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Abstract

We propose an adaptive sampling approach for multiple testing which aims to
maximize statistical power while ensuring anytime false discovery control. We
consider n distributions whose means are partitioned by whether they are below or
equal to a baseline (nulls), versus above the baseline (actual positives). In addition,
each distribution can be sequentially and repeatedly sampled. Inspired by the
multi-armed bandit literature, we provide an algorithm that takes as few samples
as possible to exceed a target true positive proportion (i.e. proportion of actual
positives discovered) while giving anytime control of the false discovery proportion
(nulls predicted as actual positives). Our sample complexity results match known
information theoretic lower bounds and through simulations we show a substantial
performance improvement over uniform sampling and an adaptive elimination style
algorithm. Given the simplicity of the approach, and its sample efficiency, the
method has promise for wide adoption in the biological sciences, clinical testing
for drug discovery, and online A/B/n testing problems.

1 Introduction

Consider n possible treatments, say, drugs in a clinical trial, where each treatment either has a
positive expected effect relative to a baseline (actual positive), or no difference (null), with a goal
of identifying as many actual positive treatments as possible. If evaluating the ith trial results in a
noisy outcome (e.g. due to variance in the actual measurement or just diversity in the population)
then given a total measurement budget of B, it is standard practice to execute and average B/n
measurements of each treatment, and then output a set of predicted actual positives based on the
measured effect sizes. False alarms (i.e. nulls predicted as actual positives) are controlled by either
controlling family-wise error rate (FWER), where one bounds the probability that at least one of the
predictions is null, or false discovery rate (FDR), where one bounds the expected proportion of the
number of predicted nulls to the number of predictions. FDR is a weaker condition than FWER but is
often used in favor of FWER because of its higher statistical power: more actual positives are output
as predictions using the same measurements.

In the pursuit of even greater statistical power, there has recently been increased interest in the
biological sciences to reject the uniform allocation strategy of B/n trials to the n treatments in
favor of an adaptive allocation. Adaptive allocations partition the budget B into sequential rounds
of measurements in which the measurements taken at one round inform which measurements are
taken in the next [1, 2]. Intuitively, if the effect size is relatively large for some treatment, fewer
trials will be necessary to identify that treatment as an actual positive relative to the others, and
that savings of measurements can be allocated towards treatments with smaller effect sizes to boost
the signal. However, both [1, 2] employed ad-hoc heuristics which may not only have sub-optimal
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statistical power, but also may even result in more false alarms than expected. As another example,
in the domain of A/B/n testing in online environments, the desire to understand and maximize
click-through-rate across treatments (e.g., web-layouts, campaigns, etc.) has become ubiquitous
across retail, social media, and headline optimization for the news. And in this domain, the desire for
statistically rigorous adaptive sampling methods with high statistical power are explicit [3].

In this paper we propose an adaptive measurement allocation scheme that achieves near-optimal
statistical power subject to FWER or FDR false alarm control. Perhaps surprisingly, we show that
even if the treatment effect sizes of the actual positives are identical, adaptive measurement allocation
can still substantially improve statistical power. That is, more actual positives can be predicted using
an adaptive allocation relative to the uniform allocation under the same false alarm control.

1.1 Problem Statement

Consider n distributions (or arms) and a game where at each time t, the player chooses an arm
i ∈ [n] := {1, . . . , n} and immediately observes a reward Xi,t

iid∼ νi where Xi,t ∈ [0, 1]1 and
Eνi [Xi,t] = µi. For a known threshold µ0, define the sets2

H1 = {i ∈ [n] : µi > µ0} and H0 = {i ∈ [n] : µi = µ0} = [n] \ H1.

The value of the means µi for i ∈ [n] and the cardinality ofH1 are unknown. The arms (treatments)
in H1 have means greater than µ0 (positive effect) while those in H0 have means equal to µ0 (no
effect over baseline). At each time t, after the player plays an arm, she also outputs a set of indices
St ⊆ [n] that are interpreted as discoveries or rejections of the null-hypothesis (that is, if i ∈ St then
the player believes i ∈ H1). For as small a τ ∈ N as possible, the goal is to have the number of
true detections |St ∩H1| be approximately |H1| for all t ≥ τ , subject to the number of false alarms
|St ∩H0| being small uniformly over all times t ∈ N. We now formally define our notions of false
alarm control and true discoveries.
Definition 1 (False Discovery Rate, FDR-δ). Fix some δ ∈ (0, 1). We say an algorithm is FDR-δ if for
all possible problem instances ({νi}ni=1, µ0) it satisfies E[ |St∩H0|

|St|∨1 ] ≤ δ for all t ∈ N simultaneously.

Definition 2 (Family-wise Error Rate, FWER-δ). Fix some δ ∈ (0, 1). We say an algorithm is
FWER-δ if for all possible problem instances ({νi}ni=1, µ0) it satisfies P(

⋃∞
t=1{St ∩H0 6= ∅}) ≤ δ.

Note FWER-δ implies FDR-δ, the former being a stronger condition than the latter. Allowing a
relatively small number of false discoveries is natural, especially if |H1| is relatively large. Because
µ0 is known, there exist schemes that guarantee FDR-δ or FWER-δ even if the arm means µi and the
cardinality ofH1 are unknown (see Section 2.1). It is also natural to relax the goal of identifying all
arms inH1 to simply identifying a large proportion of them.
Definition 3 (True Positive Rate, TPR-δ, τ ). Fix some δ ∈ (0, 1). We say an algorithm is TPR-δ, τ
on an instance ({νi}ni=1, µ0) if E[ |St∩H1|

|H1| ] ≥ 1− δ for all t ≥ τ .

Definition 4 (Family-wise Probability of Detection, FWPD-δ, τ ). Fix some δ ∈ (0, 1). We say an
algorithm is FWPD-δ, τ on an instance ({νi}ni=1, µ0) if P(H1 ⊆ St) ≥ 1− δ for all t ≥ τ .

Note that FWPD-δ, τ implies TPR-δ, τ , the former being a stronger condition than the latter. Also
note P(

⋃∞
t=1{St ∩H0 6= ∅}) ≤ δ and P(H1 ⊆ Sτ ) ≥ 1− δ together imply P(H1 = Sτ ) ≥ 1− 2δ.

We will see that it is possible to control the number of false discoveries |St ∩H0| regardless of how
the player selects arms to play. It is the rate at which St includes H1 that can be thought of as the
statistical power of the algorithm, which we formalize as its sample complexity:
Definition 5 (Sample Complexity). Fix some δ ∈ (0, 1) and an algorithm A that is FDR-δ (or
FWER-δ) over all possible problem instances. Fix a particular problem instance ({νi}ni=1, µ0). At
each time t ∈ N, A chooses an arm i ∈ [n] to obtain an observation from, and before proceeding to
the next round outputs a set St ⊆ [n]. The sample complexity of A on this instance is the smallest
time τ ∈ N such that A is TPR-δ, τ (or FWPD-δ, τ ).

