
Algorithm 1 Improved Bourgain Embedding
Input: A finite metric space (Y, d).
Output: A mapping f : Y ! RO(log |Y |).
//Bourgain Embedding:
Initialization: m |Y |, t O(logm), and 8i 2 [dlogme], j 2 [t], Si,j ;.
for i = 1! dlogme do

for j = 1! t do
For each x 2 Y, independently choose x in Si,j , i.e. Si,j = Si,j [{x} with probability 2�i

.

end for
end for
Initialize g : Y ! Rdlogme·t

.

for x 2 Y do
8i 2 [dlogme], j 2 [t], set the ((i� 1) · t+ j)-th coordinate of g(x) as d(x, Si,j).

end for
//Johnson-Lindenstrauss Dimentionality Reduction:
Let d = O(logm), and let G 2 Rd⇥(dlogme·t) be a random matrix with entries drawn from i.i.d. N (0, 1).
Let h : Rdlogme·t ! Rd satisfy 8x 2 Rdlogme·t

, h(x) G · x.
//Rescaling:
Let � = minx,y2Y :x 6=y

kh(g(x))�h(g(y))k2
d(x,y) .

Initialize f : Y ! Rd
. For x 2 Y, set f(x) h(g(x))/�.

Return f .

A Algorithm of Improved Bourgain Embedding

Algorithm 1 outlines our randomized algorithm that computes the improved Bourgain embedding
with high probability. To embed a finite metric space (Y, d) into `2 space, Algorithm 1 takes
O(m2 · s + m

2 log2 m) running time, where m = |Y | is the size of Y , and s is the running time
needed to compute a pairwise distance d(x, y) for any x, y 2 Y.

B Proof of Corollary 2

Here we prove the Corollary 2 introduced in Section 3.3. First, we recall the Johnson-Lindenstrauss
lemma [38].
Theorem 6 (Johnson-Lindenstrauss lemma). Consider a set of m points X = {xi}mi=1 in a vector

space Rt
. There exist a mapping h : X ! Rk

for some k = O(logm) such that

8i, j 2 [m], kh(xi)� h(xj)k2 kxi � xjk2 O(1) · kh(xi)� h(xj)k2.

By combining this lemma with Bourgain’s theorem 1, we reach the corollary through the following
proof.

pairwise distance

fre
qu

en
cy

fre
qu

en
cy

log-pairwise distance
(a) (b) (c)

Figure 6: Intuition of using LPDD. (a) Here blue points illustrate a dataset with three modes. The
orange points indicate the same data but uniformly scaled up. (b) The pairwise distance distributions
of both datasets are different. The distribution of orange points is a streched version of the distribution
of blue points. As a result, the Wasserstein-1 distance between both distributions can become
arbitrarily large, depending on the scale. (c) In contrast, the distribution of logarithmic pairwise
distance remains the same up to a constant shift. In this case, the Wasserstein-1 distance of the
logarithmic pairwise distance distributions is differed by only a constant addent, which can be easily
accounted.

13

Proof. By Theorem 1, we can embed all data items from Y into the `2 space with O(log2 m)
dimensions and with O(logm) distortion. Then, according to Theorem 6, we can further reduce the
number of dimensions to O(logm) with O(logm) distortion.

C Pre-training

While our method addresses mode collapse, in practice, we have to confront other challenges of
training the GAN, particularly its instability and sensitivity to hyper-parameters. To this end, we
pre-train the generator network G and use it to warm start the training of our GAN. Pre-training is
made possible because our metric embedding step has established the correspondence between the
embedding vectors f(yi) in the latent space and the data items yi 2 Y , i 2 [m]. This correspondence
allows us to perform a supervised learning to minimize the objective

Lpre(G) = Eyi,zi [d(G(f(yi)), yi)] .

As will be shown in our experiments, this pre-training step leads to faster convergence when we train
our GANs. Lastly, we note that our method can be straightforwardly combined with other objective
function extensions [24, 4, 25, 26, 27, 43] and network architectures [11, 44, 9], ones that specifically
focus on addressing other challenges such as instability, to leverage their advantages.

D Illustrative Examples for Section 4

The following two examples illustrate the ranges of the pairwise distance that can cover a pairwise
distance sample with a high probability. They are meant to exemplify the choices of � and ⇤ discussed
in Section 4.

Example 7. Consider the set of all points in R20
, and the distance measure is chosen to be the

Euclidean distance. Let X be the Gaussian distribution N (0, I). Suppose we draw two i.i.d. samples

x, y form X , then with probability at least 0.99999, d(x, y) should be in the range [0.1, 10].

Example 8. Consider the set of all 256⇥ 256 grayscale images, and the brightness of each pixel

is described by a number in {0, 1, 2, · · · , 255}. Let X be a uniform distribution over all the images

which contains a cat. Suppose we draw two i.i.d. samples x, y from X , then with probability 1, the

distance between x and y should be in the range [1, 255 · 256 · 256] = [1, 16777216].

Next, we show a concrete example in which if the generator produces samples mainly in one mode,
then W (P, P̃) can be as large as ⌦(log(⇤/�)), drastically larger than the bound in (6).

Example 9. Suppose M = A [B ⇢ Rd
, where A = {0, 1}d is a Hamming cube close to the origin,

and B = {⇤/pd � 1, ⇤/
p
d}d is another Hamming cube far away from the origin (i.e., ⇤ � d). It is

easy to see that A,B are two separated modes. Let d : M⇥M ! R�0 be the Euclidean distance

(i.e., 8x, y 2 M, d(x, y) = kx � yk2), and let � = 1. It is easy to see that 8x 6= y 2 M, we have

d(x, y) 2 [�,⇤]. Suppose the real data distribution X is the uniform distribution on M. Also suppose

the distribution of generated samples is X̃ , and the probability that generator G generates samples

near the mode B is at most 1/10. Then, consider the (�,⇤)�LPDD (denoted by P) of X . If we

draw two independent samples from X , then conditioned on this two samples being distinct, with

probability at least 1/3, they are in different modes. Thus, if we draw a sample p from P, then with

probability at least 1/3, p is at least ⇤/2. Now consider the distribution X̃ of generated samples. Since

with probability at least 9/10, a sample from X̃ will land in mode A, if we draw two samples from X̃ ,

then with probability at least 4/5, the distance between these two samples is at most

p
d. Thus, the

Wasserstein distance is at least (4/5�(1�1/3)) · | log(⇤2)� log
p
d| � 0.1 log(⇤/

p
d) = ⌦(log(⇤/�)).

