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Abstract

We propose and study the known-compensation multi-armed bandit (KCMAB)
problem, where a system controller offers a set of arms to many short-term players
for T steps. In each step, one short-term player arrives at the system. Upon
arrival, the player aims to select an arm with the current best average reward and
receives a stochastic reward associated with the arm. In order to incentivize players
to explore other arms, the controller provide proper payment compensations to
players. The objective of the controller is to maximize the total reward collected by
players while minimizing the total compensation. We first provide a compensation
lower bound Θ(

∑
i

∆i log T
KLi

), where ∆i and KLi are the expected reward gap
and the Kullback-Leibler (KL) divergence between distributions of arm i and
the best arm, respectively. We then analyze three algorithms for solving the
KCMAB problem, and obtain their regrets and compensations. We show that the
algorithms all achieve O(log T ) regret and O(log T ) compensation that match the
theoretical lower bounds. Finally, we present experimental results to demonstrate
the performance of the algorithms.

1 Introduction

Multi-armed bandit (MAB) is a game that lasts for an unknown time horizon T [4, 17]. In each time
slot, the controller pulls one out ofN arms, and pulling different arms results in different feedbacks. In
the stochastic MAB model [12], feedbacks from each single arm follow a corresponding distribution,
which is unknown to the controller. These feedbacks are random variables independent of any other
events. After pulling the arm, the controller collects a reward that depends on the feedback. The
controller aims to maximize the sum of rewards during the game by choosing a proper arm to pull
in each time slot, and the decision can depend on all available information, i.e., past chosen arms
and feedbacks. The common metric for evaluating the performance of a policy is the value of regret,
defined as the expected difference between the controller’s reward and pulling an arm that generates
the largest expected reward.

The MAB formulation models the trade-off between exploration and exploitation, where exploration
concerns finding the potential best arms, but can result in pulling sub-optimal arms, while exploitation
aims at choosing arms with the current best performance and can lose reward if that arm is in
fact sub-optimal. Thus, optimizing this trade-off is very important for any controller seeking to
minimize regret. However, in many real-world applications, arms are not pulled by the controller
concerning long-term performance. Instead, actions are taken by short-term players interested in
optimizing their instantaneous reward. In this case, an important means is to provide monetary
compensations to players, so that they act as if they are pulling arms on behalf of the controller, to
jointly minimize regret, e.g., [8]. This is precisely our focus in this paper, i.e., we aim to design an
efficient incentivizing policy, so as to minimize regret while not giving away too much compensation.
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As a concrete example, consider the scenario where an e-commerce website recommends goods to
consumers. When a consumer chooses to purchase a certain good, he receives the reward of that
good. The website similarly collects the same reward as a recognition of the recommendation quality.
In this model, the website acts as a controller that decides how to provide recommendations. Yet,
the actual product selection is made by consumers, who are not interested in exploration and will
choose to optimize their reward greedily. However, being a long-term player, the website cares more
about maximizing the total reward throughout the game. As a result, he needs to devise a scheme to
influence the choices of short-term consumers, so that both the consumers and website can maximize
their benefits. One common way to achieve this goal in practice is that the website offers customized
discounts for certain goods to consumers, i.e., by offering a compensation to pay for part of the goods.
In this case, each customer, upon arrival, will choose the good with largest expected reward plus
the compensation. The goal of the e-commerce site is to find an optimal compensation policy to
minimize his regret, while not spending too much additional payment.

It is important to notice the difference between regret and compensation. In particular, regret comes
from pulling a sub-optimal arm, while compensation comes from pulling an arm with poor past
behavior. For example, consider two arms with expected rewards 0.9 for arm 1 and 0.1 for arm 2.
Suppose in the first twenty observations, arm 1 has an empirical mean 0.1 but arm 2 has an empirical
mean 0.9. Then, in the next time slot, pulling arm 2 will cause regret 0.8, since its expected gain is 0.8
less than arm 1. But in a short-term player’s view, arm 2 behaves better than arm 1. Thus, pulling arm
2 does not require any compensation, while pulling arm 1 needs 0.8 for compensation. As a result,
the two measures can behave differently and require different analysis, i.e., regret depends heavily on
learning the arms well, while compensation is largely affected by how the reward dynamics behaves.

There is a natural trade-off between regret and compensation. If one does not offer any compensation,
the resulting user selection policy is greedy, which will lead to a Θ(T ) regret. On the other hand, if
one is allowed to have arbitrary compensation, one can achieve anO(log T ) regret with many existing
algorithms. The key challenge in obtaining the best trade-off between regret and compensation lies
in that the compensation value depends on the random history. As a consequence, different random
history not only leads to different compensation value, but also results in different arm selection.
Moreover, in practice, the compensation budget may be limited, e.g., a company hopes to maximize
its total income which equals to reward subtracts compensation. These make it hard to analyze its
behavior.

1.1 Related works

The incentivized learning model has been investigated in prior works, e.g., [8, 14, 15]. In [8], the
model contains a prior distribution for each arm’s mean reward at the beginning. As time goes on,
observations from each arm update the posterior distributions, and subsequent decisions are made
based on posterior distributions. The objective is to optimize the total discounted rewards. Following
their work, [14] considered the case when the rewards are not discounted, and they presented an
algorithm to achieve regret upper bound of O(

√
T ). In [15], instead of a simple game, there is

a complex game in each time slot that contains more players and actions. These incentivization
formulations can model many practical applications, including crowdsourcing and recommendation
systems [6, 16].

In this paper, we focus on the non-Bayesian setting and consider non-discounted rewards. As pointed
out in [14], the definition of user expectation is different in this case. Specifically, in our setting, each
player selects arms based on their empirical means, whereas in the Bayesian setting, it is possible
for a player to also consider posterior distributions of arms for decision making. We propose three
algorithms for solving our problem, which adapt ideas from existing policies for stochastic MAB,
i.e., Upper Confidence Bound (UCB) [2, 9], Thompson Sampling (TS) [18] and ε-greedy [20]. These
algorithms guarantee O(log T ) regret upper bounds (match the regret lower bound Θ(log T ) [12]).

Another related bandit model is contextual bandit, where a context is contained in each time slot
[3, 5, 13]. The context is given before a decision is made, and the reward depends on the context. As
a result, arm selection also depends on the given context. In incentivized learning, the short-term
players can view the compensation as a context, and their decisions are influenced by the context.
However, different from contextual bandits, where the context is often exogenous and the controller
focuses on identifying the best arm under given contexts, in our case, the context is given by the
controller and itself is influenced by player actions. Moreover, the controller needs to pay for
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obtaining a desired context. What he needs is the best way to construct a context in every time slot,
so that the total cost is minimized.

In the budgeted MAB model, e.g., [7, 19, 21], players also need to pay for pulling arms. In this model,
pulling each arm costs a certain budget. The goal for budgeted MAB is to maximize the total reward
subject to the budget constraint. The main difference from our work is that in budgeted MAB, the
cost budget for pulling each arm is pre-determined and it does not change with the reward history. In
incentivized learning, however, different reward sample paths will lead to different costs for pulling
the same arm.

1.2 Our contributions

The main contributions of our paper are summarized as follows:

1. We propose and study the Known-Compensation MAB problem (KCMAB). In KCMAB, a
long-term controller aims to optimize the accumulated reward but has to offer compensation
to a set of short-term players for pulling arms. Short-term players, on the other hand, arrive at
the system and make greedy decisions to maximize their expected reward plus compensation.
The objective of the long-term controller is to design a proper compensation policy, so
as to minimize his regret with minimum compensation. KCMAB is a non-Bayesian and
non-discounted extension of the model in [8].

2. In KCMAB, subject to the algorithm having an o(Tα) regret for any α ∈ (0, 1), we provide
a Θ(log T ) lower bound for the compensation. This compensation lower bound has the
same order as the regret lower bound, which means that one cannot expect a compensation
to be much less than its regret, if the regret is already small.

3. We propose algorithms to solve the KCMAB problem and present their compensation
analysis. Specifically, we provide the analyses of compensation for the UCB policy, a
modified ε-greedy policy and a modified-TS policy. All these algorithms have O(log T )
regret upper bounds while using compensations upper bounded O(log T ), which matches
the lower bound (in order).