The sample complexity and value of τ of an algorithm will depend on the particular instance
({νi}ni=1, µ0). For example, ifH1 = {i ∈ [n] : µi = µ0 +∆} andH0 = [n]\H1, then we expect the

1All results without modification apply to unbounded, sub-Gaussian random variables.
2All results generalize to the case whenH0 = {i : µi ≤ µ0}.
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False alarm control
FDR-δ

maxt E[ |St∩H0|
|St|∨1 ] ≤ δ

FWER-δ
P(
⋃∞
t=1{St ∩H0 6= ∅}) ≤ δ

Detection Probability
TPR-δ, τ

E[ |Sτ∩H1|
|H1| ] ≥ 1− δ

Theorem 2
n∆−2

Theorem 5
(n− k)∆−2 + k∆−2 log(n− k)

FWPD-δ, τ
P(H1 ⊆ Sτ ) ≥ 1− δ

Theorem 3
(n− k)∆−2 log(k) + k∆−2

Theorem 4
(n− k)∆−2 log(k) + k∆−2 log(n− k)

Table 1: Informal summary of sample complexity results proved in this paper for |H1| = k, constant δ (e.g.,
δ = .05) and ∆ = mini∈H1 µi − µ0. Uniform sampling across all settings requires at least n∆−2 log(n/k)
samples, and in the FWER+FWPD setting requires n∆−2 log(n). Constants and log log factors are ignored.

sample complexity to increase as ∆ decreases since at least ∆−2 samples are necessary to determine
whether an arm has mean µ0 versus µ0 + ∆. The next section will give explicit cases.
Remark 1 (Impossibility of stopping time). We emphasize that just as in the non-adaptive setting,
at no time can an algorithm stop and declare that it is TPR-δ, τ or FWPD-δ, τ for any finite τ ∈ N.
This is because there may be an arm inH1 with a mean infinitesimally close to µ0 but distinct such
that no algorithm can determine whether it is inH0 orH1. Thus, the algorithm must run indefinitely
or until it is stopped externally. However, using an anytime confidence bound (see Section 2) one can
always make statements like “eitherH1 ⊆ St, or maxi∈H1\St µi − µ0 ≤ ε” where the ε will depend
on the width of the confidence interval.

1.2 Contributions and Informal Summary of Main Results

In Section 2 we propose an algorithm that handles all four combinations of {FDR-δ, FWER-δ} and
{TPR-δ, τ , FWPD-δ, τ}. A reader familiar with the multi-armed bandit literature would expect an
adaptive sampling algorithm to have a large advantage over uniform sampling when there is a large
diversity in the means ofH1 since larger means can be distinguished from µ0 with fewer samples.
However, one should note that to declare all ofH1 as discoveries, one must sample every arm inH0 at
least as many times as the most sampled arm inH1, otherwise they are statistically indistinguishable.
As discoveries are typically uncovering rare phenomenon, it is common to assume |H1| = nβ for
β ∈ (0, 1) [4, 5], or |H1| = o(n), but this implies that the number of samples taken from the arms
inH1, regardless of how samples are allocated to those arms, will almost always be dwarfed by the
number of samples allocated to those arms inH0 since there are Ω(n) of them. This line of reasoning,
in part, is what motivates us to give our sample complexity results in terms of the quantities that
best describe the contributions from those arms inH0, namely, the cardinality |H1| = n− |H0|, the
confidence parameter δ (e.g., δ = .05), and the gap ∆ := mini∈H1

µi − µ0 between the means of
the arms in H0 and the smallest mean in H1. Reporting sample complexity results in terms of ∆
also allows us to compare to known lower bounds in the literature [6, 4, 7, 8]. Nevertheless, we do
address the case where the means ofH1 are varied in Theorem 2.

An informal summary of the sample complexity results proven in this work are found in Table 1 for
|H1| = k. For the least strict setting of FDR+TPR, the upper-left quadrant of Table 1 matches the
lower bound of [4], a sample complexity of just ∆−2n. In this FDR+TPR setting (which requires
the fewest samples of the four settings), uniform sampling which pulls each arm an equal number of
times has a sample complexity of at least n∆−2 log(n/|H1|) (see Theorem 7 in Appendix G), which
exceeds all results in Table 1 demonstrating the statistical power gained by adaptive sampling. For the
most strict setting of FWER+FWPD, the lower-right quadrant of Table 1 matches the lower bounds
of [7, 9, 8], a sample complexity of (n− k)∆−2 log(k) + k∆−2 log(n− k). Uniform sampling in
the FWER+FWPD setting has a sample complexity lower bounded by n∆−2 log(n) (see Theorem 8
in Appendix G). The settings of FDR+FWPD and FWER+TPR are sandwiched between these results,
and we are unaware of existing lower bounds for these settings.

All the results in Table 1 are novel, and to the best of our knowledge are the first non-trivial sample
complexity results for an adaptive algorithm in the fixed confidence setting where a desired confidence
δ is set, and the algorithm attempts to minimize the number of samples taken to meet the desired
conditions. We also derive tools that we believe may be useful outside this work: for always valid
p-values (c.f. [3, 10]) we show that FDR is controlled for all times using the Benjamini-Hochberg
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procedure [11] (see Lemma 1), and also provide an anytime high probability bound on the false
discovery proportion (see Lemma 2).

Finally, as a direct consequence of the theoretical guarantees proven in this work and the empirical
performance of the FDR+TPR variant of the algorithm on real data, an algorithm faithful to the theory
was implemented and is in use in production at a leading A/B testing platform [12].

1.3 Related work

Identifying arms with means above a threshold, or equivalently, multiple testing via rejecting null-
hypotheses with small p-values, is an ubiquitous problem in the biological sciences. In the standard
setup, each arm is given an equal number of measurements (i.e., a uniform sampling strategy),
a p-value Pi is produced for each arm where P(Pi ≤ x) ≤ x for all x ∈ (0, 1] and i ∈ H0,
and a procedure is then run on these p-values to declare small p-values as rejections of the null-
hypothesis, or discoveries. For a set of p-values P1 ≤ P2 ≤ · · · ≤ Pn, the so-called Bonferroni
selection rule selects SBF = {i : Pi ≤ δ/n}. The fact that FWER control implies FDR control,
E[|SBF ∩ H0|] ≤ P(

⋃
i∈H0
{Pi ≤ δ/n}) ≤ δ |H0|

n ≤ δ, suggests that greater statistical power
(i.e. more discoveries) could be achieved with procedures designed specifically for FDR. The BH
procedure [11] is one such procedure to control FDR and is widely used in practice (with its many
extensions [6] and performance investigations [5]). Recall that a uniform measurement strategy where
every arm is sampled the same number of times requires n∆−2 log(n/k) samples in the FDR+TPR
setting, and n∆−2 log(n) samples in the FWER+FWPD setting (Theorems 7 and 8 in Appendix G),
which can be substantially worse than our adaptive procedure (see Table 1).

Adaptive sequential testing has been previously addressed in the fixed budget setting: the procedure
takes a sampling budget as input, and the guarantee states that if the given budget is larger than a
problem dependent constant, the procedure drives the error probability to zero and the detection
probability to one. One of the first methods called distilled sensing [13] assumed that arms from
H0 were Gaussian with mean at most µ0, and successively discarded arms after repeated sampling
by thresholding at µ0–at most the median of the null distribution–thereby discarding about half
the nulls at each round. The procedure made guarantees about FDR and TPR, which were later
shown to be nearly optimal [4]. Specifically, [4, Corollary 4.2] implies that any procedure with
max{FDR + (1 − TPR)} ≤ δ requires a budget of at least ∆−2n log(1/δ), which is consistent
with our work. Later, another thresholding algorithm for the fixed budget setting addressed the
FWER and FWPD metrics [7]. In particular, if their procedure is given a budget exceeding (n −
|H1|)∆−2 log(|H1|) + |H1|∆−2 log(n− |H1|) then the FWER is driven to zero, and the FWPD is
driven to one. By appealing to the optimality properties of the SPRT (which knows the distributions
precisely) it was argued that this is optimal. These previous works mostly focused on the asymptotic
regime as n→∞ and |H1| = o(n).