E Strengthened Constraints for GAN’s Minmax Problem

As explained in Section 4, introducing the constraint W (P,P 0) < � in the GAN optimization makes
the problem harder to solve. Thus, we choose to slightly strengthen the constraint. Observe that if for
all z1 6= z2 2 supp(Z) we have | log(d(G(z1), G(z2)))� log(kz1 � z2k2)| O(log log log(⇤/�))

14

and d(G(z1), G(z2)) 2 [�,⇤], we have

W (P̃, P̂)
X

z1 6=z22supp(Z)

Pr
Z1,Z2⇠Z

(Z1 = z1, Z2 = z2 | Z1 6= Z2) ·
����log

✓
d(G(z1), G(z2))

kz1 � z2k2

◆����

 O(log log log(⇤/�)).

In other words, if the constraints in (4) and (5) are satisfied, then the constraint W (P,P 0) < � is
automatically satisfied. Thus, they are a slightly strengthened version of W (P,P 0) < �.

F Evaluation and Experiment

In this section, we provide details of our experiments, starting with a few implementation details that
are worth noting. All our experiments are performed using a Nvidia GTX 1080 Ti Graphics card and
implemented in Pytorch [45].

F.1 Parameter setup

As discussed in Section 3.2, we randomly sample m data items from the provided the dataset to form
the set Y for subsequent metric embeddings. In our implementation, we choose m automatically
by using a simple iterative algorithm. Starting from a small m value (e.g., 32), in each iteration
we double m and add more samples from the real dataset. We stop the iteration when the pairwise
distance distribution of the samples converges under the Wasserstein-1 distance. The termination
of this process is guaranteed because of the existence of the theoretical upper bound of m (recall
Theorem 4). In all our examples, we found m = 4096 sufficient. With the chosen m, we construct
the multiset Y = yi

m

i=1 by uniformly sampling the dataset X . Afterwards, we compute the metric
embedding f(yi) for each yi 2 Y , and normalize each vector in {f(yi)}mi=1 by

f̄(yi) =
f(yi)� µ0

�0
,

where µ0 and �0 are the average and standard deviation of the entire set {f(yi)}mi=1, respectively.

Two other parameters are needed in our method, namely, � in Eq. (2) and the standard deviation �

used for the sampling latent Gaussian mixture model (recall Section 3.3). In all our experiments, we
set � = 0.2 and � = 0.1. We find that the final mode coverage of generated samples is not sensitive
to � value in the range [0.2, 0.6]. Only when � is too small, the Gaussian mixture becomes noisy (or
“spiky”), and when � is too large, the Gaussian mixture starts to degrade into a single Gaussian as
used in conventional GANs.

F.2 Experiment Details on Synthetic Data

Setup. We follow the experiment setup used in [10] for 2D Ring and 2D Grid. In the additional
2D circle case, the input dataset is generated by using 100 Gaussian distributions on a circle with a
radius r = 2, as well as three identical Gaussians located at the center of the circle. All Gaussians
have the same standard deviation (i.e., 0.05).

All the GANs (including our method and compared methods) in this experiment share the same
generator and discriminator architectures. They have two hidden layers, each of which has 128
units with ReLU activation and without any dropout [46] or normalization layers [47]. When using
the Unrolled GAN [9], we set the number of unrolling steps to be five as suggested in the authors’
reference implementation. When using PacGAN [11], we follow the authors’ suggestion and set the
number of packing to be four. In all synthetic experiments, our method is performed without the
pre-training step described in Section C.

During training, we use a mini-batch size of 256 with 3000 iterations in total, and use the Adam [48]
optimization method with a learning rate of 0.001 and set �1 = 0.5,�2 = 0.999. During testing,
we use 2500 samples from the learned generator network for evaluation, and use `2 distance as the
target distance metric for Bourgain embedding. Every metric value listed in Table 1 is evaluated and
averaged over 10 trials.

15

2D Ring 2D Grid 2D Circle
1-std 2-std 3-std 1-std 2-std 3-std 1-std 2-std 3-std

GAN 61.46% 96.14% 99.94% 35.86% 69.86% 82.3% 82.08% 98.26% 99.86%
Unrolled 70.66% 85.09% 87.96% 0.54% 2.10% 4.88% 92.08% 99.35% 99.49%
VEEGAN 51.68% 79.24% 86.76% 24.76% 60.24% 77.16% 54.72% 80.44% 89.28%
PacGAN 88.32% 97.28% 98.20% 28.9% 67.76% 79.46% 58.10% 94.62% 98.62%
BourGAN 59.54% 96.64% 99.88% 38.64% 81.54% 95.9% 67.52% 95.64% 99.64%

Table 2: Statistics of Experiments on Synthetic Datasets

Studies. When evaluating the number of captured modes (“# modes” in Table 1), a mode is
considered as being “captured” when there exists at least one sample located within one standard-
deviation-distance (1-std) away from the center of the mode. This criterion is slightly different from
that used in [10, 11], in which they use three standard-deviation (3-std). We choose to use 1-std
because we would like to have finer granularity to differentiate the tested GANs in terms of their
mode capture performance.

To gain a better understanding of the mode capture performance, we also measure in each method the
percentages of generated samples located within 1-, 2-, and 3-std away from mode centers for the
three test datasets. The results are reported in Table 2. We note that for Gaussian distribution, the
percentages of samples located in 1-, 2-, and 3-std away from the center are 68.2%, 95.4%, 99.7%,
respectively [49]. Our method produces results that are closest to these percentages in comparison to
other methods. This suggests that our method better captures not only individual modes but also the
data distribution in each mode, thanks to the pairwise distance preservation term (3) in our objective
function. We also note that this experiment result is echoed by the Wasserstein-1 measure reported
in Table 1, for which we measure the Wasserstein-1 distance between the distribution of generated
samples and the true data distribution. Our method under that metric also performs the best.