4. We provide experimental results to demonstrate the performance of our algorithms. In
experiments, we find that the modified TS policy behaves better than UCB policy, while
the modified ε-greedy policy has regret and compensation slightly larger than those under
the modified-TS policy. We also compare the classic TS algorithm and our modified-TS
policy. The results show that our modification is not only effective in analysis, but also
impactful on actual performance. Our results also demonstrate the trade-off between regret
and compensation.

2 Model and notations

In the Known-Compensation Multi-Armed Bandit (KCMAB) problem, a central controller has N
arms {1, · · · , N}. Each arm i has a reward distribution denoted by Di with support [0, 1] and mean
µi. Without loss of generality, we assume 1 ≥ µ1 > µ2 ≥ · · ·µN ≥ 0 and set ∆i = µ1 − µi for all
i ≥ 2. The game is played for T time steps. In each time slot t, a short-term player arrives at the
system and chooses an arm a(t) to pull. After the player pulls arm a(t), the player and the controller
each receive a reward drawn from the distribution Da(t), denoted by Xa(t)(t) ∼ Da(t), which is an
independent random variable every time arm a(t) is pulled.

Different from the classic MAB model, e.g., [12], where the only control decision is arm selection,
the controller can also choose to offer a compensation to a player for pulling a particular arm, so
as to incentivize the player to explore an arm favored by the controller. We denote the offered
compensation by c(t) = ca(t)(t), and assume that it can depend on all the previous information,
i.e., it depends on Ft−1 = {(a(τ), X(τ), c(τ))|1 ≤ τ ≤ t − 1}. Each player, if he pulls arm i at
time t, collects income µ̂i(t) + ci(t), where µ̂i(t) , Mi(t)/Ni(t) is the empirical mean reward
of arm i, with Ni(t) =

∑
τ<t I[a(τ) = i] being the total number of times for pulling arm i and

Mi(t) =
∑
τ<t I[a(τ) = i]X(t) being the total reward collected. Each player is assumed to greedily

choose the arm i = argmaxj{µ̂j(t) + cj(t)}.
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The long-term controller, on the other hand, concerns about the expected total reward. Following the
MAB tradition, we define the following total regret:

Reg(T ) = T max
i
µi −Rew(T ) = Tµ1 −Rew(T ),

where Rew(T ) denotes the expected total reward that the long-term controller can obtain until time
horizon T . We then use Comi(T ) = E

[∑T
τ=1 I[a(τ) = i]c(τ)

]
to denote the expected compensa-

tion paid for arm i, and denote Com(T ) =
∑
i Comi(T ) the expected total compensation.

It is known from [12] that Reg(T ) has a lower bound of Ω(
∑N
i=2

∆i log T
KL(Di,D1) ), where KL(P,Q)

denotes the Kullback-Leibler (KL)-divergence between distributions P and Q, even when a single
controller is pulling arms for all time. Thus, our objective is to minimize the compensation while
keeping the regret upper bounded by O(

∑N
i=2

∆i log T
KL(Di,D1) ).

Note that in the non-Bayesian model, if there are no observations for some arm i, players will have
zero knowledge about its mean reward and they cannot make decisions. Thus, we assume without
loss of generality that in the first N time slots of the game, with some constant compensation, the
long-term controller can control the short-term players to choose all the arms once. This assumption
does not influence the results in this paper.

In the following, we will present our algorithms and analysis. Due to space limitation, all complete
proofs in this paper are deferred to the supplementary file. We only provide proof sketches in the
main text.

3 Compensation lower bound

In this section, we first derive a compensation lower bound, subject to the constraint that the algorithm
guarantees an o(Tα) regret for any α ∈ (0, 1). We will make use of the following simple fact to
simplify the computation of compensation at every time slot.
Fact 1. If the long-term controller wants a short-term player to choose arm i in time slot t, the
minimum compensation he needs to pay is ci(t) = maxj µ̂j(t)− µ̂i(t).

With Fact 1, we only need to consider the case ci(t) = maxj µ̂j(t)− µ̂i(t) for each arm i.
Theorem 1. In KCMAB, if an algorithm guarantees an o(Tα) regret upper bound for any fixed
T and any α ∈ (0, 1), then there exist examples of Bernoulli Bandits, i.e., arms having reward 0

or 1 every time, such that the algorithm must pay Ω
(∑N

i=2
∆i log T

KL(Di,D1)

)
for compensation in these

examples.

Proof Sketch: Suppose an algorithm achieves an o(Tα) regret upper bound for any α ∈ (0, 1). We
know that it must pull a sub-optimal arm i for Ω

(
log T

KL(Di,D1)

)
times almost surely [12]. Now denote

ti(k) the time slot (a random variable) that we choose arm i for the k-th time. We see that one needs
to pay E[maxj µ̂j(ti(k))− µ̂i(ti(k))] ≥ E[µ̂1(ti(k))]− E[µ̂i(ti(k))] for compensation in that time
slot. By definition of ti(k) and the fact that all rewards are independent with each other, we always
have E[µ̂i(ti(k))] = µi.

It remains to bound the value E[µ̂1(ti(k))]. Intuitively, when µ1 is large, E[µ̂1(ti(k))] cannot be
small, since those random variables are with mean µ1. Indeed, when µ1 > 0.9 and D1 is a Bernoulli
distribution, one can prove that E[µ̂1(ti(k))] ≥ µ1

2 − 2δ(T ) with a probabilistic argument, where
δ(T ) converges to 0 as T goes to infinity. Thus, for large µ1 and small µ2 (so are µi for i ≥ 2),
we have that E[µ̂1(ti(k))] − µi = Ω(µ1 − µi) holds for any i and k ≥ 2. This means that the
compensation we need to pay for pulling arm i once is about Θ(µ1 − µi) = Ω(∆i). Thus, the total
compensation Ω

(∑N
i=2

∆i log T
KL(Di,D1)

)
. �

4 Compensation upper bound

In this section, we propose three algorithms that can be applied to solve the KCMAB problem and
present their analyses. Specifically, we consider the Upper Confidence Bound (UCB) Policy [2], and
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1: for t = 1, 2, · · · , N do
2: Choose arm a(t) = t.
3: end for
4: for t = N + 1, · · · do
5: For all arm i, compute ri(t) =

√
2 log t
Ni(t)

and ui(t) = µ̂i(t) + ri(t)

6: Choose arm a(t) = argmaxi ui(t) (with compensation maxj µ̂j(t)− µ̂a(t)(t))
7: end for

Algorithm 1: The UCB algorithm for KCMAB.

propose a modified ε-Greedy Policy and a modified-Thompson Sampling Policy. Note that while the
algorithms have been extensively analyzed for their regret performance, the compensation metric is
significantly different from regret. Thus, the analyses are different and require new arguments.

4.1 The Upper Confidence Bound policy

We start with the UCB policy shown in Algorithm 1. In the view of the long-term controller, Algorithm
1 is the same as the UCB policy in [2], and its regret has been proven to be O

(∑N
i=2

log T
∆i

)
. Thus,

we focus on the compensation upper bound, which is shown in Theorem 2.
Theorem 2. In Algorithm 1, we have that

Com(T ) ≤
N∑
i=2

16 log T

∆i
+

2Nπ2

3

Proof Sketch: First of all, it can be shown that the each sub-optimal arm is pulled for at most 8
∆2

i
log T

times in Algorithm 1 with high probability. Since in every time slot t the long-term controller chooses
the arm a(t) = argmaxj µ̂j(t) + rj(t), we must have µ̂a(t)(t) + ra(t)(t) = maxj(µ̂j(t) + rj(t)) ≥
maxj µ̂j(t). This implies that the compensation is at most ra(t)(t). Moreover, if arm a(t) has been
pulled the maximum number of times, i.e., Na(t)(t) = maxj Nj(t), then ra(t)(t) = minj rj(t) (by
definition). Thus, µ̂a(t)(t) = maxj µ̂j(t), which means that the controller does not need to pay any
compensation.

Next, for any sub-optimal arm i, with high probability, the compensation that the long-term controller
pays for it can be upper bounded by:

Comi(T ) ≤ E

Ni(T )∑
τ=1

√
2 log T

τ

 ≤ E
[√

8Ni(T ) log T
] (a)

≤
√

8E[Ni(T )] log T ≤ 8 log T

∆i

Here the inequality (a) holds because
√
x is concave. As for the optimal arm, when N1(t) ≥∑N

i=2
8 log T

∆2
i

, with high probability N1(t) = maxj Nj(t). Thus, the controller does not need to pay

compensation in time slots with a(t) = 1 and N1(t) ≥
∑N
i=2

8 log T
∆2

i
. Using the same argument,

the compensation for arm 1 is upper bounded by Com1(T ) ≤
∑N
i=2

8 log T
∆i

with high probability.