Our paper, in contrast to these previous works considers the fixed confidence setting: the procedure
takes a desired FDR (or FWER) and TPR (or FWPD) and aims to minimize the number of samples
taken before these constraints are met. To the best of our knowledge, our paper is the first to propose
a scheme for this problem in the fixed confidence regime with near-optimal sample complexity
guarantees.

A related line of work is the threshold bandit problem, where all the means ofH1 are assumed to be
strictly above a given threshold, and the means ofH0 are assumed to be strictly below the threshold
[14, 15]. To identify this partition, each arm must be pulled a number of times inversely proportional
to the square of its deviation from the threshold. This contrasts with our work, where the majority of
arms may have means equal to the threshold and the goal is to identify arms with means greater than
the threshold subject to discovery constraints. If the arms inH0 are assumed to be strictly below the
threshold it is possible to declare arms as inH0. In our setting we can only ever determine that an
arm is inH1 and notH0, but it is impossible to detect that an arm is inH0 and not inH1.

Note that the problem considered in this paper is very related to the top-k identification problem
where the objective is to identify the unique k arms with the highest means with high probability
[16, 9, 8]. Indeed, if we knew |H1|, then our FWER+FWPD setting is equivalent to the top-k problem
with k = |H1|. Lower bounds derived for the top-k problem assume the algorithm has knowledge of
the values of the means, just not their indices [16, 8]. Thus, these lower bounds also apply to our
setting and are what are referenced in Section 1.2.
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Algorithm 1 An algorithm for identifying arms with means above a threshold µ0 using as few samples as
possible subject to false alarm and true discovery conditions. The set St is designed to control FDR at level δ.
The setRt is designed to control FWER at level δ.

Input: Threshold µ0, confidence δ ∈ (0, e−1], confidence interval φ(·, ·)
Initialize: Pull each arm i ∈ [n] once and let Ti(t) denote the number of times arm i has been pulled
up to time t. Set Sn+1 = ∅,Rn+1 = ∅, and
If TPR

ξt = 1, and νt = 1 ∀t
Else if FWPD

ξt = max{2|St|, 5
3(1−4δ) log(1/δ)}, and νt = max{|St|, 1} ∀t

For t = n+ 1, n+ 2, . . .
Pull arm It = arg max

i∈[n]\St
µ̂i,Ti(t) + φ(Ti(t),

δ
ξt

),

Apply Benjamini-Hochberg [11] selection at level δ′ = δ
6.4 log(36/δ) to obtain δ FDR-controlled

set St:
s(k) = {i ∈ [n] : µ̂i,Ti(t) − φ(Ti(t), δ

′ k
n ) ≥ µ0}, ∀k ∈ [n]

St+1 = s(k̂) where k̂ = max{k ∈ [n] : |s(k)| ≥ k} (if 6 ∃k̂ set St+1 = St)
If FWER and St 6= ∅:

Pull arm Jt = arg max
i∈St\Rt

µ̂i,Ti(t) + φ(Ti(t),
δ
νt

)

Apply Bonferroni-like selection to obtain FWER-controlled setRt:
χt = n− (1− 2δ′(1 + 4δ′))|St|+ 4(1+4δ′)

3 log(5 log2(n/δ′)/δ′)

Rt+1 = Rt ∪ {i ∈ St : µ̂i,Ti(t) − φ(Ti(t),
δ
χt

) ≥ µ0}

As pointed out by [14], both our setting and the threshold bandit problem can be posed as a combi-
natorial bandits problem as studied in [17, 18], but such generality leads to unnecessary log factors.
The techniques used in this work aim to reduce extraneous log factors, a topic of recent interest in
the top-1 and top-k arm identification problem [19, 20, 21, 22, 16, 8]. While these works are most
similar to exact identification (FWER+FWPD), there also exist examples of approximate top-k where
the objective is to find any k means that are each within ε of the best k means [9]. Approximate
recovery is also studied in a ranking context with a symmetric difference metric [23] which is more
similar to the FDR and TPR setting, but neither this nor that work subsumes one another.

Finally, maximizing the number of discoveries subject to a FDR constraint has been studied in a
sequential setting in the context of A/B testing with uniform sampling [3]. This work popularized the
concept of an always valid p-value that we employ here (see Section 2). The work of [10] controls
FDR over a sequence of independent bandit problems that each outputs at most one discovery. While
[10] shares much of the same vocabulary as this paper, the problem settings are very different.

2 Algorithm and Discussion

Throughout, we will assume the existence of an anytime confidence interval. Namely, if µ̂i,t denotes
the empirical mean of the first t bounded i.i.d. rewards in [0, 1] from arm i, then for any δ ∈ (0, 1) we
assume the existence of a function φ such that for any δ we have P (

⋂∞
t=1{|µ̂i,t − µi| ≤ φ(t, δ)}) ≥

1−δ. We assume that φ(t, δ) is non-increasing in its second argument and that there exists an absolute

constant cφ such that φ(t, δ) ≤
√

cφ log(log2(2t)/δ)
t . It suffices to define φ with this upper bound with

cφ = 4 but there are much sharper known bounds that should be used in practice (e.g., they may take
empirical variance into account), see [21, 24, 25, 26]. Anytime bounds constructed with such a φ(t, δ)
are known to be tight in the sense that P(

⋃∞
t=1{|µ̂i,t − µi| ≥ φ(t, δ)}) ≤ δ and that there exists an

absolute constant h ∈ (0, 1) such that P({|µ̂i,t − µi| ≥ hφ(t, δ) for infinitely many t ∈ N}) = 1 by
the Law of the Iterated Logarithm [27].

Consider Algorithm 1. Before entering the for loop, time-dependent variables ξt and νt are defined
that should be updated at each time t for different settings. If just FDR control is desired, the
algorithm merely loops over the three lines following the for loop, pulling the arm It not in St that
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has the highest upper confidence bound; such strategies are common for pure-exploration problems
[21, 10]. But if FWER control is desired then at most one additional arm Jt is pulled per round to
provide an extra layer of filtering and evidence before an arm is added to Rt. Below we describe
the main elements of the algorithm and along the way sketch out the main arguments of the analysis,
shedding light on the constants ξt and νt.

2.1 False alarm control

St is FDR-controlled. In addition to its use as a confident bound, we can also use φ(t, δ) to construct:

Pi,t := sup{α ∈ (0, 1] : µ̂i,t − µ0 ≤ φ(t, α)} ≤ log2(2t) exp(−t(µ̂i,t − µ0)2/cφ). (1)

Proposition 1 of [10] (and the proof of our Lemma 1) shows that if i ∈ H0 so that µi = µ0 then
Pi,t is an anytime, sub-uniformly distributed p-value in the sense that P(

⋃∞
t=1{Pi,t ≤ x}) ≤ x.