Lastly, we examine how quickly these methods converges during the training process. The results are
reported in Figure 7, where we also include the results from our BourGAN but set � in the objective 2
to be zero. That is, we also test our method using standard GAN objective function. Figure 7 shows
that our method with augmented objective converges the most quickly: The generator becomes stable
after 1000 iterations in this example, while others remain unstable even after 1750 iterations. This
result also empirically supports the necessity of using the pairwise distance preservation term in the
objective function. We attribute the faster convergence of our method to the fact that the latent-space
Gaussian mixture in our method encodes the structure of modes in the data space and the fact that our
objective function encourages the generator to preserve this structure.

F.3 Evaluation on MNIST and Stacked MNIST

In this section, we report the evaluation results on MNIST dataset. All MNIST images are scaled to
32⇥32 by bilinear interpolation.

Setup. Quantitative evaluation of GANs is known to be challenging, because the implicit distribu-
tions of real datasets are hard, if not impossible, to obtain. For the same reason, quantification of mode
collapse is also hard for real datasets, and no widely used evaluation protocol has been established.
We take an evaluation approach that has been used in a number of existing GAN variants [42, 10, 9]:
we use a third-party trained classifier to classify the generated samples into specific modes, and
thereby estimate the generator’s mode coverage [3].

Classifier distance. A motivating observation of our method is that the structure of modes depends
on a specific choice of distance metric (recall Figure 2). The widely used distance metrics on
images (such as the pixel-wise `2 distance and Earth Mover’s distance) may not necessarily produce
interpretable mode structures. Here we propose to use the Classifier Distance metric defined as

dclassifier(xi, xj) = kP (xi)� P (xj)k2, (7)

where P (xi) is the softmax output vector of a pre-trained classification network, and xi represents
an input image. Adding a third-party trained classifier turns the task of training generative models
semi-supervised [15]. Nevertheless, Eq. (7) is a highly complex distance metric, serving for the
purpose of testing our method with an “unconventional” metric. It is also meant to show that a
properly chosen metric can produce interpretable modes.

16

GAN

Unrolled GAN

VEEGAN

PacGAN

BourGAN
no dist

BourGAN

Target

iterations 1 250 500 750 1000 1250 1500 1750

WGAN

Figure 7: How quickly do they converge? Our method outperforms other methods in terms of
convergence rate in this example. From left to right are the samples generated after the generators
are trained over an increasing number of iterations. The fifth row indicates the performance of
Wasserstein GAN [4], although it is not particularly designed for addressing mode collapse. The sixth
row reports the performance of BourGAN with standard GAN objective (i.e., no distance preservation
term (3) is used). The seventh row indicate BourGAN with our proposed objective function, which
converges in the least number of iterations.

Visualization of embeddings. After we apply our metric embedding algorithm with different
distance metrics on MNIST images, we obtain a set of vectors in `2 space. To visualize these vectors
in 2D, we use t-SNE [36], a nonlinear dimensionality reduction technique well-suited for visualization
of high-dimensional data in 2D or 3D. Although not fully accurately, this visualization shreds light
on how (and where) data points are located in the latent space (see Figure 2).

MNIST experiment. First, we verify that our pre-training step (described in Appendix C) indeed
accelerates the training process, as illustrated in Figure 8.

Next, we evaluate the quality of generated samples using different distance metrics. One widely used
evaluation score is the inception score [25] that measures both the visual quality and diversity of
generated samples. However, as pointed out by [12], a generative model can produce a high inception
score even when it collapses to a visually implausible sample. Furthermore, we would like to measure
the visual quality and diversity separately rather than jointly, to understand the performance of our
method in each of the two aspects under different metrics. Thus, we choose to use entropy, defined
as E(x) = �

P9
i=0 p(y = i|x) log p(y = i|x), as the score to measure the quality of the generated

sample x, where p(y = i|x) is the probability of labeling the input x as the digit i by the pre-trained

17

epoch 0 1 2 3 4

Figure 8: Efficacy of pre-training. (Top) BourGAN without pre-training. (Bottom) BourGAN
with pre-training. With the pre-training step, the GAN converges faster, and the generator network
produces better-quality results in each epoch.

0.12

0.08

0.04

0.16

0.00
0 1 2 3 4 5 6 7 8 9

Frequency

Digit

Frequency
0.5

0.4

0.3

0.2

0.1
0.0

Entropy
0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.2-1.4 1.6-1.8 1.8-2.01.0-1.2 1.4-1.6

DCGAN
l2
Classifier

Figure 9: MNIST dataset with different distance metrics. (left) We plot the distribution of digits
generated by DCGAN in orange, BourGAN (`2) in green, and BourGAN (classifier) in yellow. The
generated images from those GANs are classified using a pre-trained classifier. This plot shows
that the classifier distance produces samples that are most uniformly distributed across all 10 digits.
DCGAN fails to capture the mode of digital “1”, while BourGAN (`2) generates fewer samples for
the modes in “3” and “9”. (right) Entropy distribution of generated samples using three GANs. A
lower entropy value indicates better image quality. This plot suggests that our method with both `2

and classifier distance metrics produces higher-quality MNIST images than the DCGAN.

classifier. The rationale here is that a high-quality sample often produces a low entropy through the
pre-trained classifier.

We compare DCGAN with BourGAN using this score. Since our method can incorporate different
distance metrics, we consider two of them: BourGAN using `2 distance and BourGAN using the
aforementioned classifier distance. For a fair comparison, the three GANS (i.e., DCGAN, BourGAN
(`2), and BourGAN (classifier)) all use the same number of dimensions (k = 55) for the latent space
and the same network architecture. For each type of GANs, we randomly generate 5000 samples
to evaluate the entropy scores, and the results are reported in Figure 9. We also compute the KL
divergence between the generated distribution and the data distribution, following the practice of
[9, 36]. The KL divergence for DCGAN, BourGAN (`2) and BourGAN (classifier) are 0.116, 0.104,
and 0.012, respectively.

A well-trained generator is expected to produce a relatively uniform distribution across all 10 digits.
Our experiment suggests that both BourGAN (`2) and BourGAN (classifier) generate better-quality
samples in comparison to DCGAN, as they both produce lower entropy scores (Figure 9-right). Yet,
BourGAN (classifier) has a lower KL divergence compared to BourGAN (`2), suggesting that the
classifier distance is a better metric in this case to learn mode diversity. Although a pre-trained
classifier may not always be available in real world applications, here we demonstrate that some
metric might be preferred over others depending on the needs, and our method has the flexibility to
use different metrics.