Therefore, the overall compensation upper bound is given by Com(T ) ≤
∑N
i=2

16 log T
∆i

with high
probability. �

4.2 The modified ε-greedy policy

The second algorithm we propose is a modified ε-greedy policy, whose details are presented in
Algorithm 2. The modified ε-greedy algorithm, though appears to be similar to the classic ε-greedy
algorithm, has a critical difference. In particular, instead of randomly choosing an arm to explore,
we use the round robin method to explore the arms. This guarantees that, given the number of total
explorations, each arm will be explored a deterministic number of times. This facilitates the analysis
for compensation upper bound.

In the regret analysis of the ε-greedy algorithm, the random exploration ensures that at time slot t,
the expectation of explorations on each arm is about ε

N log t. Thus, the probability that its empirical
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1: Input: ε,
2: for t = 1, 2, · · · , N do
3: Choose arm a(t) = t.
4: end for
5: ae ← 1
6: for t = N + 1, · · · do
7: With probability min{1, εt}, choose arm a(t) = ae and set ae ← (ae mod N) + 1 (with

compensation maxj µ̂j(t)− µ̂a(t)(t)).
8: Else, choose the arm a(t) = argmaxi µ̂i(t).
9: end for

Algorithm 2: The modified ε-greedy algorithm for KCMAB.

mean has a large error is small. In our algorithm, the number of explorations of each single arm is
almost the same as classic ε-greedy algorithm in expectation (with only a small constant difference).
Hence, adapting the analysis from the ε-greedy algorithm gives the same regret upper bound, i.e.
O(
∑N
i=2

∆i log T
∆2

2
) when ε = cN

∆2
2

.

Next, we provide a compensation upper bound for our modified ε-greedy algorithm.

Theorem 3. In Algorithm 2, if we have ε = cN
∆2

2
, then

Com(T ) ≤
N∑
i=2

c∆i log T

∆2
2

+
N2

2∆2

√
c log T . (1)

Proof Sketch: Firstly, our modified ε-greedy algorithm chooses the arm with the largest empirical
mean in non-exploration steps. Thus, we only need to consider the exploration steps, i.e., steps
during which we choose to explore arms according to round-robin. Let tεi (k) be the time slot that we
explore arm i for the k-th time. Then the compensation the controller has to pay in this time slot is
E[maxj µ̂j(t

ε
i (k))− µ̂i(tεi (k))].

Since the rewards are independent of whether we choose to explore, one sees that E[µ̂i(t
ε
i (k))] = µi.

Thus, we can decompose E[maxj µ̂j(t
ε
i (k))− µ̂i(tεi (k))] as follows:

E[max
j
µ̂j(t

ε
i (k))− µ̂i(tεi (k))] = E[max

j
(µ̂j(t

ε
i (k))− µi)]

≤ E[max
j

(µ̂j(t
ε
i (k))− µj)] + E[max

j
(µj − µi)]. (2)

The second term in (2) is bounded by ∆i = µ1 − µi. Summing over all these steps and all arms, we
obtain the first term

∑N
i=2

c∆i log T
∆2

2
in our bound (1).

We turn to the first term in (2), i.e., E[maxj(µ̂j(t
ε
i (k))− µj)]. We see that it is upper bounded by

E[max
j

(µ̂j(t
ε
i (k))− µj)] ≤ E[max

j
(µ̂j(t

ε
i (k))− µj)+] ≤

∑
j

E[(µ̂j(t
ε
i (k))− µj)+]

where (∗)+ = max{∗, 0}. When arm i has been explored k times (line 7 in Algorithm 2), we know
that all other arms have at least k observations (in the first N time slots, there is one observation for
each arm). Hence, E[(µ̂j(t

ε
i (k))− µj)+] = 1

2E[|µ̂j(tεi (k))− µj |] ≤ 1
4
√
k

(the equality is due to the
fact that E[|x|] = 2E[x+] if E[x] = 0).

Suppose arm i is been explored in time set Ti = {tεi (1), · · · }. Then,∑
k≤|Ti|

E[max
j

(µ̂j(t
ε
i (k))− µj)+] ≤

∑
k≤|Ti|

N

4
√
k
≤
N
√
|Ti|

2

Since E[|Ti|] = c
∆2

2
log T , we can bound the first term in (2) as N2√c log T

2∆2
. Summing this with∑N

i=2
c∆i log T

∆2
2

above for the second term, we obtain the compensation upper bound in (1). �
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1: Init: αi = 1, βi = 1 for each arm i.
2: for t = 1, 2, · · · , N do
3: Choose arm a(t) = t and receive the observation X(t).
4: Update(αa(t), βa(t), X(t))
5: end for
6: for t = N + 1, N + 3, · · · do
7: For all i sample values θi(t) from Beta distribution B(αi, βi);
8: Play action a1(t) = argmaxi µ̂i(t), get the observation X(t). Update(αa1(t), βa1(t), X(t))
9: Play action a2(t+1) = argmaxi θi(t) (with compensation maxj µ̂j(t+1)− µ̂a2(t+1)(t+1)),

receive the observation X(t+ 1). Update(αa2(t+1), βa2(t+1), X(t+ 1))
10: end for

Algorithm 3: The Modified Thompson Sampling Algorithm for KCMAB.

1: Input: αi, βi, X(t)
2: Output: updated αi, βi
3: Y (t)← 1 with probability X(t), 0 with probability 1−X(t)
4: αi ← αi + Y (t); βi ← βi + 1− Y (t)

Algorithm 4: Procedure Update

4.3 The Modified Thompson Sampling policy

The third algorithm we propose is a Thompson Sampling (TS) based policy. Due to the complexity
of the analysis for the traditional TS algorithm, we propose a modified TS policy and derive its
compensation bound. Our modification is motivated by the LUCB algorithm [10]. Specifically,
we divide time into rounds containing two time steps each, and pull not only the arm with largest
sample value, but also the arm with largest empirical mean in each round. The modified TS policy is
presented in Algorithm 3, and we have the following theorem about its regret and compensation.
Theorem 4. In Algorithm 3, we have

Reg(T ) ≤
∑
i

2∆i

(∆i − ε)2
log T +O

(
N

ε4

)
+ F1(µ)

for some small ε < ∆2 and F1(µ) does not depend on (T, ε). As for compensation, we have:

Com(T ) ≤
∑
i

8

∆i − ε
log T +N log T +O

(
N

ε4

)
+ F2(µ)

where F2(µ) does not depend on (T, ε) as well.

Proof Sketch: In round (t, t+ 1), we assume that we first run the arm with largest empirical mean
on time slot t and call t an empirical step. Then we run the arm with largest sample on time slot t+ 1
and call t+ 1 a sample step.

We can bound the number of sample steps during which we pull a sub-optimal arm, using existing
results in [1], since all sample steps form an approximation of the classic TS algorithm. Moreover,
[11] shows that in sample steps, the optimal arm is pulled for many times (at least tb at time t with a
constant b ∈ (0, 1)). Thus, after several steps, the empirical mean of the optimal arm will be accurate
enough. Then, if we choose to pull sub-optimal arm i during empirical steps, arm i must have an
inaccurate empirical mean. Since the pulling will update its empirical mean, it is harder and harder
for the arm’s empirical mean to remain inaccurate. As a result, it cannot be pulled a lot of times
during the empirical steps as well.

