The item that user i rated at time t
αt
ij Missingness variable of user i toward item j at time t
St User intent (state) at time t
Pij User preference of user i toward item j
µt
j Prior probability of St for item j
at, bt Beta priors of St

Ui, Vj User-specific and item-specific latent feature factors
IK The identity matrix of dimension K
λu, λv, λy Regularization parameters for U, V, Y
λInner, λOuter The scale parameters for update of item constraints

σSt

j The occurrence probability of item j under St

ωSt

j The occurrence probability of item j
that is “triggered” by St

Table 3: Notation

2