Lastly, we show that interpretable modes can be learned when a proper distance metric is chosen.
Figure 10 shows the generated images when sampling around individual vectors in latent space. The
BourGAN generator trained with `2 distance tends to produce images that are close to each other
under `2 measure, while the generator trained with classifier distance tends to produce images that
are in the same class, which is more interpretable.

18

Center Neighbor Samples Center Neighbor Samples

Figure 10: Interpretable modes. Using BourGAN, we first randomly generate four samples and use
their latent vectors as four centers in latent space. We then sample nine latent vectors in a hypersphere
of each center, and use these vectors to generate MNIST images. The hypersphere has a radius of
0.1 (Left) BourGAN (`2) generates samples that are close to others in the same hypersphere in `2

space. But the samples can be visually distinct from each other, representing different digits. Note
that under `2 distance, digit “1” are separated out (the fourth row on the left). It is interesting to recall
the bottom-left subfigure of Figure 2, and realize that this resonates with that subfigure in which data
items of digit “1” are clustered as a separated mode in `2 metric. (Right) BourGAN (classifier) is
trained with the classifier distance, which tends to cluster together images that represent the same
type of digits. As a result, the generated samples tend to represent the same digits as their respective
centers. Thus, the modes captured by BourGAN (classifier) is more interpretable. In this case, each
mode corresponds to a different digit.

D is 1/4 size of G D is 1/2 size of G D is same size as G
class covered

(max 1000) KL # class covered
(max 1000) KL # class covered

(max 1000) KL

DCGAN 92.2 5.02 367.7 4.87 912.3 0.65
BourGAN 715.2 1.84 936.1 0.61 1000.0 0.08
Table 3: Mode coverage on stacked MNIST Dataset. Results are averaged over 10 trials

Tests on Stacked MNIST. Similar to the evaluation methods in Mode-regularized GANs [12],
Unrolled GANs [9], VEEGAN [10] and PacGAN [11], we test BourGAN with `2 distance metric
on an augmented MNIST dataset. By encapsulating three randomly selected MNIST images into
three color channels, we construct a new dataset of 100,000 images, each of which has a dimension
of 32⇥32⇥3. In the end, we obtain 10⇥10⇥10 = 1000 distinct classes. We refer to this dataset as the
stacked MNIST dataset. In this experiment, we will treat each of the 1000 classes of images as an
individual mode.

As reported in [9], even regular GANs can learn all 1000 modes if the discriminator size is sufficiently
large. Thus, we evaluate our method by setting the discriminator’s size to be 1/4⇥, 1/2⇥, and 1⇥
of the generator’s size, respectively. We measure the number of modes captured by our method
as well as by DCGAN, and the KL divergence between the generated distribution of modes and
the expected true distribution of modes (i.e., a uniform distribution over the 1000 modes). Table 3
summarizes our results. In Table 2 and 3 of their paper, Lin et al. [11] reported results on similar
experiments, although we note that it is hard to directly compare our Table 3 with theirs, because
their detailed network setup and the third-part classifier may differ from ours. We summarize our
network structures in Table 4 and 5. During training, we use Adam optimization with a learning rate
of 10�4, and set �1 = 0.5 and �2 = 0.999 with a mini-batch size of 128.

Additionally, in Figure 11 we show a qualitative comparison between our method and DCGAN on
this dataset.

F.4 More Qualitative Results

We also test our algorithm on other popular dataset, including CIFAR-10 [50] and Fashion-MNIST
[51]. Figure 12 and 13 illustrate our results on these datasets.

19

Figure 11: Qualitative results on stacked MNIST dataset. (Left) Samples from real data distribution.
(Middle) Samples generated by DCGAN. (Right) Samples generated by BourGAN. In all three
GANs, discriminator network has a size 1/4⇥ of the generator. DCGAN starts to generate collapsed
results, while BourGAN still generates plausible results.

Figure 12: Qualitative results on CIFAR-10.

G Proofs of the Theorems in Section 4

G.1 Notations and Preliminaries

Before we delve into technical details, we first review some notation and fundamental tools in the
theoretical analysis: We use 1(E) to denote an indicator variable on the event E , i.e., if E happens,
then 1(E) = 1, otherwise, 1(E) = 0.

The following lemma gives a concentration bound on independent random variables.

layer output size kernel size stride BN activation function
input (dim 55) 55⇥1⇥1
Transposed Conv 512⇥4⇥4 4 1 Yes ReLU
Transposed Conv 256⇥8⇥8 4 2 Yes ReLU
Transposed Conv 128⇥16⇥16 4 2 Yes ReLU
Transposed Conv channel⇥32⇥32 4 2 No Tanh

Table 4: Network structure for generator. channel=3 for Stacked MNIST and channel=1 for MNIST.

20

layer output size kernel size stride BN activation function
input (dim 55) channel⇥32⇥32
Conv 256⇥16⇥16 4 2 No LeakyReLU(0.2)
Conv 256⇥8⇥8 4 2 Yes LeakyReLU(0.2)
Conv 128⇥4⇥4 4 2 Yes LeakyReLU(0.2)
Conv channel⇥1⇥1 4 1 No Sigmoid

Table 5: Network structure for discriminator.

Figure 13: Qualitative results on Fashion-MNIST.

Lemma 10 (Bernstein Inequality). Let X1, X2, · · · , Xn be n independent random variables. Sup-

pose that 8i 2 [n], |Xi � E(Xi)| M almost surely. Then, 8t > 0,

Pr

 �����

nX

i=1

Xi �
nX

i=1

E(Xi)

����� > t

!
 2 exp

✓
�

1
2 t

2

P
n

i=1 Var(Xi) +
1
3Mt

◆
.

The next lemma states that given a complete graph with a power of 2 number of vertices, the edges
can be decomposed into perfect matchings.
Lemma 11. Given a complete graph G = (V,E) with |V | = m vertices, where m is a power of 2.

Then, the edge set E can be decomposed into m� 1 perfect matchings.