Next, we discuss how to bound its compensation. It can be shown that with high probability, we

always have |θi(t) − µ̂i(t)| ≤ ri(t), where ri(t) =
√

2 log t
Ni(t)

is defined in Algorithm 1. Thus, we
can focus on the case that |θi(t) − µ̂i(t)| ≤ ri(t) for any i and t. Note that we do not need to pay
compensation in empirical steps. In sample steps, suppose we pull arm i and the largest empirical
mean is in arm j 6= i at the beginning of this round. Then, we need to pay maxk µ̂k(t+1)− µ̂i(t+1),
which is upper bounded by µ̂j(t) − µ̂i(t) + (µ̂j(t + 1) − µ̂j(t))+ ≤ µ̂j(t) − µ̂i(t) + 1

Nj(t) (here

7



0 2000 4000 6000 8000 10000

T

0

50

100

150

200

250

300

350

R
eg

re
t/C

om
pe

ns
at

io
n

UCB-R
UCB-C
Modified-TS-R
Modified-TS-C
Epsilon-Greedy-R
Epsilon-Greedy-C

Figure 1: Regret and Compensa-
tion of Three policies.
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Figure 2: Regret and Compensa-
tion of TS and modified-TS.
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Figure 3: Regret and Compensa-
tion of modified ε-greedy.

µ̂i(t+ 1) = µ̂i(t)). As θi(t) ≥ θj(t), we must have µ̂i(t) + ri(t) ≥ θi(t) ≥ θj(t) ≥ µ̂j(t)− rj(t),
which implies µ̂j(t)−µ̂i(t) ≤ ri(t)+rj(t). Thus, what we need to pay is at most ri(t)+rj(t)+ 1

Nj(t)

if i 6= j, in which case we can safely assume that we pay rj(t) + 1
Nj(t) during empirical steps, and

ri(t) during sample steps.

For an sub-optimal arm i, we have Comi(T ) ≤
∑
i

4
∆i−ε log T +O( 1

ε4 )+F1(µ)+ log T (summing
over ri(t) gives the same result as in the UCB case, and summing over 1

Ni(t)
is upper bounded

by log T ). As for arm 1, when a1(t) = a2(t + 1) = 1, we do not need to pay r1(t) twice. In
fact, we only need to pay at most 1

N1(t) . Then, the number of time steps that a1(t) = a2(t +

1) = 1 does not happen is upper bounded by
∑N
i=2

(
2

(∆i−ε)2 log T
)

+ O
(
N
ε4

)
+ F1(µ), which is

given by regret analysis. Thus, the compensation we need to pay on arm 1 is upper bounded by∑
i

4
∆i−ε log T +O( 1

ε4 ) + F1(µ) + log T . Combining the above, we have the compensation bound
Com(T ) ≤

∑
i

8
∆i−ε log T +N log T +O( 1

ε4 ) + F2(µ). �

5 Experiments

In this section, we present experimental results for the three algorithms, i.e., the UCB policy, the
modified ε-greedy policy and the modified TS policy. We also compare our modified TS policy
with origin TS policy to evaluate their difference. In our experiments, there are a total of nine
arms with expected reward vector µ = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]. We run the game
for T = 10000 time steps. The experiment runs for 1000 times and we take the average over these
results. The “-R” represents the regret of that policy, and “-C” represents the compensation.

The comparison of the three policies in this paper is shown in Figure 1. We can see that modified-TS
performs best in both regret and compensation, compared to other algorithms. As for the modified
ε-greedy policy, when the parameter ε is chosen properly, it can also achieve a good performance. In
our experiment, we choose ε = 20.

In Figure 2, we see that modified-TS performs better than TS in both compensation and regret, which
means that our modification is effective. Figure 3 shows the different performance of the modified
ε-greedy policies with different ε values. Here we choose ε to be 10,15 and 20. From the experiments,
we see the trade-off between regret and compensation: low compensation leads to high regret, and
high compensation leads to low regret.

6 Conclusion

We propose and study the known-compensation multi-armed bandit (KCMAB) problem where
a controller offers compensation to incentivize players for arm exploration. We first establish a
compensation lower bound achieved by regret-minimizing algorithms. Then, we consider three
algorithms, namely, UCB, modified ε-greedy and modified TS. We show that all three algorithms
achieve good regret bounds, while keeping order-optimal compensation. We also conduct experiments
and the results validate our theoretical findings.
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Supplementary Material

The proofs of all lemmas are shown in the end of the sections they belong to.

A Proof of Theorem 1

Fact 2. (Theorem 2 in [12]) If an algorithm guarantees o(Tα) regret upper bound for any α > 0,
then for any ε > 0, we have:

lim
T→∞

Pr[Ni(t) ≥ (1− ε) log T

KL(Di, D1)
] = 1

Fact 2 means that we will pull arm i for at least (1 − ε) log T
KL(Di,D1) times almost surely, i.e. there

exists a function δ(T )→ 0 as T →∞ such that Pr[Ni(T ) ≥ (1− ε) log T
KL(Di,D1) ] ≥ 1− δ(T ).

Consider the time step when we pull arm i for the k-th time (2 ≤ k ≤ (1− ε) log T
KL(Di,D1) ), and we

use ti(k) to denote the random variable of this time slot. Since we may not pull arm i for k times
until time T , we suppose that the game lasts for infinite number of times, and ti(k) can be larger than
T . By the definition of ti(k), we must have E[µ̂i(ti(k))] = µi.

Then the compensation we need to pay for pulling arm i for the k-th time can be bounded as following:

Pr[ti(k) ≤ T ]E[c(ti(k))|ti(k) ≤ T ] = Pr[ti(k) ≤ T ]E[max
j
µ̂j(ti(k))− µ̂i(ti(k))|ti(k) ≤ T ]

≥ E[max
j
µ̂j(ti(k))− µ̂i(ti(k))]− Pr[ti(k) > T ] (3)

≥ E[max
j
µ̂j(ti(k))]− E[µ̂i(ti(k))]− δ(T ) (4)

≥ E[µ̂1(ti(k))]− E[µ̂i(ti(k))]− δ(T )

= E[µ̂1(ti(k))]− µi − δ(T ) (5)

Eq. (3) is because that maxj µ̂j(ti(k))− µ̂i(ti(k)) ≤ 1, and Eq. (4) is because that Pr[ti(k) > T ] ≤
δ(T ), which is given by Fact 2.

In Theorem 1, we suppose that D1 is a Bernoulli distribution, i.e. Pr[X1(t) = 1] = µ1 and
Pr[X1(t) = 0] = 1− µ1. Then we can use a 0-1 string s to represent the history of arm 1. In this
case µ̂1(ti(k)) = #(s)

|s| , where #(s) is the number of 1s in string s. To simplify the notations, we
use z − s to denote the string that removes prefix s from z, and s+ z to denote the string given by
adding prefix s to z.

We can thus rewrite E[µ̂1(ti(k))] as:

E[µ̂1(ti(k))] =
∑
s

p(s)
#(s)

|s|
,

where p(s) is the probability that at time slot ti(k), the history of arm 1 forms string s. Note that this
expectation is hard to evaluate, since all the arms are coupled due to the algorithms, which makes
µ̂1(ti(k)) dependent on ti(k).

We define two events as following: AL(s) is the event that the first |s| feedbacks of arm 1 form
string s, and BL(s) is the event that at time slot ti(k), the feedbacks of arm 1 form string s. Then
Pr[AL(s)] = P (s, µ1), where P (s, µ1) = µ

#(s)
1 (1− µ1)|s|−#(s), and Pr[BL(s)] = p(s).

In our model, we suppose that we pull each arm once in the first N time slots, then
∑
|s|=0 p(s) = 0,

which implies
∑
|s|>0 p(s) = 1, thus p is a probability distribution on all 0-1 strings. Since p is a

probability distribution, when the first |s| feedbacks of arm 1 form string s, there must be a string z
such that BL(z) happens and either z is prefix of s or s is prefix of z. Moreover, if z is prefix of s,
we still need the next |s| − |z| feedbacks from arm 1 form the string s− z. This means the following
equation holds:
AL(s) = ∪z:pre(z,|s|)=sBL(z)∪y∈sub(s) (BL(y)∩{The next |s|−|y| feedbacks form string s−y}),
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where pre(z, n) is the prefix of z with length n, and sub(s) = {pre(s, j)|1 ≤ j ≤ |s| − 1} is the set
that contains all prefixes of s but does not contain s itself.

For any s 6= z, we must have BL(s) ∩ BL(z) = ∅, thus

Pr[AL(s)] =
∑

z:pre(z,|s|)=s

Pr[BL(z)] +
∑

y∈sub(s)

Pr[BL(y) ∩ {The next |s| − |y| feedbacks forms string s− y}]

=
∑

z:pre(z,|s|)=s

p(z) +
∑

y∈sub(s)

p(y)P (s− y, µ1) (6)

Eq. (6) is because that the next |s| − |y| feedbacks are independent with event BL(y). From this
equation, we have P (s, µ1) =

∑
z:pre(z,|s|)=s p(z) +

∑
y∈sub(s) p(y)P (s− y, µ1).