Sequences that have this property are sometimes referred to as always-valid p-values [3]. Note that
if i ∈ H1 so that µi > µ0, we would intuitively expect the sequence {Pi,t}∞t=1 to be point-wise
smaller than if µi = µ0 by the property that φ(·, ·) is non-increasing in its second argument. This
leads to the intuitive rule to reject the null-hypothesis (i.e., declare i /∈ H0) for those arms i ∈ [n]
where Pi,t is very small. The Benjamini-Hochberg (BH) procedure introduced in [11] proceeds
by first sorting the p-values so that P(1),T(1)(t) ≤ P(2),T(2)(t) ≤ · · · ≤ P(n),T(n)(t), then defines

k̂ = max{k : P(k),T(k)(t) ≤ δ kn}, and sets SBH = {i : Pi,Ti(t) ≤ δ k̂n}. Note that this procedure is
identical to defining sets

s(k) = {i : Pi,Ti(t) ≤ δ kn} = {i : µ̂i,Ti(t) − φ(Ti(t), δ
k
n ) ≥ µ0},

setting k̂ = max{k : |s(k)| ≥ k}, and SBH = s(k̂), which is exactly the set St = SBH in Algo-
rithm 1. Thus, St in Algorithm 1 is equivalent to applying the BH procedure at a levelO(δ/ log(1/δ))
to the anytime p-values of (1). We now discuss the extra logarithmic factor.

Because the algorithm is pulling arms sequentially, some dependence between the p-values may be
introduced. Because the anytime p-values are not independent, the BH procedure at level δ does not
directly guarantee FDR-control at level δ. However, it has been shown [28] that for even arbitrarily
dependent p-values the BH procedure at level δ controls FDR at level δ log(n) (and that it is nearly
tight). Similarly, the following theorem, which may be of independent interest, is a significant
improvement when applied to our setting.
Theorem 1. Fix δ ∈ (0, e−1). Let p1, . . . , pn be random variables such that {pi}i∈H0

are indepen-
dent and sub-uniformly distributed so that maxi∈H0

P(pi ≤ x) ≤ x. For any k ∈ {0, 1, . . . , n}, let
Rk := {i : pi ≤ δ kn} and F̂DP (Rk) :=

maxpi∈Rk pi
|Rk|∨1 .

E

[
max

k:F̂DP (Rk)≤δ
FDP (Rk)

]
≤ |H0|δ

n

(
2 log( 2n

|H0|δ ) + log(8e5 log( 8n
|H0|δ ))

)
≤ 4δ log(9/δ)

In other words, any procedure that chooses a set {i : pi ≤ δk
n } satisfying |{i : pi ≤ δk

n }| ≥ k is FDR
controlled at level O(δ log(1/δ)).

Recall, if k̂ = max{k : F̂DP (Rk) ≤ δ} then E[FDP (Rk̂)] ≤ δ by the standard BH result. When
running the algorithm we recommend using BH at level δ, not level O(δ/ log(1/δ)). As Ti gets very
large, Pi,Ti(t) → Pi,∗ and we know that if BH is run on Pi,∗ at level δ then FDR would be controlled
at level δ. We believe this inflation to be somewhat of an artifact of our proofs.

Rt is FWER-controlled. A core obstacle in our analysis is the fact that we don’t know the cardinality
ofH1. If we did know |H1| (and equivalently know |H0| = n−|H1|) then a FWER+FWPD algorithm
is equivalent to the so-called top-k multi-armed bandit problem [9, 8] and controlling FWER would
be relatively simple using a Bonferroni correction:

P
( ⋃
i∈H0

∪∞t=1{µ̂i,t − φ(t, δ
n−|H1| ) ≥ µ0}

)
≤
∑
i∈H0

P
(
∪∞t=1{µ̂i,t − φ(t, δ

|H0| ) ≥ µ0}
)
≤ |H0| δ

|H0|

which implies FWER-δ. Comparing the first expression immediately above to the definition ofRt
in the algorithm, it is clear our strategy is to use |St| as a surrogate for |H1|. Note that we could

6



use the bound |H0| = n− |H1| ≤ n to guarantee FWER-δ, but this could be very loose and induce
an n log(n) sample complexity. Using |St| as a surrogate for |H1| inRt is intuitive because by the
FDR guarantee, we know |H1| ≥ E[|St ∩H1|] = E[|St|]−E[|St ∩H0|] ≥ (1− δ)E[|St|], implying
that |H0| = n − |H1| ≤ n − (1 − δ)E[|St|] which may be much tighter than n if E[|St|] → |H1|.
Because we only know |St| and not its expectation, the extra factors in the surrogate expression used
inRt are used to ensure correctness with high-probability (see Lemma 7).

2.2 Sampling strategies to boost statistical power

The above discussion about controlling false alarms for St andRt holds for any choice of arms It
and Jt that may be pulled at time t. Thus, It and Jt are chosen in order to minimize the amount of
time necessary to add arms into St andRt, respectively, and optimize the sample complexity.

TPR-δ, τ setting implies ξt = νt = 1. Define the random set I = {i ∈ H1 : µ̂i,Ti(t) +φ(Ti(t), δ) ≥
µi ∀t ∈ N}. Because φ is an anytime confidence bound, E [|I|] ≥ (1−δ)|H1|. If ∆ = mini∈H1

µi−
µ0, then mini∈I µi ≥ µ0 + ∆ and we claim that with probability at least 1−O(δ) (Section C)∑∞

t=1 1{It ∈ H0, I 6⊆ St} ≤
∑∞
t=1 1{It ∈ H0, µ̂It,TIt (t) + φ(TIt(t), δ) ≥ µ0 + ∆}

≤ c|H0|∆−2 log(log(∆−2/δ).

Thus once this number of samples has been taken, either I ⊆ St, or arms in I will be repeatedly
sampled until they are added to St since each arm i ∈ I has its upper confidence bound larger than
those arms inH0 by definition. It is clear that an arm inH1 that is repeatedly sampled will eventually
be added to St since its anytime p-value of (1) approaches 0 at an exponential rate as it is pulled, and
BH selects for low p-values. A similar argument holds for Jt and adding arms toRt.
Remark 2. While the main objective of Algorithm 1 is to identify all arms with means above a
given threshold, we note that prior to adding an arm to St in the TPR setting (i.e., when ξt = 1)
Algorithm 1 behaves identically to the nearly optimal best-arm identification algorithm lil’UCB of
[21]. Thus, whether the goal is best-arm identification or to identify all arms with means above a
certain threshold, Algorithm 1 is applicable.

FWPD-δ, τ setting is more delicate and uses inflated values of ξt and νt. This time, we must ensure
that {H1 6⊆ St} =⇒ maxi∈H1∩Sct µ̂i,Ti(t) + φ(Ti(t), δ) ≥ mini∈H1∩Sct µi ≥ µ0 + ∆. Because
then we could argue that eitherH1 ⊂ St, or only arms inH1 are sampled until they are added to St
(mirroring the TPR argument). As in the FWER setting above, if we knew the value of |H1| the we
could set ξt ≥ |H1| to observe that

P(
⋃
i∈H1

∪∞t=1{µ̂i,t + φ(t, δξt ) < µi}) ≤
∑
i∈H1

P
(
∪∞t=1{µ̂i,t + φ(t, δξt ) < µi}

)
≤ |H1| δξt

which is less than δ, to guarantee such a condition. But we don’t know |H1| so we use |St|
as a surrogate, resulting in the inflated definitions of ξt and νt relative to the TPR setting. The
key argument is that either I 6⊆ St so that maxi∈I∩Sct µ̂i,Ti(t) + φ(Ti(t),

δ
ξt

) ≥ µ0 + ∆ by the
definition of I (since ξt ≥ 1), or I ⊂ St and |St| ≥ 1

2 |H1| with high probability which implies
ξt = max{2|St|, 5

3(1−4δ) log(1/δ)} ≥ |H1| and the union bound of the display above holds.