Figure 14: An 8-vertices complete graph can be decomposed into 7 perfect matchings

Proof. Our proof is by induction. The base case has m = 1. For the base case, the claim is obviously
true. Now suppose that the claim holds for m/2. Consider a complete graph G = (V,E) with m

vertices, where m is a power of 2. We can partition vertices set V into two vertices sets A,B such
that |A| = |B| = m/2. The edges between A and B together with vertices A [B = V compose a
complete bipartite graph. Thus, the edges between A and B can be decomposed into m/2 perfect

21

matchings. The subgraph of G induced by A is a complete graph with m/2 vertices. By our induction
hypothesis, the edge set of the subgraph of G induced by A can be decomposed into m/2� 1 perfect
matchings in that induced subgraph. Similarly, the edge set of the subgraph of G induced by B

can be also decomposed into m/2� 1 perfect matchings in that induced subgraph. Notice that any
perfect matching in the subgraph induced by A union any perfect matching in the subgraph induced
by B is a perfect matching of G. Thus, E can be decomposed into m/2 +m/2� 1 = m� 1 perfect
matchings.

G.2 Proof of Theorem 3

In the following, we formally restate the theorem.
Theorem 12. Consider a metric space (M, d). Let X be a distribution over M which satis-

fies Pra,b⇠X (a 6= b) � 1/2. Let x1, x2, · · · , xn be n i.i.d. samples drawn from X . Let

� = mini2[n�1]:xi 6=xi+1
d(xi, xi+1),⇤ = maxi2[n�1]:xi 6=xi+1

d(xi, xi+1). For any given param-

eters � 2 (0, 1), � 2 (0, 1), if n � C/(��) for some sufficiently large constant C > 0, then with

probability at least 1� �, Pra,b⇠X (d(a, b) 2 [�,⇤] | �,⇤) � Pra,b⇠X (a 6= b)� �.

Proof. Without of loss of generality, we assume n is an even number. Let �
0 =

mini2[n/2]:x2i�1 6=x2i
d(x2i�1, x2i),⇤0 = maxi2[n/2]:x2i�1 6=x2i

d(x2i�1, x2i), and P , Q be two i.i.d.
random variables with distribution X . Then (x1, x2), (x3, x4), · · · , (xn�1, xn) are n/2 i.i.d. samples
drawn from the same distribution as (P,Q). Let t = |{j 2 [n/2] | x2j�1 6= x2j}|. Suppose p is the
probability, p = Pr(P 6= Q), then we have the following relationship.

Pr
P,Q,x1,··· ,xm⇠D

(d(P,Q) < �
0 _ d(P,Q) > ⇤0 | P 6= Q)

= Pr
P,Q,x1,··· ,xm⇠D

(d(P,Q) < �
0 _ d(P,Q) > ⇤0 | P 6= Q, t � pn/2) · Pr(t � pn/2 | P 6= Q)

(8)
+ Pr

P,Q,x1,··· ,xm⇠D
(d(P,Q) < �

0 _ d(P,Q) > ⇤0 | P 6= Q, t pn/2) · Pr(t pn/2 | P 6= Q)

(9)
 Pr(d(P,Q) < �

0 _ d(P,Q) > ⇤0 | P 6= Q, t � pn/2) + Pr(t < pn/2)

 2

1 + pn/2
+ Pr(t < pn/2)

 2

1 + n/4
+ 2�⇥(n)

 4

1 + n/4
 16/n (10)

where the first inequality follows by that probability is always upper bounded by 1, the second
inequality follows by symmetry of (P,Q) and (x2j�1, x2j), the third inequality follows by p � 1/2
and the Chernoff bound, the forth inequality follows by that n is sufficiently large.

Notice that if with probability greater than �,Pr(d(P,Q) < �
0 or d(P,Q) > ⇤0 | �0

,⇤0) > 1�p+�,

then we have with probability greater than �,

1� p+ � < Pr(d(P,Q) < �
0 _ d(P,Q) > ⇤0 | �0

,⇤0)

= Pr(d(P,Q) < �
0 _ d(P,Q) > ⇤0 | �0

,⇤0
, P 6= Q) · Pr(P 6= Q) + Pr(P = Q)

= Pr(d(P,Q) < �
0 _ d(P,Q) > ⇤0 | �0

,⇤0
, P 6= Q) · p+ 1� p

which implies that with probability greater than �, Pr(d(P,Q) < �
0 or d(P,Q) > ⇤0 | �0

,⇤0
, P 6=

Q) > �/p � �. Then we have Pr(d(P,Q) < �
0 or d(P,Q) > ⇤0 | P 6= Q) > �� � 16/n which

contradicts to Equation (10).

Notice that � �
0 and ⇤ � ⇤0

, we complete the proof.

G.3 Proof of Theorem 4

We restate the theorem in the following formal way.

22

Theorem 13. Consider a metric space (M, d). Let X be a distribution over M . Let �,⇤ be two

parameters such that 0 < 2� ⇤. Let P be the (�,⇤)�LPDD of X . Let y1, y2, · · · , ym be m i.i.d.

samples drawn from distribution X , where m is a power of 2. Let P 0
be the (�,⇤)�LPDD of the

uniform distribution on Y .Let � = Pra,b⇠X (d(a, b) 2 [�,⇤]). Given � 2 (0, 1), " 2 (0, log(⇤/�)),

if m � C · log4(⇤/�)
"4�4 · log

⇣
log(⇤/�)

min(",1)��

⌘
for some sufficiently large constant C > 0, then with

probability at least 1� �, we have W (P,P 0) ".

Proof. Suppose m � C · log
4(⇤/�)
"4�4 · log

⇣
log(⇤/�)

min(",1)��

⌘
for some sufficiently large constant C > 0. Let

U be a uniform distribution over m samples {y1, y2, · · · , ym}. Let "0 = "/2, i0 = blog1+"0
�c, i1 =

dlog1+"0
⇤e, and ↵ = (1 + "0). Let I be the set {i0, i0 + 1, i0 + 2, · · · , i1 � 1, i1}. Then we have

|I| log(⇤/�)/"0. Since P,P 0 are (�,⇤)�LPDD of X and uniform distribution on Y respectively,
we have

W (P,P 0)

i1X

i=i0

min

✓
Pr
p⇠P

(p 2 [i, i+ 1) · log↵), Pr
p0⇠P0

(p0 2 [i, i+ 1) · log↵)

◆
· log↵

+
i1X

i=i0

���� Pr
p⇠P

(p 2 [i, i+ 1) · log↵)� Pr
p0⇠P0

(p0 2 [i, i+ 1) · log↵)

���� · log(⇤/�)

 "0 +
i1X

i=i0

���� Pr
p⇠P

(p 2 [i, i+ 1) · log↵)� Pr
p0⇠P0

(p0 2 [i, i+ 1) · log↵)

���� · log(⇤/�).