To simplify the analysis, we construct pT from p by adding the probability of p(s) with s > T to
p(pre(s, T )):

pT (s) =


p(s) 1 ≤ |s| < T

p(s) +
∑
z:pre(z,T )=s p(z) |s| = T

0 |s| > T

This does not influence the Eq. (6) for all s with |s| ≤ T (the probability mass for strings longer than
T is included in its T -sized prefix). Thus P (s, µ1) =

∑
z:pre(z,|s|)=s p

T (z)+
∑
y∈sub(s) p

T (y)P (s−
y, µ1) still holds.

Now we can use pT to bound E[µ̂1(ti(k))] as:

E[µ̂1(ti(k))] =
∑
s

p(s)
#(s)

|s|
≥
∑
s

pT (s)
#(s)

|s|
− δ(T ) (7)

Here
∑
|s|>T p(s) ≤ δ(T ) holds by Fact 2 (∪|s|>TBL(s) implies Ni(T ) ≤ k ≤ (1− ε) log T

KL(Di,D1) ).

From pT , we can then build another qT as follows.

qT (s) =

{
pT (s)

P (s,µ1)−
∑

y∈sub(s) p
T (y)P (s−y,µ1)

if P (s, µ1)−
∑
y∈sub(s) p

T (y)P (s− y, µ1) > 0

1 if P (s, µ1)−
∑
y∈sub(s) p

T (y)P (s− y, µ1) = 0

One can check that qT (s) = 1 for any |s| = T and 0 ≤ qT (s) ≤ 1 for any 1 ≤ |s| < T .
Lemma 1. We can get the value of pT from qT by the following equation,

pT (s) = P (s, µ1)

|s|−1∏
j=1

(1− qT (pre(s, j)))qT (s) (8)

Lemma 1 means that every possible pT has a unique qT match and vice versa. Then we can
consider a set of qT (s) such that the corresponding pT (s) minimizes

∑
1≤|s|≤T p

T (s)#(s)
|s| . We write

emp(qT , µ1, T ) to denote the corresponding value
∑

1≤|s|≤T p
T (s)#(s)

|s| . Then for given qT , we can
use Algorithm 5 to compute emp(qT , µ1, T ).
Proposition 1. Algorithm 5 returns the value emp(qT , µ1, T ) correctly.

To find qT that minimizes emp(qT , µ1, T ), we introduce a Dynamic Programming policy as Al-
gorithm 6. It starts by setting f(s) = #(s)

|s| for all strings with |s| = T . After that, if all strings
s with |s| = k have their f(s), we start to consider s with |s| = k − 1. For any |s| = k − 1,
the DP policy will check whether it is good or not to stop at s, i.e. only if #(s)

|s| is smaller than
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1: Input: qT , µ1, T .
2: for s with |s| = T do
3: g(s)← #(s)

|s| .
4: end for
5: for t = T − 1, · · · , 1 do
6: for s with |s| = t do
7: g(s)← qT (s)#(s)

|s| + (1− qT (s))(µg(s+ "1") + (1− µ)g(s+ "0"))
8: end for
9: end for

10: emp(qT , µ1, T ) = µg("1") + (1− µ)g("0")
11: Output: emp(qT , µ1, T ).

Algorithm 5: Calculate emp(qT , µ1, T )

1: Input: µ1, T .
2: for a = 0, 1, · · · , T do
3: f(a, T − a)← a

T .
4: end for
5: for t = T − 1, · · · , 1 do
6: for a = 0, 1, · · · , t do
7: f(a, t− a)← min{at , µf(a+ 1, t− a) + (1− µ)f(a, t− a+ 1)}
8: end for
9: end for

10: f(0, 0) = µf(1, 0) + (1− µ)f(0, 1)
11: Output: DP (µ1, T ) = f(0, 0)

Algorithm 6: Dynamic Programming stopping policy

µ1f(s+ "1") + (1− µ1)f(s+ "0"), we choose to set qT (s) = 1 and f(s) = #(s)
|s| , otherwise we set

qT (s) = 0 and f(s) = µ1f(s+ "1") + (1− µ1)f(s+ "0").

Intuitively, the DP policy is the best one can do, which is shown in the following lemma.

Lemma 2. For any given qT , emp(qT , µ1, T ) ≥ DP (µ1, T ), where DP (µ1, T ) is the output value
of Algorithm 6.

Now from Eq. (7) and Lemma 2, we have:

E[µ̂1(ti(k))] ≥ DP (µ1, T )− δ(T ) (9)

Then we need a lower bound on DP (µ1, T ), which is given in the following lemma.

Lemma 3. For any µ1 ≥ 0.9 and T ≥ 1, we have DP (µ1, T ) ≥ µ1

2

From Lemma 3, Eq. (9) and Eq. (5), we know that when µ1 ≥ 0.9, 0.2 ≥ µ2 ≥ µ3 ≥ · · · ≥ µN ,
E[c(ti(k))] ≥ DP (µ1, T )− µi − 2δ(T ) ≥ ∆i

4 − 2δ(T ) for any i and 2 ≤ k ≤ (1− ε) log T
KL(Di,D1) .

Thus the compensation we need to pay is Ω(
∑N
i=2(∆i − 2δ(T )) log T

KL(Di,D1) ). When T → ∞, we

have δ(T )→ 0. Therefore, the compensation is lower bounded by Ω(
∑N
i=2

∆i log T
KL(Di,D1) ).

A.1 Proof of Lemma 1

We prove this lemma by induction.

For the strings s with |s| = 1, since there is no string in sub(s), we have qT (s) = pT (s)
P (s,µ1) by

definition of qT . Thus Eq. (8) holds.

If for all strings s with |s| ≤ k, Eq. (8) holds. Then consider a string s with |s| = k+ 1, we choose z
as the longest string in sub(s) such that qT (z) > 0.

12



If such z does not exist. Then by definition of qT (z), we know pT (z) = 0 for all z ∈ sub(s). Thus
we have P (s, µ1)

∏|s|−1
j=1 (1− qT (pre(s, j)))qT (s) = P (s, µ1)qT (s) = pT (s) holds.

When such z exists, let x = s− z, and then we have

P (s, µ1)

|s|−1∏
j=1

(1− qT (pre(s, j)))qT (s)

=

P (z, µ1)

|z|−1∏
j=1

(1− qT (pre(z, j)))

 (1− qT (z))qT (s)P (x, µ1)

=
pT (z)

qT (z)
(1− qT (z))qT (s)P (x, µ1) (10)

Eq. (10) is because that by induction, Eq. (8) holds for any |z| ≤ k.

If P (z, µ1) −
∑
y∈sub(z) p

T (y)P (z − y, µ1) = 0, then we must have pT (z) = 0, thus P (s, µ1) −∑
y∈sub(s) p

T (y)P (s−y, µ1) ≤ P (x, µ1)
(
P (z, µ1)−

∑
y∈sub(z) p

T (y)P (z − y, µ1)
)

= 0, which

means pT (s) = 0. On the other hand, P (z, µ1) −
∑
y∈sub(z) p

T (y)P (z − y, µ1) = 0 means
qT (z) = 1, thus Eq. (8) holds.

If P (z, µ1)−
∑
y∈sub(z) p

T (y)P (z − y, µ1) > 0, then

pT (z)

qT (z)
(1− qT (z))qT (s)P (x, µ1)

= pT (z)
1− qT (z)

qT (z)
qT (s)P (x, µ1)

= pT (z)

(
P (z, µ1)−

∑
y∈sub(z) p

T (y)P (z − y, µ1)

pT (z)
− 1

)
qT (s)P (x, µ1)

=

P (z, µ1)−
∑

y∈sub(z)

pT (y)P (z − y, µ1)− pT (z)

 qT (s)P (x, µ1)

=

P (s, µ1)−
∑

y∈sub(s)

pT (y)P (s− y, µ1)

 qT (s) (11)

= pT (s)

Eq. (11) is because that for all s′ ∈ sub(s) and |s′| > |z|, qT (s′) = 0 implies pT (s′) = 0.

By induction, we finish the proof of Lemma 1.