3 Main Results

In what follows, we say f . g if there exists a c > 0 that is independent of all problem parameters
and f ≤ cg. The theorems provide an upper bound on the sample complexity τ ∈ N as defined in
Section 1.1 for TPR-δ, τ or FWER-δ, τ that holds with probability at least 1− cδ for different values
of c3. We begin with the least restrictive setting, resulting in the smallest sample complexity of all the
results presented in this work. Note the slight generalization in the below theorem where the means
ofH0 are assumed to be no greater than µ0.
Theorem 2 (FDR, TPR). Let H1 = {i ∈ [n] : µi > µ0}, H0 = {i ∈ [n] : µi ≤ µ0}. Define
∆i = µi − µ0 for i ∈ H1, ∆ = mini∈H1

∆i, and ∆i = minj∈H1
µj − µi = ∆ + (µ0 − µi) for

3 Each theorem relies on different events holding with high probability, and consequently a different c for
each. To have c = 1 for each of the four settings, we would have had to define different constants in the
algorithm for each setting. We hope the reader forgives us for this attempt at minimizing clutter.
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i ∈ H0. For all t ∈ N we have E[ |St∩H0|
|St|∨1 ] ≤ δ. Moreover, with probability at least 1 − 2δ there

exists a T such that

T . min
{
n∆−2 log(log(∆−2)/δ),∑

i∈H0
∆−2
i log(log(∆−2

i )/δ) +
∑
i∈H1

∆−2
i log(n log(∆−2

i )/δ)
}

and E[ |St∩H1|
|H1| ] ≥ 1− δ for all t ≥ T . Neither argument of the minimum follows from the other.

If the means ofH1 are very diverse so that maxi∈H1 µi − µ0 � mini∈H1 µi − µ0 then the second
argument of the min in Theorem 2 can be tighter than the first. But as discussed above, this advantage
is inconsequential if |H1| = o(n). The remaining theorems are given in terms of just ∆. The
log log(∆−2) dependence is due to inverting the φ confidence interval and is unavoidable on at least
one arm when ∆ is unknown a priori due to the law of the iterated logarithm [27, 21, 22].

Informally, Theorem 2 states that if just most true detections suffice while not making too many
mistakes, then O(n) samples suffice. The first argument of the min is known to be tight in a minimax
sense up to doubly logarithmic factors due to the lower bound of [4]. As a consequence of this work,
an algorithm inspired by Algorithm 1 in this setting is now in production at one of the largest A/B
testing platforms on the web. The full proof of Theorem 2 (and all others) is given in the Appendix
due to space.

Theorem 3 (FDR, FWPD). For all t ∈ N we have E[ |St∩H0|
|St|∨1 ] ≤ δ. Moreover, with probability at

least 1− 5δ, there exists a T such that

T . (n− |H1|)∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ) + |H1|∆−2 log(log(∆−2)/δ)

andH1 ⊆ St for all t ≥ T .

Here T roughly scales like (n − |H1|) max{log(|H1|), log log log(n/δ)} + |H1| where the
log log log(n/δ) term comes from a high probability bound on the false discovery proportion for
anytime p-values (in contrast to just expectation) in Lemma 2 that may be of independent interest.
While negligible for all practical purposes, it appears unnatural and we suspect that this is an artifact of
our analysis. We note that if |H1| = Ω(log(n)) then the sample complexity sheds this awkwardness4.

The next two theorems are concerned with controlling FWER on the set Rt and determining how
long it takes before the claimed detection conditions are satisfied on the setRt. Note we still have
that FDR is controlled on the set St but now this set feeds intoRt.
Theorem 4 (FWER, FWPD). For all t we have E[ |St∩H0|

|St|∨1 ] ≤ δ. Moreover, with probability at least
1− 6δ, we haveH0 ∩Rt = ∅ for all t ∈ N and there exists a T such that

T .(n− |H1|)∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ)

+ |H1|∆−2 log(max{n− (1− 2δ(1 + 4δ))|H1|, log log(n/δ)} log(∆−2)/δ)

andH1 ⊆ Rt for all t ≥ T . Note, together this impliesH1 = Rt for all t ≥ T .

Theorem 4 has the strongest conditions, and therefore the largest sample complexity. Ignoring
log log log(n) factors, T roughly scales as (n−|H1|) log(|H1|)+|H1| log(n−(1−2δ(1+4δ))|H1|).
Inspecting the top-k lower bound of [8] where the arms’ means inH1 are equal to µ0 + ∆, the arms’
means inH0 are equal to µ0, and the algorithm has knowledge of the cardinality ofH1, a necessary
sample complexity of (n−|H1|) log(|H1|) + |H1| log(n−|H1|) is given. It is not clear whether this
small difference of log(n− (1− 2δ(1 + 4δ))|H1|) versus log(n− |H1|) is an artifact of our analysis,
or a fundamental limitation when the cardinality |H1| is unknown. We now state our final theorem.

Theorem 5 (FWER, TPR). For all t we have E[ |St∩H0|
|St|∨1 ] ≤ δ. Moreover, with probability at least

1− 7δ we haveH0 ∩Rt = ∅ for all t ∈ N and there exists a T such that

T .(n− |H1|)∆−2 log(log(∆−2)/δ)

+ |H1|∆−2 log(max{n− (1− η)|H1|, log log(n log(1/δ)/δ)} log(∆−2)/δ)

and E[ |Rt∩H1|
|H1| ] ≥ 1− δ for all t ≥ T , where η = (1− 3δ −

√
2δ log(1/δ)/|H1|).

4In the asymptotic n regime, it is common to study the case when |H1| = nβ for β ∈ (0, 1) [4, 13].
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4 Experiments

The distribution of each arm equals νi = N (µi, 1) where µi = µ0 = 0 if i ∈ H0, and µi > 0 if
i ∈ H1. We consider three algorithms: i) uniform allocation with anytime BH selection as done in
Algorithm 1, ii) successive elimination (SE) (see Appendix G)5 that performs uniform allocation
on only those arms that have not yet been selected by BH, and iii) Algorithm 1 (UCB). Algorithm

1 and the BH selection rule for all algorithms use φ(t, δ) =
√

2 log(1/δ)+6 log log(1/δ)+3 log(log(et/2))
t

from [25, Theorem 8]. In addition, we ran BH at level δ instead of δ/(6.4 log(36/δ)) as discussed
in section 3. Here we present the sample complexity for TPR+FDR with δ = 0.05 and different
parameterizations of µ, n, |H1|.