Thus, to prove W (P,P 0) " = 2"0, it suffices to show that

8i 2 I,

���� Pr
p2P

(p 2 [i, i+ 1) · log↵)� Pr
p0⇠P0

(p0 2 [i, i+ 1) · log↵)
����

"0

|I| · log (⇤/�)

 "
2
0

2 log2(⇤/�)
.

(11)

For an i 2 I, consider Prp2P(p 2 [i, i+ 1) · log↵), we have

Pr
p2P

(p 2 [i, i+ 1) · log↵) =
Pr

a,b⇠X
(d(a, b) 2 [↵i

,↵
i+1))

Pr
a,b⇠X

(d(a, b) 2 [�,⇤])
.

Consider Prp0⇠P0(p0 2 [i, i+ 1) · log↵), we have

Pr
p0⇠P0

(p0 2 [i, i+ 1) · log↵)

= Pr
a0,b0⇠U

(d(a0, b0) 2 [↵i
,↵

i+1) | d(a0, b0) 2 [�,⇤])

=
1/(m(m� 1)) ·

P
j 6=k

1(d(yj , yk) 2 [↵i
,↵

i+1))

1/(m(m� 1)) ·
P

j 6=k
1(d(yj , yk) 2 [�,⇤])

, (12)

where 1(·) is an indicator function. In the following parts, we will focus on giving upper bounds on
the difference

�����

P
j 6=k

1(d(yj , yk) 2 [↵i
,↵

i+1))

m(m� 1)
� Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
����� (13)

and the difference
����

P
j 6=k

1(d(yj , yk) 2 [�,⇤])

m(m� 1)
� Pr

a,b⇠X
(d(a, b) 2 [�,⇤])

���� . (14)

Now we look at a fixed i 2 I. Let S be the set of all possible pairs (yj , yk), i.e. S = {(yj , yk) | j, k 2
[m], j 6= k}. According to Lemma 11, S can be decomposed into 2(m�1) sets S1, S2, · · · , S2(m�1)

23

each with size m/2, i.e. S =
S2(m�1)

l=1 Sl, 8l 2 [2(m � 1)], |Sl| = m/2, and furthermore, 8l 2
[2(m� 1)], j 2 [m], yj only appears in exactly one pair in set Sl. It means that 8l 2 [2(m� 1)], Sl

contains m/2 i.i.d. random samples drawn from X ⇥ X , where X ⇥ X is the joint distribution of
two i.i.d. random samples a, b each with marginal distribution X . For l 2 [2(m� 1)], by applying
Bernstein inequality (see Lemma 10), we have:

Pr

 �����

P
(x,y)2Sl

1(d(x, y) 2 [↵i
,↵

i+1))

m/2
� Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
����� >

�"
2
0

8 log2(⇤/�)

!

= Pr

0

@

������

X

(x,y)2Sl

1(d(x, y) 2 [↵i
,↵

i+1))�
X

(x,y)2Sl

Pr
a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
������
>

m · �"20
4 log2(⇤/�)

1

A

 2 exp

�

1
32 ·m2 · �2

"
4
0/ log

4(⇤/�)

m/2 +m · �"0/ log2(⇤/�) · 1/48

!

 2 exp

�

1
32 ·m2 · �2

"
4
0/ log

4(⇤/�)

m/2 +m/2

!

= 2 exp

✓
� 1

32
·m · �2

"
4
0/ log

4(⇤/�)

◆

 �

2
· 1

2(m� 1)|I| ,

where the first inequality follows by plugging |Sl| = m/2 i.i.d. random variables 1(d(x, y) 2
[↵i

,↵
i+1)) for all (x, y) 2 Sl, t = (m · �"20)/(4 log

2(⇤/�)) and M = 1 into Lemma 10, the second
inequality follows by �"

2
0/ log

2(⇤/�) 1, where recall � = Pra,b⇠X (d(a, b) 2 [�,⇤]). and the
last inequality follows by the choice of m and (m � 1) m, |I| 2 log(⇤/�)/"0. By taking
union bound over all the sets S1, S2, · · · , S2(m�1), with probability at least 1� �/2 · 1/|I|, we have
8l 2 [2(m� 1)],

�����

P
(x,y)2Sl

1(d(x, y) 2 [↵i
,↵

i+1))

m/2
� Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
�����

�"
2
0

8 log2(⇤/�)
.

In this case, we have:
������

2(m�1)X

l=1

X

(x,y)2Sl

1(d(x, y) 2 [↵i
,↵

i+1))

m/2
� 2(m� 1) Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
������
 2(m� 1)�"20

8 log2(⇤/�)
.

Since S =
S2(m�1)

l=1 Sl = {(yj , yk) | j, k 2 [m], j 6= k}, we have
�����

P
j 6=k

1(d(yj , yk) 2 [↵i
,↵

i+1))

m(m� 1)
� Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
�����

�"
2
0

8 log2(⇤/�)
.

By taking union bound over all i 2 I, then with probability at least 1� �/2, 8i 2 I, we have
�����

P
j 6=k

1(d(yj , yk) 2 [↵i
,↵

i+1))

m(m� 1)
� Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
�����

�"
2
0

8 log2(⇤/�)
. (15)

Thus, we have an upper bound on Equation (13).

Now, let us try to derive an upper bound on Equation (14). Similar as in the previous paragraph,
we let S be the set of all possible pairs (yj , yk), i.e. S = {(yj , yk) | j, k 2 [m], j 6= k}. S can be
decomposed into 2(m�1) sets S1, S2, · · · , S2(m�1) each with size m/2, i.e. S =

S2(m�1)
l=1 Sl, 8l 2

[2(m� 1)], |Sl| = m/2, and furthermore, 8l 2 [2(m� 1)], j 2 [m], yj only appears in exactly one

24

pair in set Sl. For l 2 [2(m� 1)], by applying Bernstein inequality (see Lemma 10), we have:

Pr

 �����

P
(x,y)2Sl

1(d(x, y) 2 [�,⇤])

m/2
� Pr

a,b⇠X
(d(a, b) 2 [�,⇤])

����� >
�
2
"
2
0

8 log2(⇤/�)

!