A.2 Proof of Lemma 2

We use induction to prove that emp(qT , µ1, T ) ≥ DP (µ1, T ).

For all s with size |s| = T , we can see that f(#(s), |s|−#(s)) = #(s)
|s| ≤ g(s), where f(#(s), |s|−

#(s)) is the value in Algorithm 6 with input µ1, T .

If for all s with size |s| = k, we have f(#(s), |s| −#(s)) ≤ g(s), then consider any s′ with size
|s′| = k − 1.

f(#(s′), |s′| −#(s′)) = min{#(s′)

|s′|
, µf(#(s) + 1, |s| −#(s)) + (1− µ)f(#(s), |s| −#(s) + 1)}
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≤ min{#(s′)

|s′|
, µg(s′ + "1") + (1− µ)g(s′ + "0")}

≤ g(s′)

Thus by induction, we have f(0, 1) ≤ g("0") and f(1, 0) ≤ g("1"), which means emp(qT , µ1, T ) ≥
DP (µ1, T ).

A.3 Proof of Lemma 3

We calculate this by summing over the difference between DP (µ1, T ) and DP (µ1, T + 1). Let
fµ1,T (a, b)− fµ1,T+1(a, b) = δµ1,T

a,b , where fµ,T (a, b) is the value of f(a, b) when inputting µ, T
into Algorithm 6.

First consider the case that a+ b = T , fµ1,T (a, b) = a
T , while fµ1,T+1(a, b) = min{ aT , µ1

a+1
T+1 +

(1− µ1) a
T+1}.

Since µ1
a+1
T+1 + (1 − µ1) a

T+1 = a+µ1

T+1 = a
T + µ1−a/T

T+1 = a
T + µ1T−a

T (T+1) . When a > µ1T , we have

δµ1,T
a,b = a−µ1T

T (T+1) ; otherwise δµ1,T
a,b = 0. Thus δµ1,T

a,b = 1
T (T+1) (a− µ1T )+.

Then we consider the case that a + b = t < T . By definition, fµ1,T (a, b) = min{at , µ1f
µ1,T (a +

1, b) + (1− µ1)fµ1,T (a, b+ 1)}. Thus

δµ1,T
a,b = fµ1,T (a, b)− fµ1,T+1(a, b)

= min{a
t
, µ1f

µ1,T (a+ 1, b) + (1− µ1)fµ1,T (a, b+ 1)}

−min{a
t
, µ1f

µ1,T+1(a+ 1, b) + (1− µ1)fµ1,T+1(a, b+ 1)}

≤ (µ1f
µ1,T (a+ 1, b) + (1− µ1)fµ1,T (a, b+ 1))

−(µ1f
µ1,T+1(a+ 1, b) + (1− µ1)fµ1,T+1(a, b+ 1)) (12)

= µ1δ
µ1,T
a+1,b + (1− µ1)δµ1,T

a,b+1

Eq. (12) is because of the fact that fµ1,T (a, b) ≥ fµ1,T+1(a, b) for any given (a, b).

This implies :

δµ1,T
0,0 ≤ µ1δ

µ1,T
1,0 + (1− µ1)δµ1,T

0,1

≤ µ2
1δ
µ1,T
2,0 + 2µ1(1− µ1)δµ1,T

1,1 + (1− µ1)2δµ1,T
0,2

≤
∑
a+b=3

(
3

a

)
µa1(1− µ1)bδµ1,T

a,b

≤ · · ·

≤
∑

a+b=T

(
T

a

)
µa1(1− µ1)bδµ1,T

a,b

= E[
1

T (T + 1)
(a− µ1T )+]

=
1

T (T + 1)
E[(a− µ1T )+]

The expectation is taken over a binomial distribution a ∼ Binomial(T, µ1).

Since E[a] = µ1T , we have that:

E[(a− µ1T )+] =
1

2
E[|a− µ1T |] ≤

1

2

√
E[(a− µ1T )2] =

1

2

√
Tµ1(1− µ1),
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which leads to the upper bound δµ1,T
0,0 ≤

√
µ1(1−µ1)

2(T+1)
√
T

.

Thus,

DP (µ1, T ) ≥ DP (µ1, 1)−
∞∑
T=1

√
µ1(1− µ1)

2(T + 1)
√
T

≥ µ1 −
√
µ1(1− µ1)

2

∞∑
T=1

1

T 3/2

≥ µ1 −
√
µ1(1− µ1)

2
(1 +

∫ ∞
1

1

T 3/2
dT )

= µ1 −
√
µ1(1− µ1)

2
(1 + 2)

= µ1 −
3
√
µ1(1− µ1)

2

When µ1 ≥ 0.9, 3
√
µ1(1−µ1)

2 ≤ 0.45, thus DP (µ1, T ) ≥ µ1 − 0.45 ≥ µ1

2 .

B Proof of Theorem 1 when T is unknown

This proof is suggested by an anonymous reviewer of our paper during the review process. We thank
the reviewer for the idea.
Proposition 2. In KCMAB, if an algorithm guarantees an o(Tα) regret upper bound for any T and

any α > 0, then the algorithm must pay Ω
(∑N

i=2
∆i log T

KL(Di,D1)

)
for compensation.

Choose N∗1 (ε) = 9
2∆2

2
log 9

ε∆2
2

, and N∗∗1 (ε) be the time step such that with probability 1 − ε
2 ,

N1(t) > t
2 for any t ≥ N∗∗1 (ε). Notice that N∗∗1 (ε) must exists since the algorithm has o(T ) regret

in expectation, and it does not depend on T .

Now choose T ∗1 (ε) = max{2N∗1 (ε), N∗∗1 (ε)}. Note that T ∗1 (ε) does not depend on T as well. The
probability that {∃t > T ∗1 (ε), µ̂1(t) < µ1 − ∆2

3 } happens can be upper bounded by:

Pr[∃t > T ∗1 (ε), µ̂1(t) < µ1 −
∆2

3
]

≤ Pr[N1(T ∗1 (ε)) ≤ N∗1 (ε)] + Pr[{N1(T ∗1 (ε)) > N∗1 (ε)} ∧ {∃t > T ∗1 (ε), µ̂1(t) < µ1 −
∆2

3
}]

≤ Pr[N1(T ∗1 (ε)) ≤ N∗1 (ε)] + Pr[∃n > N∗1 (ε) s.t. N1(t) = n, µ̂1(t) < µ1 −
∆2

3
]

≤ Pr[N1(T ∗1 (ε)) ≤ N∗1 (ε)] +
∑

n>N∗1 (ε)

(
Pr[N1(t) = n, µ̂1(t) < µ1 −

∆2

3
]

)
(13)

The first term in (13) has upper bound ε
2 by definition of N∗∗1 (ε) and T ∗1 (ε).

As for the second term in (13), notice that {N1(t) = n, µ̂1(t) < µ1 − ∆2

3 } implies the first n
feedbacks of arm 1 have an empirical mean less than µ1 − ∆2

3 . By Chernoff Bound, Pr[N1(t) =

n, µ̂1(t) < µ1− ∆2

3 ] ≤ exp(−2n∆2
2/9). Therefore

∑
n>N∗1 (ε) Pr[N1(t) = n, µ̂1(t) < µ1− ∆2

3 ] ≤
9

2∆2
2

exp(−2N∗1 (ε)∆2
2/9) ≤ ε

2 .

This means that with probability at least 1− ε, for any t > T ∗1 (ε), µ̂1(t) ≥ µ1 − ∆2

3 .

Similarly, for any sub-optimal arm i, we can find T ∗i (ε) such that with probability 1 − ε, µ̂i(t) ≤
µi + ∆2

3 for any t > T ∗1 (ε). The only difference in this argument is that we need to use Fact 2 instead
of the fact that the algorithm has o(T ) regret in expectation.
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Let T ∗(ε) = maxi T
∗
i (ε). We know that after T ∗(ε), with probability at least 1−Nε, pulling arm i

once needs at least µ̂1(t)− µ̂i(t) ≥ ∆i

3 for compensation.

Before time T ∗(ε), every arm can be pulled for at most T ∗(ε) time steps. As T goes to infinity, by
Fact 2, every sub-optimal arm i needs to be pulled for at least (1 − ε) log T

KL(Di,D1) times. Thus the

player needs to pay at least
(

(1− ε) log T
KL(Di,D1) − T

∗(ε)
)
× ∆i

3 for compensation on arm i until
time T .