The first panel shows an empirical estimate of E[ |St∩H1|
|H1| ] at each time t for each algorithm, averaged

over 1000 trials. The black dashed line on the first panel denotes the level E[ |St∩H1|
|H1| ] = 1− δ = .95,

and corresponds to the dashed black line on the second panel. The right four panels show the number
of samples each algorithm takes before the true positive rate exceeds 1 − δ = .95, relative to the
number of samples taken by UCB, for various parameterizations. Panels two, three, and four have
∆i = ∆ for i ∈ H1 while panel five is a case where the ∆i’s are linear for i ∈ H1. While the
differences are most clear on the second panel when |H1| = 2 = o(n), over all cases UCB uses at
least ≈ 3 times fewer samples than uniform and SE. For FDR+TPR, Appendix G shows uniform
sampling roughly has a sample complexity that scales like n∆−2 log( n

|H1| ) while SE’s is upper
bounded by min{n∆−2 log( n

|H1| ), (n − |H1|)∆−2 log( n
|H1| ) +

∑
i∈H1

∆−2
i log(n)}. Comparing

with Theorem 2 for the difference cases (i.e., |H1| = 2,
√
n, n/5) provides insight into the relative

difference between UCB, uniform, and SE on the different panels.
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A Analysis Preliminaries

Recall that for any i ∈ [n] we assume the existence of a function φ such that for any δ we have
P (
⋂∞
t=1{|µ̂i,t − µi| ≤ φ(t, δ)}) ≥ 1 − δ. We assume that φ(t, δ) is non-increasing in its second

argument and that there exists an absolute constant cφ such that φ(t, δ) ≤
√

cφ log(log2(2t)/δ)
t . It

suffices to take cφ = 4 but there are much sharper known bounds that should be used in practice,
see [21, 24, 25, 26]. Moreover, define its inverse φ−1(ε, δ) = min{t : φ(t, δ) ≤ ε). For the same
constant cφ, it can be shown that φ−1(ε, δ) ≤ cφε

−2 log(2 log(
ecφε

−2

δ )/δ) ≤ cε−2 log(log(ε−2)/δ)
for a sufficiently large constant c (and any ε, δ < 1/4).

The technical challenges in this work revolve around arguments that avoid union bounds. By union
bounding over all n arms we have

P
(⋃n

i=1

⋃∞
t=1{|µ̂i,t − µi| ≤ φ(t, δn )}

)
≤
∑n
i=1 P

(⋃∞
t=1{|µ̂i,t − µi| ≤ φ(t, δn )}

)
≤ n δn = δ

which says that with probability at least 1− δ, the deviations of all arms after any number of samples
s are bounded by φ(s, δ/n). This is attractive because we can easily upper bound the number
of times we need to sample an arm i before its empirical mean is within ε of its true mean by
φ−1(ε, δn ) ≈ ε−2 log(nδ log(ε−2)). However, we note that this number of samples scales as log(n),
and this log(n) will persist in any sample complexity result in any analysis that uses such a union
bounding technique. That is, using union bounds in a naive way leads to sample complexities of at
least ∆−2n log(n), which is no better than uniform sampling when considering FWER+FWPD (see
Theorem 8)!

To avoid union bounds, we use techniques developed for best arm and top-k identification for
multi-armed bandits [21, 8]. Define the random variable

ρi = sup

{
ρ ∈ (0, 1] :

∞⋂
t=1

{|µ̂i,t − µi| ≤ φ(t, ρ)}

}
(2)

and note that by the definition of φ, we have P(ρi ≤ x) ≤ x for any x ∈ (0, 1]. That is, each ρi is
an independent sub-uniformly distributed random variable. However, note that the ρi random
variables are not p-values, that is, they are unrelated to Pi,t. We will often make use of the fact that
µi − φ(t, ρi) ≤ µ̂i,t ≤ µi + φ(t, ρi) which is simply sandwiching a random quantity by two other
random quantities. Furthermore, by definition |µ̂i,t − µi| ≤ φ(t, δ) implies ρi ≥ δ. While a union
bound would be equivalent to saying P(

⋃n
i=1{ρi ≤

δ
n}) ≤ δ, we avoid union bounds by reasoning

about only the statements we need. For instance, instead of guaranteeing all the ρi are bounded by
a single value, we will make guarantees about how most behave, and argue that this is sufficient.
Examples of such statements are given in events E3, E4,0, E4,1 defined below. This strategy has been
applied successfully to remove extraneous log factors (for instance, [8] improved the top-k algorithm
and analysis initially proposed in [9]).

Our proofs may upper bound an expression by another with a leading constant c, which may become
c′ on the next line, then c′′, and so on. This is meant to indicate that the constant is changing from
line to line, but the next display may revert back to using c and this is not the same c as before.
All constants are independent of problem parameters. This strategy is principally used to hide the
ugliness of inverting the φ function, which arises only in the analysis and not the algorithm itself.

The proofs that follow are meant to be read sequentially, as some of the proofs will reuse the same
lemmas. All four theorems claim that FDR is controlled for the set St in the algorithm. This is
independent of the sampling scheme because of the defined anytime p-values.

B Anytime FDR for Anytime p-values

We begin our analysis by proving a few general statements about anytime p-values and FDR control
for the set St.
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For p-values p1, . . . , pn and null setH0 ⊆ [n] define

Rk = {i : pi ≤ α kn}

FDP (Rk) =

∑
i∈H0

1{pi ≤ α kn}
|Rk| ∨ 1

F̂DP (Rk) =
nmaxi∈Rk pi
|Rk| ∨ 1

The celebrated result of Benjamini-Hochberg says that under the assumption that the null p-values are
independent and sub-uniformly distributed, if k̂ = max{k : F̂DP (Rk) ≤ α} then E[FDP (Rk̂)] ≤
α. The following theorem provides a bound on the expected false discovery proportion for any k
such that F̂DP (Rk) ≤ α.
Theorem 1. Fix α ∈ (0, e−1). For n ≥ 2 let p1, . . . , pn be random variables such that {pi}i∈H0

are independent and sub-uniformly distributed so that maxi∈H0
P(pi ≤ x) ≤ x. For any k ∈

{0, 1, . . . , n}, if Rk = {i : pi ≤ α kn} then

E

[
max

k:F̂DP (Rk)≤α
FDP (Rk)

]
≤ |H0|α

n

(
2 log( 2n

|H0|α ) + log(8e5 log( 8n
|H0|α ))

)
≤ 4α log(9/α).

In other words, any procedure that chooses a set {i : pi ≤ αk
n } for any k satisfying |{i : pi ≤ αk

n }| ≥
k is FDR controlled at level O(α log(1/α)).

Proof. Define

p0
` = min{t :

∑
i∈H0

1{pi ≤ t} ≥ `}.

so that p0
` is the value of the `th largest p-value inH0. Note that

max
k:F̂DP (Rk)≤α

FDP (Rk) = max
k:F̂DP (Rk)≤α

∑
i∈H0

1{pi ≤ α kn}
|Rk|

= max
k:F̂DP (Rk)≤α

|H0|∑
`=1

`

|Rk|
1

{
` =

∑
i∈H0

1{pi ≤ α kn}

}

≤ max
k:F̂DP (Rk)≤α

`0∑
`=1

`

|Rk|
1

{
` =

∑
i∈H0

1{pi ≤ α kn}

}

+ max
k:F̂DP (Rk)≤α

|H0|∑
`=`0+1

`

|Rk|
1

{
` =

∑
i∈H0

1{pi ≤ α kn}

}
for some `0 ∈ {1, . . . , |H0|} to be defined later, where the last line follows from the fact that
maxk(f(k) + g(k)) ≤ maxk f(k) + maxk g(k). If ` =

∑
i∈H0

1{pi ≤ α kn} then maxi∈Rk pi is at
least as large as the `th largest p-value in {pi : i ∈ H0} (i.e., p0

` ) and

1
{
` =

∑
i∈H0

1{pi ≤ α kn}
}

maxi∈Rk pi
≤

1
{
` =

∑
i∈H0

1{pi ≤ α kn}
}

p0
`

.