= Pr

0

@

������

X

(x,y)2Sl

1(d(x, y) 2 [�,⇤])�
X

(x,y)2Sl

Pr
a,b⇠X

(d(a, b) 2 [�,⇤])

������
>

m · �2
"
2
0

4 log2(⇤/�)

1

A

 2 exp

�

1
32 ·m2 · �4

"
4
0/ log

4(⇤/�)

m/2 +m · �2"0/ log
2(⇤/�) · 1/48

!

 2 exp

�

1
32 ·m2 · �4

"
4
0/ log

4(⇤/�)

m/2 +m/2

!

= 2 exp

✓
� 1

32
·m · �4

"
4
0/ log

4(⇤/�)

◆

 �

2
· 1

2(m� 1)|I|

 �

2
· 1

2(m� 1)
,

where the first inequality follows by plugging |Sl| = m/2 i.i.d. random variables 1(d(x, y) 2 [�,⇤])
for all (x, y) 2 Sl, t = (m · �2

"
2
0)/(4 log

2(⇤/�)) and M = 1 into Lemma 10, the second inequality
follows by �

2
"
2
0/ log

2(⇤/�) 1, where � = Pra,b⇠X (d(a, b) 2 [�,⇤]). The third inequality follows
by the choice of m and (m� 1) m, |I| 2 log(⇤/�)/"0. By taking union bound over all the sets
S1, S2, · · · , S2(m�1), with probability at least 1� �/2, we have 8l 2 [2(m� 1)],

�����

P
(x,y)2Sl

1(d(x, y) 2 [�,⇤])

m/2
� Pr

a,b⇠X
(d(a, b) 2 [�,⇤])

�����
�
2
"
2
0

8 log2(⇤/�)
.

In this case, we have:

������

2(m�1)X

l=1

X

(x,y)2Sl

1(d(x, y) 2 [�,⇤])

m/2
� 2(m� 1) Pr

a,b⇠X
(d(a, b) 2 [�,⇤))

������
 2(m� 1)�2

"
2
0

8 log2(⇤/�)
.

Since S =
S2(m�1)

l=1 Sl = {(yj , yk) | j, k 2 [m], j 6= k}, we have

����

P
j 6=k

1(d(yj , yk) 2 [�,⇤])

m(m� 1)
� Pr

a,b⇠X
(d(a, b) 2 [�,⇤))

����
�
2
"
2
0

8 log2(⇤/�)
. (16)

Thus now, we also obtain an upper bound for the Equation (14).

By taking union bound, we have that with probability at least 1� �, Equation (15) holds for all i 2 I,

and at the same time, Equation (16) holds. In the following, we condition on that Equation (15) holds
for all i 2 I, and Equation (16) also holds.

25

8i 2 I, we have

Pr
p0⇠P0

(p0 2 [i, i+ 1) · log↵)

=
1/(m(m� 1)) ·

P
j 6=k

1(d(yj , yk) 2 [↵i
,↵

i+1))

1/(m(m� 1)) ·
P

j 6=k
1(d(yj , yk) 2 [�,⇤])

Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
+ �"

2
0/(8 log

2(⇤/�))

� � �2"20/(8 log
2(⇤/�))

Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�

� � �2"20/(8 log
2(⇤/�))

+
"
2
0

4 log2(⇤/�)

Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
(1 + �"

2
0/(4 log

2(⇤/�)))

�
+

"
2
0

4 log2(⇤/�)

Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�

Pr
a,b⇠X

(d(a, b) 2 [�,⇤))
+

"
2
0

2 log2(⇤/�)

= Pr
p⇠P

(p 2 [i, i+ 1) · log↵) + "
2
0/(2 log

2(⇤/�)) (17)

where the first inequality follows by Equation (15) and Equation (16), the second inequality follows
by � � �

2
"
2
0/(8 log

2(⇤/�)) > �/2, the third inequality follows by 1/(1 � ⌘) (1 + 2⌘) for all
⌘ 1/2 and the last inequality follows by the definition of � and probability is always at most 1.

Similarly, 8i 2 I, we also have

Pr
p0⇠P0

(p0 2 [i, i+ 1) · log↵)

=
1/(m(m� 1)) ·

P
j 6=k

1(d(yj , yk) 2 [↵i
,↵

i+1))

1/(m(m� 1)) ·
P

j 6=k
1(d(yj , yk) 2 [�,⇤])

�
Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
� �"

2
0/(8 log

2(⇤/�))

� + �2"20/(8 log
2(⇤/�))

�
Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�

� + �2"20/(8 log
2(⇤/�))

� "
2
0

4 log2(⇤/�)

�
Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�
(1� �"

2
0/(8 log

2(⇤/�)))

�
� "

2
0

4 log2(⇤/�)

�
Pr

a,b⇠X

�
d(a, b) 2 [↵i

,↵
i+1)

�

Pr
a,b⇠X

(d(a, b) 2 [�,⇤))
� "

2
0

2 log2(⇤/�)

= Pr
p⇠P

(p 2 [i, i+ 1) · log↵)� "
2
0/(2 log

2(⇤/�)) (18)

where the first inequality follows by Equation (15) and Equation (16), the second inequality follows
by � + �

2
"
2
0/(8 log

2(⇤/�)) > �, the third inequality follows by 1/(1 + ⌘) � (1� ⌘) for all ⌘ � 0
and the last inequality follows by the definition of � and probability is always at most 1.

By combining Equation (17), Equation (18) with Equation 11, we complete the proof.

G.4 Proof of Theorem 5

To prove Theorem 5, we prove the following theorem first.
Theorem 14. Consider a metric space (M, d). Let y1, y2, · · · , ym 2 M . Let U be a uniform

distribution over multiset Y = {y1, y2, · · · , ym}. Let �,⇤ be two parameters such that 0 < 2� ⇤.