Taking T going to infinity and setting ε = 1
2N , since T ∗(ε) does not depend on T , the total

compensation is

Ω(

N∑
i=2

∆i log T

KL(Di, D1)
)

C Proof of Theorem 2

After the first N time steps, every arm i has µ̂i(t) = Mi(t)/Ni(t).

Notice that we always choose the arm i with maximum value µ̂i(t)+ri(t). Thus the arm a(t) satisfies
the following inequality:

µ̂a(t)(t) + ra(t)(t) ≥ max
j
µ̂j(t) + rj(t) ≥ max

j
µ̂j(t)

This means that we need to pay at most ra(t)(t) for compensation.

For each sub-optimal arm i 6= 1, if it is chosen at time t, then we must have µ̂i(t) + ri(t) ≥
µ̂1(t) + r1(t). Since µ1 = µi + ∆i, we have:

µ̂i(t) + µ1 + 2ri(t) ≥ µi + ri(t) + µ̂1(t) + r1(t) + ∆i

This implies that one of the following three events must happen:

AUCBi (t) = {µ̂i(t) ≥ µi + ri(t)}
BUCB(t) = {µ1 ≥ µ̂1(t) + r1(t)}
CUCBi (t) = {2ri(t) ≥ ∆i}

Thus E[Ni(T )] ≤
∑T
t=1(Pr[AUCBi (t)] + Pr[BUCB(t)] + Pr[CUCBi (t)]).

Notice that ri(t) =
√

2 log t
Ni(t)

, then if Ni(t) > 8 log T
∆2

i
, event CUCBi (t) can not happen, which means∑T

t=1 Pr[CUCBi (t)] ≤ 8 log T
∆2

i
. As for events AUCBi (t) and BUCB(t), we have the following fact

given by Chernoff-Hoeffding’s inequality.
Fact 3. For any arm i, we have:

T∑
t=1

Pr[µ̂i(t) ≥ µi + ri(t)] ≤
1

t2

T∑
t=1

Pr[µ̂i(t) ≤ µi − ri(t)] ≤
1

t2

By Fact 3, we have
∑T
t=1(Pr[AUCBi (t)] + Pr[BUCB(t)]) ≤ π2

3 .

If arm i has been pulled for Ni(T ) times, we need to pay compensation for at most∑Ni(T )
k=1

√
2 log T
k ≤

√
8Ni(T ) log T , then

Comi(T ) ≤ ENi(T )

[√
8Ni(T ) log T

]
≤
√

8E[Ni(T )] log T ≤ 8 log T

∆i
+
π2

3
.
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As for arm 1, we can see that when N1(t) = maxiNi(t) and a(t) = 1, we do not need to pay
compensation. The reason is that µ̂1(t)+r1(t) ≥ µ̂i(t)+ri(t) and ri(t) ≥ r1(t) imply µ̂1(t) ≥ µ̂i(t).

Thus, let N ′1(T ) = maxi 6=1Ni(T ), we know that we only need to pay compensation for pulling arm
1 when N1(t) ≤ N ′1(T ).

Notice that we have E[N ′1(T )] ≤
∑
i 6=1 E[Ni(T )] ≤

∑
i6=1

8 log T
∆2

i
+ Nπ2

3 . Thus, the compensation
we need to pay on arm 1 satisfies

Com1(T ) ≤ EN ′1(T )

[√
8N ′1(T ) log T

]
≤
√

8E[N ′1(T )] log T ≤
∑
i6=1

8 log T

∆i
+
Nπ2

3
.

Summing over all sub-optimal arms and the optimal arm, in Algorithm 1, we have

Com(T ) =
∑
i

Comi(T ) ≤
N∑
i=2

16 log T

∆i
+

2Nπ2

3
.

D Proof for Theorem 3

Notice that only if we choose to explore arm j, we need to pay compensation. Now consider the
expected compensation we need to pay on exploring arm j for the k-th time, which can be written as
E[maxi(µ̂i(t

ε
j(k))− µ̂j(tεj(k)))].

Then we can have:

E[max
i

(µ̂i(t
ε
j(k))− µ̂j(tεj(k)))]

= E[max
i

(µ̂i(t
ε
j(k))− µi + µi − µj + µj − µ̂j(tεj(k)))] (14)

≤ E[max
i

(µ̂i(t
ε
j(k))− µi)] + E[max

i
(µi − µj)] + E[(µj − µ̂j(tεj(k)))]

= E[max
i

(µ̂i(t
ε
j(k))− µi)] + ∆j + E[(µj − µ̂j(tεj(k)))] (15)

= E[max
i

(µ̂i(t
ε
j(k))− µi)] + ∆j (16)

Eq. (15) is because that E[maxi(µi − µj)] = maxi(µi − µj) = µ1 − µj = ∆j , and Eq. (16) is
because that whether we choose to explore arm j are independent with the its observations.

Now we consider the value E[maxi(µ̂i(t)−µi)]. It is upper bounded by
∑
i E[(µ̂i(t)−µi)+]. When

j is explored for k times, we know every arm must have be chosen for at least k times. Notice that
these feedbacks are independent with whether we choose to explore or not. Thus, we have:

∑
i

E[(µ̂i(t
ε
j(k))− µi)+] =

1

2

∑
i

E[|µ̂i(tεj(k))− µi|]

≤ 1

2

∑
i

√
E[(µ̂i(tεj(k))− µi)2]

≤ 1

2

∑
i

√
1

4k

=
N

4
√
k

Suppose arm j has been explored for nj(T ) times until time T . Then

nj(T )∑
k=1

E[max
i

(µ̂i(t
ε
j(k))− µ̂j(tεj(k)))] ≤

nj(T )∑
k=1

(
N

4
√
k

+ ∆j

)
≤ nj(T )∆j +

N

2

√
nj(T )
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Notice that when ε = cN
∆2

2
, E[nj(T )] = c log T

∆2
2

, then E[nj(T )∆j + N
2

√
nj(T )] ≤ c∆j log T

∆2
2

+
N

2∆2

√
c log T . Thus the total compensation is upper bounded by:

N∑
i=2

c∆i log T

∆2
2

+
N2

2∆2

√
c log T

E Proof for Theorem 4

We first give four important lemmas, which come from the analysis of TS policy in previous works
[1, 11]. Their proofs can be modified slightly to work in our Algorithm 3.
Lemma 4. (Theorem 1 in [1]) In Algorithm 3, summing over all possible rounds (t, t+ 1), we have
that for all i 6= 1 and ε < ∆i:∑

(t,t+1)

Pr[a2(t+ 1) = i] =
2

(∆i − ε)2
log T +O

(
1

ε4

)
Lemma 5. (Proposition 1 in [11]) In Algorithm 3, summing over all possible rounds (t, t+ 1), we
have that ∑

(t,t+1)

Pr[N1(t) ≤ tb] ≤ C(µ)

holds for some constant b = b(µ) ∈ (0, 1).
Lemma 6. (Lemma 2 in [1]) In Algorithm 3, summing over all possible rounds (t, t+ 1), for any
i 6= 1, we have that ∑

(t,t+1)

Pr[a1(t) = i, µ̂i(t) ≥ µi +
∆i

2
] ≤ 4

∆2
i

+ 1

Lemma 7. In Algorithm 3,

∀i,Pr[|θi(t)− µ̂i(t)| ≥ ri(t)] ≤
1

t2

where ri(t) =
√

2 log t
Ni(t)

.

We do not provide proofs for Lemma 4, Lemma 5 and Lemma 6 since they are almost the same as in
[1] and [11]. As for Lemma 7, although the proof is similar, the statement is not the same. Thus we
provide its proof in the end of this section.

Firstly, we analyze the regret bound of Algorithm 3.

Lemma 4 shows that the regret during sample steps are bounded, now we come to the regret during
empirical steps.