Let u1, . . . , u|H0| be iid uniformly distributed random variables on [0, 1]. Note that for every i ∈ H0

and j = 1, . . . , |H0| we have P(pi ≤ x) ≤ x = P(uj ≤ x) where we have used the assumption that
each pi is sub-uniform randomly distributed. Let u(i) be the ith largest ui such that u(1) ≤ u(2) ≤
· · · ≤ u(|H0|). Note that for any ` = 1, . . . , |H0| we have

P
(
p0
` ≤ x

)
= P(

∑
i∈H0

1{pi ≤ x} ≥ `) ≤ P(

|H0|∑
i=1

1{ui ≤ x} ≥ `) = P
(
u(`) ≤ x

)
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since each 1{pi ≤ x} is an independent Bernoulli random variable with parameter P(pi ≤ x) ≤ x =
P(uj ≤ x) for any j ∈ {1, . . . , |H0|}.
We then observe that

P
(
u(`) ≤ x

)
≤ P(

|H0|∑
i=1

1{ui ≤ x} ≥ `)

≤ exp
(
−|H0|KL( `

|H0| , x)
)

≤ exp

−|H0|

(
`
|H0| − x

)2

2`/|H0|


= exp

(
− `

2

(
1− |H0|x

`

)2
)

where the second inequality is Chernoff’s bound, and the next line follows from KL(x, y) ≥ (x−y)2

2x

for x > y. For each ` = 1, 2, . . . , |H0| pick x = `
2|H0| so that P

(
p0
` ≤ `

2|H0|

)
≤ e−`/8. Also, if we

define the event

E` :=

{
p0
` ≥

`

2|H0|

}
then P(E`) ≥ 1− e−`/8. If E = ∩|H0|

`=`0+1E` then

max
k:F̂DP (Rk)≤α

|H0|∑
`=`0+1

`1
{
` =

∑
i∈H0

1{pi ≤ α kn}
}

|Rk|

≤ 1{Ec}+ 1{E} max
k:F̂DP (Rk)≤α

|H0|∑
`=`0+1

`1
{
` =

∑
i∈H0

1{pi ≤ α kn}
}

|Rk|

≤ 1{Ec}+ 1{E} max
k:F̂DP (Rk)≤α

|H0|∑
`=`0+1

`1
{
` =

∑
i∈H0

1{pi ≤ α kn}
}

nmaxi∈Rk pi
α

≤ 1{Ec}+ 1{E} max
k:F̂DP (Rk)≤α

|H0|∑
`=`0+1

`1
{
` =

∑
i∈H0

1{pi ≤ α kn}
}

np0
`

α

≤ 1{Ec}+ 1{E}max
k

|H0|∑
`=`0+1

2|H0|1
{
` =

∑
i∈H0

1{pi ≤ α kn}
}

n
α

≤ 1{Ec}+ 1{E}2|H0|
n

α max
k

|H0|∑
`=`0+1

1

{
` =

∑
i∈H0

1{pi ≤ α kn}

}

≤ 1{Ec}+
2|H0|
n

α.

Note that the only randomness on the right-hand-side is 1{Ec}. After taking expectations on both
sides we observe that

E[1{Ec}] = E
[
1{∪|H0|

`=`0+1E
c
` }
]

=

|H0|∑
`=`0+1

P(Ec` ) ≤
|H0|∑

`=`0+1

e−`/8 ≤ 8e−`0/8.

Thus,

E

 max
k:F̂DP (Rk)≤α

|H0|∑
`=`0+1

`1
{
` =

∑
i∈H0

1{pi ≤ α kn}
}

|Rk|

 ≤ 8e−`0/8 +
2|H0|
n

α.
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On the other hand, for any k with F̂DP (Rk) =
nmaxi∈Rk pi
|Rk|∨1 ≤ α and ` =

∑
i∈H0

1{pi ≤ α kn}

we have that the `th p-value is in Rk and np0`
α ≤

nmaxi∈Rk pi
α ≤ |Rk| where |Rk| ≥ 1 necessarily.

Consequently, |Rk| ≥ dnp0
`/αe so that

max
k:F̂DP (Rk)≤α

`0∑
`=1

`

|Rk|
1

{
` =

∑
i∈H0

1{pi ≤ α kn}

}
≤ max
k:F̂DP (Rk)≤α

`0∑
`=1

`

|Rk|
1

{
` =

∑
i∈H0

1{pi ≤ α kn}

}

≤
`0∑
`=1

max
k

`

|Rk|
1

{
` =

∑
i∈H0

1{pi ≤ α kn}

}

≤
`0∑
`=1

max
k

`

dnp0
`/αe

1

{
` =

∑
i∈H0

1{pi ≤ max
i∈Rk

pi}

}

=

`0∑
`=1

`

dnp0
`/αe

As above, we use the fact that each p0
` is stochastically dominated by u(`) so that

E
[

`

dnp0
`/αe

]
=

∫ ∞
x=0

P
(

`

dnp0
`/αe

≥ x
)
dx

=

∫ ∞
x=0

P
(
dnp0

`/αe ≤ `/x
)
dx

=

∫ ∞
x=0

P
(
np0

`/α ≤ b`/xc
)
dx

≤
∫ ∞
x=0

P
(
nu(`)/α ≤ b`/xc

)
dx

=

∫ ∞
x=0

P
(
dnu(`)/αe ≤ `/x

)
dx

= E
[

`

dnu(`)/αe

]

since dae > b ⇐⇒ a > bbc. Thus,

E

[
max

k:F̂DP (Rk)≤α

`0∑
`=1

`

|Rk|
1

{
` =

∑
i∈H0

1{pi ≤ α kn}

}]
≤

`0∑
`=1

E
[

`

dnp0
`/αe

]
≤

`0∑
`=1

E
[

`

dnu(`)/αe

]
.

For notational ease, let m = |H0|. Recall that the PDF of the `-th order statistic of m iid uniform
random variables on [0, 1] is given by,

dP(u(`) ≤ x)

dx
= `

(
m

`

)
(1− x)m−`x`−1.

The following simple bound will be useful for small ` and y:

P(u(`) ≤ y) =

∫ y

x=0

`

(
m

`

)
(1− x)m−`x`−1dx ≤

(
m

`

)
y` ≤ (my)`.
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First we consider the case when ` > 1.

E
[

`

dnu(`)/αe

]
=

∞∑
k=1

1

k
P
(

(k − 1)α

n
≤ u(`) ≤

kα

n

)

≤ P
(
u(`) ≤

α

n

)
+

∫ 1

x=α
n

α

nx
dP(u(`) ≤ x)

= P
(
u(`) ≤

α

n

)
+
α

n
`

(
m

`

)∫ 1

x=α
n

(1− x)m−`x`−2dx

≤
(αm
n

)`
+
α

n

`
(
m
`

)
(`− 1)

(
m−1
`−1

) ∫ 1

α/n

(`− 1)

(
m− 1

`− 1

)
(1− x)m−`x`−2dx

≤
(αm
n

)`
+
α

n

m!

(`− 1)!(m− `)!
(`− 2)!(m− `)!

(m− 1)!