26

Let P 0
denote LPDD of U . There exist a mapping f : X ! Rl

for some l = O(logm) such that

W (P 0
, P̂) O(log logm), where P̂ denotes LPDD of the uniform distribution on the multiset

F = {f(x1), f(x2), . . . , f(xm)} ⇢ Rl
.

Proof. According to Corollary 2, there exists a mapping f : X ! Rl for some l = O(logm) such
that 8i, j 2 [m], d(yi, yj) kf(yi)� f(yj)k2 O(logm) · d(yi, yj). Notice that since (M, d) is a
metric space and f holds the above condition, for any x, y 2 M, d(x, y) = kf(x)�f(y)k2 = 0 if and
only if x = y. Let U 0 be the uniform distribution over the multiset F = {f(x1), f(x2), · · · , f(xm)}.
Thus, Pra,b⇠U (a 6= b) = Pra0,b0⇠U 0(a0 6= b

0). Furthermore, we have 8y 2 Y, PrP⇠U (p = y) =
Prp0⇠U 0(p0 = f

�1(y)).

Thus, 8x, y 2 Y, x 6= y, we have

Pr
a,b⇠U

(a = x, b = y | a 6= b)

= Pr
a,b⇠U

(a = x, b = y)/ Pr
a,b⇠U

(a 6= b)

= Pr
a⇠U

(a = x) Pr
b⇠U

(b = y)/ Pr
a,b⇠U

(a 6= b)

= Pr
a0⇠U 0

(f�1(a0) = x) Pr
b0⇠U 0

(f�1(b0) = y)/ Pr
a0,b0⇠U 0

(a0 6= b
0)

= Pr
a0,b0⇠U 0

(f�1(a0) = x, f
�1(b0) = y | a0 6= b

0).

Then we can conclude that

W (P 0
, P̂)

X

x,y2Y :x 6=y

Pr
a,b⇠U

(a = x, b = y | a 6= b) · | log(d(x, y))� log(kf(x)� f(y)k2)|

=
X

x,y2Y :x 6=y

Pr
a,b⇠U

(a = x, b = y | a 6= b) ·
����log

✓
d(x, y)

kf(x)� f(y)k2

◆����

X

x,y2Y :x 6=y

Pr
a,b⇠U

(a = x, b = y | a 6= b) ·O(log logm)

= O(log logm).

In the following, we formally state the complete version of Theorem 5.
Theorem 15. Consider a universe of the data M and a distance function d : M⇥M ! R�0

such that (M, d) is a metric space. Let X be a data distribution over M which satisfies

Pra,b⇠X (a 6= b) � 1/2. Let X be a multiset which contains n i.i.d. observations x1, x2, · · · , xn 2 M
generated from the data distribution X . Let � = mini2[n/2�1]:xi 6=xi+1

d(xi, xi+1), and ⇤ =
max(maxi2[n/2�1] d(xi, xi+1), 2�). Let P be the (�,⇤)�LPDD of the original data distribution X .

If n � logc0(⇤/�) for a sufficiently large constant c0, then with probability at least 0.99, we can find

a distribution F on F ⇢ Rl
for l = O (log log(⇤/�)) , |F | C log4(⇤/�) log(log(⇤/�)) where C

is a sufficiently large constant, such that W (P, P̂) O(log log log(⇤/�)), where P̂ is the LPDD of

distribution F

Proof. We describe how to construct the distribution F . Let � = mini2[n/2�1]:xi 6=xi+1
d(xi, xi+1),

and ⇤ = max(maxi2[n/2�1] d(xi, xi+1), 2�). By applying Theorem 12, with probability at least
0.999, we have

Pr
a,b⇠X

(d(a, b) 2 [�,⇤]) � Pr
a,b⇠X

(a 6= b)� 1/⌦(n). (19)

Let the above event be E1. In the remaining of the proof, let us condition on E1.

Let m = C log4(⇤/�) log(log(⇤/�)) where C is a sufficiently large constant. Let Y =
{xn/2+1, xn/2+2, · · · , xn/2+m}. Let P 0 be the (�,⇤)�LPDD of the uniform distribution on Y .

27

Notice that Equation (19) implies Prp⇠P0(p 2 [�,⇤]) � 1/4. Then, according to Theorem 13, with
probability at least 0.999, we have

W (P,P 0) 1. (20)

Let the above event be E2. In the remaining of the proof, let us condition on E2.
Equation (19) also implies the following thing:

Pr
a,b⇠X

(d(a, b) 2 [�,⇤] | a 6= b) � 1� 1/(⌦(n) · Pr
a,b⇠X

(a 6= b)) � 1� 1/ poly(log(⇤/�)).

By taking union bound over all i, j 2 {n/2 + 1, n/2 + 2, · · · , n/2 +m}, i 6= j, with probability at
least 0.999, we have either xi = xj or d(xi, xj) 2 [�,⇤]. Let the above event be E3. In the remaining
of the proof, let us condition on E3.
Due to E3, we can just regard P 0 as the LPDD of the uniform distribution on Y . Then, by applying The-
orem 14, we can construct a uniform distribution F on F ⇢ Rl where |F | m. Let P̂ be the LPDD
of F . According to the Theorem 14, we have W (P 0

, P̂) O(log logm) O(log log log(⇤/�)).
Then by combining with Equation (20), we have W (P, P̂) W (P,P 0) + W (P 0

, P̂) 1 +
O(log log log(⇤/�)) = O(log log log(⇤/�)). Thus, we complete the proof.

By taking union bound over E1, E2, E3, the success probability is at least 0.99.

28

	Introduction
	Related Work
	Bourgain Generative Networks
	Metrics of Distance and Distributions
	Preprocessing: Subsample of Data Items
	Construction of Gaussian Mixture in Latent Space
	Training

	Theoretical Analysis
	Experiments
	Conclusion
	Algorithm of Improved Bourgain Embedding
	Proof of Corollary 2
	Pre-training
	Illustrative Examples for Section 4
	Strengthened Constraints for GAN's Minmax Problem
	Evaluation and Experiment
	Parameter setup
	Experiment Details on Synthetic Data
	Evaluation on MNIST and Stacked MNIST
	More Qualitative Results

	Proofs of the Theorems in Section 4
	Notations and Preliminaries
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