We use the following four events to help our analysis:

ATSi (t) = {µ̂i(t) ≥ µi +
∆i

2
}

BTS(t) = {µ̂1(t) + r1(t) ≤ µ1}
CTSi (t) = {2r1(t) ≥ ∆i}
DTS(t) = {N1(t) > tb}

Then:∑
(t,t+1)

Pr[a1(t) = i] ≤
∑

(t,t+1)

Pr[ATSi (t) ∩ {a1(t) = i}] +
∑

(t,t+1)

Pr[BTS(t) ∩ {a1(t) = i}]

+
∑

(t,t+1)

Pr[CTSi (t) ∩ DTS(t) ∩ {a1(t) = i}] +
∑

(t,t+1)

Pr[¬DTS(t) ∩ {a1(t) = i}]

18



+
∑

(t,t+1)

Pr[¬ATSi (t) ∩ ¬BTS(t) ∩ ¬CTSi (t) ∩ {a1(t) = i}])

Lemma 6 shows that
∑

(t,t+1) Pr[ATSi (t) ∩ {a1(t) = i}] ≤ 4
∆2

i
+ 1. Using Fact 3,∑

(t,t+1) Pr[BTS(t) ∩ {a1(t) = i}] ≤
∑

(t,t+1) Pr[BTS(t)] ≤ π2

6 .

Then we consider t such that CTSi (t)∩DTS(t) happens. By definition, we can see that ∆i

2 ≤ r1(t) =√
2 log t
N1(t) ≤

√
2 log t
tb

. Thus there exists ti = f(i,µ) such that for all t ≥ ti, Pr[CTSi (t)∩DTS(t)] = 0.
This implies that:∑

(t,t+1)

Pr[CTSi (t) ∩ DTS(t) ∩ {a1(t) = i}] ≤
∑

(t,t+1)

Pr[CTSi (t) ∩ DTS(t)] ≤ ti

∑
(t,t+1) Pr[¬DTS(t) ∩ {a1(t) = i}] is upper bounded by Lemma 5, which is C(µ).

¬ATSi (t) ∩ ¬BTS(t) ∩ ¬CTSi (t) ∩ {a1(t) = i} cannot happen since under the first three events we
have:

µ̂1(t) > µ1 − r1(t) > µ1 −
∆i

2
= µi +

∆i

2
> µ̂i(t),

which contradict with {a1(t) = i}.

Thus, we have that
∑N
i=2

(∑
(t,t+1) Pr[a1(t) = i]

)
≤ N

(
1 + π2

6

)
+
∑N
i=2

(
4

∆2
i

+ ti

)
+ C(µ) =

F1(µ) for some function F1, and it is independent with time horizon T .

Adding the regret during sample steps, the total regret of Algorithm 3 is upper bounded by∑
i

2∆i

(∆i−ε)2 log T +O
(

1
ε4

)
+ F1(µ).

Now we consider the compensation. Notice that in empirical steps we always choose the arm with
the largest empirical mean, thus we do not need to pay any compensation in this time slot. Because
of this, we can focus on the compensation in sample steps. To do so, we define a event ETS(t) as
following:

ETS(t) = {∀i, |θi(t)− µ̂i(t)| ≤ ri(t)}

Then the total compensation can be written as

E[
∑

(t,t+1):t+1<T

ci(t+1)] ≤ E[
∑

(t,t+1):t+1<T

I[ETS(t)]ci(t+1)]+E[
∑

(t,t+1):t+1<T

I[¬ETS(t)]ci(t+1)]

(17)

Lemma 7 shows that E[
∑

(t,t+1):t+1<T I[¬ETS(t)]] ≤ Nπ2

6 , thus the second term in Eq. (17) has

upper bound Nπ2

6 as well.

Now we consider the first term in Eq. (17). Here the compensation we need to pay is ci(t + 1) =
maxj µ̂j(t+ 1)− µ̂a2(t+1)(t+ 1).

If a1(t) = a2(t+ 1) = i and µ̂i(t+ 1) ≥ µ̂i(t), we have ci(t+ 1) = 0 < 1
Ni(t)

.

If a1(t) = a2(t + 1) = i but µ̂i(t + 1) < µ̂i(t), then we know that maxj µ̂j(t + 1) ≤ µ̂i(t), thus
ci(t+ 1) ≤ µ̂i(t)− µ̂i(t+ 1) ≤ 1

Ni(t)
.

If a1(t) = k, a2(t + 1) = i and k 6= i, then ci(t + 1) = maxj µ̂j(t + 1) − µ̂i(t + 1) ≤ µ̂k(t) +
1

Nk(t) − µ̂i(t).

Thus, if a1(t) = a2(t+ 1), we need to pay at most 1
Ni(t)

for compensation. Otherwise, we need to
pay at most (µ̂a1(t)(t)− µ̂a2(t+1)(t)) + 1

Na1(t)(t)
.
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Notice that under event E(t), µ̂a2(t+1)(t) + ra2(t+1)(t) ≥ θa2(t+1)(t) ≥ θa1(t)(t) ≥ µ̂a1(t)(t) −
ra1(t)(t). Thus if a1(t) 6= a2(t+1), ci(t+1) ≤ ra1(t)(t)+ra2(t+1)(t)+ 1

Na1(t)(t)
. Then we can treat

the total compensation as following: we first pay ra1(t(t) + 1
Na1(t)(t)

on arm a1(t) in the empirical
step, and then pay ra2(t+1)(t) on arm a2(t+ 1) in the sample step. By this method, we can upper

bound the compensation we need to pay on pulling sub-optimal arm i as
∑Ni(T )
τ=1

√
2 log T
τ + 1

τ ≤
log T +

√
8Ni(T ) log T under the event ETS(t).

By regret analysis, E[Ni(T )] ≤ 2
(∆i−ε)2 log T + O

(
1
ε4

)
+ ti + 4

∆2
i

+ π2+6
6 + C(µ), thus the

compensationComi(T ) is upper bounded by 4
∆i−ε log T+O

(
1
ε4

)
+ti+

4
∆2

i
+ π2+6

6 +C(µ)+log T .

As for arm 1, when a1(t) = a2(t+1) = 1, we only need to pay 1
N1(t) for compensation. The expected

number of time steps that we do not have a1(t) = a2(t) = 1 is at most
∑N
i=2

2
(∆i−ε)2 log T +F (µ)+

O
(
N
ε4

)
, which is given by the regret analysis. This means that the compensation on pulling arm 1 is

upper bounded by
∑N
i=2

4
∆i−ε log T + F1(µ) +O

(
N
ε4

)
+ log T .

Thus, the first term in Eq. (17) has upper bound
∑N
i=2

8
∆i−ε log T + F1(µ) +O

(
N
ε4

)
+N log T +∑N

i=2

(
ti + 4

∆2
i

+ π2+6
6 + C(µ)

)
. After adding the upper bound Nπ2

6 of the second term and setting

F2(µ) = F1(µ) + Nπ2

6 +
∑N
i=2

(
ti + 4

∆2
i

+ π2+6
6 + C(µ)

)
, we have that

Com(T ) ≤
∑
i

8

∆i − ε
log T +N log T +O

(
N

ε4

)
+ F2(µ).

E.1 Proof of Lemma 7

Since θi(t) only depends on the values of (αi(t), βi(t)) but is independent of the random history,
we can fix the pair (αi(t), βi(t)) to prove the inequality, and then the inequalities hold also for
(αi(t), βi(t)) as random variables.

Pr[θi(t) > µ̂i(t) + ri(t)] = 1− FBetaαi(t),βi(t)(µ̂i(t)+ri(t))

= 1− (1− FBαi(t)+βi(t)−1,µ̂i(t)+ri(t)
(αi(t)− 1)) (18)

= FBαi(t)+βi(t)−1,µ̂i(t)+ri(t)
(αi(t)− 1)

≤ FBαi(t)+βi(t)−1,µ̂i(t)+ri(t)
(µ̂i(t)(αi(t) + βi(t)− 1))

≤ exp(−(αi(t) + βi(t)− 1)KL(µ̂i(t), µ̂i(t) + ri(t))) (19)

≤ exp(−Ni(t)ri(t)
2

2
) (20)

≤ 1

t2

Eq. (18) is given by the following Beta-Binomial Trick (Fact 4), Eq. (19) is given by Chernoff-
Hoeffding Inequality, and Eq. (20) follows the fact that KL(x, y) ≥ |x−y|

2

2 .

Fact 4. (Beta-Binomial Trick) Let FBetaa,b (x) be the cdf of Beta distribution with parameters (a, b),
let FBn,p(x) be the cdf of Binomial distribution with parameters (n, p). Then for any positive integers
(a, b), we have

FBetaa,b (x) = 1− FBa+b−1,x(a− 1)
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