=
(αm
n

)`
+
α

n

m

`− 1
where going from the third line to the fourth, the integrand is just the PDF of a Beta-distribution so
the integral can be bounded away by 1. When ` = 1, the argument is slightly different. Firstly note
that the PDF is a decreasing function, hence

P
(

(k − 1)α

n
≤ u(1) ≤

kα

n

)
≤ α

n
m

(
1− α(k − 1)

n

)m−1

≤ α

n
me−(m−1)

α(k−1)
n

using the fact that e−x > 1− x. Hence,

E
[

1

dnu(1)/αe

]
=

dn/αe∑
k=1

1

k
P
(

(k − 1)α

n
≤ u(1) ≤

kα

n

)

≤ mα

n

∞∑
k=1

1

k
e−(m−1)

α(k−1)
n

=
mα

n
(1 +

∞∑
k=1

1

k + 1
e−

(m−1)α
n k)

=
mα

n
e

(m−1)α
n log

(
1

1− e−
(m−1)α

n

)
≤ 2

mα

n
log( n

(m−1)α )

where the last line holds for α(m − 1)/n ≤ e−1 by observing that ex log(1 − e−x)/ log(x) is
increasing and less than 2 at x = e−1. On the other hand, if m = 1 then in the above display∑dn/αe
k=1 1/k ≤ log(dn/αee) ≤ 2 log(n/α) for α ≤ e−1 and n ≥ 2. Thus,

E
[

1

dnu(1)/αe

]
=

dn/αe∑
k=1

1

k
P
(

(k − 1)α

n
≤ u(1) ≤

kα

n

)

≤

{
2mαn log( n

(m−1)α ) if m > 1

2αn log(nα ) if m = 1

≤ 2
mα

n
log( 2n

mα )

Plugging it all in we get
`0∑
`=1

E
[

`

dnu(`)/αe

]
≤ 2

mα

n
log( 2n

mα ) +

`0∑
`=2

((αm
n

)`
+
α

n

m

`− 1

)
≤ 2

mα

n
log( 2n

mα ) +
(αm
n

)2

/(1− αm

n
) +

αm

n
log(`0e)
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Putting it all together, we conclude that

E

[
max

k:F̂DP (Rk)≤α
FDP (Rk)

]
≤ 8e−`0/8 +

2|H0|
n

α+

`0∑
`=1

E
[

`

dnu(`)/αe

]
≤ 8e−`0/8 +

|H0|
n

α
(

2 log( 2n
|H0|α ) + log(`0e

4)
)

≤ |H0|α
n

(
2 log( 2n

|H0|α ) + log(8e5 log( 8n
|H0|α ))

)
= O

(
|H0|α
n log( n

|H0|α )
)

Where the last lines have taken `0 = 8 log( 8n
|H0|α ).

In this section, consider a hypothesis test between H0 and H1. Let {Pi,t}∞t=1, Pi,t ∈ (0, 1] be a
collection of random variables such that for i ∈ H0, {Pi,t}∞i=1 are sub-uniformly distributed anytime
p-values, i.e. P(∪∞t=1{Pi,t ≤ x}) ≤ x. Let St be the set of discoveries following the Benjamini-
Hochberg procedure at confidence level δ at time t on the p-values Pi,Ti(t), 1 ≤ i ≤ n. The following
lemma employees the previous Theorem to guarantees FDR-control.

Lemma 1. For all times t ≥ 1, FDR is controlled at level δ so that E[ |St∩H0|
|St|∨1 ] ≤ δ.

Proof. For any i ∈ H0 so that µi ≤ µ0 define Pi,∗ = inft≥1 Pi,t. Then for any i ∈ H0 and δ ∈ (0, 1)

P(Pi,∗ ≤ δ) = P

( ∞⋃
t=1

{Pi,t ≤ δ}

)
= P

( ∞⋃
t=1

{µ̂i,t − φ(t, δ) ≥ µ0}

)

≤ P

( ∞⋃
t=1

{µ̂i,t − φ(t, δ) ≥ µi}

)
≤ P

( ∞⋃
t=1

{|µ̂i,t − µi| ≥ φ(t, δ)

)
≤ δ.

We observe that {Pi,∗}i∈H0 are sub-uniformly distributed random variables but are also independent
since they only depend on the rewards of arm i ∈ H0. Thus, we may apply the above proposition at
time t with {Pi,∗ : i ∈ H0} ∪ {Pi,Ti(t) : i ∈ H1} to conclude that FDR would be controlled for any
of the prescribed values of k (including the largest, which would be equivalent to BH). We need to
show that the BH procedure controls FDR at time t with {Pi,Ti(t) : i ∈ H0} ∪ {Pi,Ti(t) : i ∈ H1}.

As described in Section 2.1, the BH procedure selects the k̂ smallest p-values where

k̂ = max{k : |{i : Pi,Ti(t) ≤ δ kn}| ≥ k}.
By definition

k̂ = |{i ∈ H0 : Pi,Ti(t) ≤ δ k̂n} ∪ {i ∈ H1 : Pi,Ti(t) ≤ δ k̂n}|

≤ |{i ∈ H0 : Pi,∗ ≤ δ k̂n} ∪ {i ∈ H1 : Pi,Ti(t) ≤ δ k̂n}|
since Pi,∗ ≤ Pi,Ti(t) for all i ∈ H0. Thus, since the {Pi,∗}i∈H0

are independent and sub-uniformly

distributed and at least k̂ of {i ∈ H0 : Pi,∗ ≤ δ k̂n}∪{i ∈ H1 : Pi,Ti(t) ≤ δ k̂n} are below the threshold
k̂δ
n we apply Theorem1 to conclude that the FDR of {i ∈ H0 : Pi,∗ ≤ δ k̂n}∪{i ∈ H1 : Pi,Ti(t) ≤ δ k̂n}

is bounded by δ.

We observe that

FDR({i ∈ [n] : Pi,Ti(t) ≤ δ k̂n}) = E

[ ∑
i∈H0

1{Pi,Ti(t) ≤ δ k̂n}∑
i∈H0

1{Pi,Ti(t) ≤ δ k̂n}+
∑
i∈H1

1{Pi,Ti(t) ≤ δ k̂n}

]

≤ E

[ ∑
i∈H0

1{Pi,∗ ≤ δ k̂n}∑
i∈H0

1{Pi,∗ ≤ δ k̂n}+
∑
i∈H1

1{Pi,Ti(t) ≤ δ k̂n}

]
= FDR({i ∈ H0 : Pi,∗ ≤ δ k̂n} ∪ {i ∈ H1 : Pi,Ti(t) ≤ δ k̂n})
≤ δ
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which is precisely what we wished to prove, where the first inequality follows from a
a+c ≤

a+b
a+b+c

for positive numbers a, b, c, and the fact that
∑
i∈H0

1{Pi,Ti(t) ≤ δ k̂n} ≤
∑
i∈H0

1{Pi,∗ ≤ δ k̂n} due
to Pi,∗ ≤ Pi,Ti(t) for all i ∈ H0.

The following lemma is a stronger result, providing an anytime high-probability bound on the false
discovery proportion and the size of the discovered set. The proof follows from considering not the
p-values, Pi,t at any given time, but rather the random variable which is the worst-case p-values over
all time.

Lemma 2. Let Ti : N→ N be an arbitrary function for any i. Recall δ′ = δ/(6.4 log(36/δ)). Then
with probability greater than ≥ 1− δ′,

∞⋂
t=1

{
|St| ≤ 1

1−2δ′(1+4δ′) |H1|+ 4(1+4δ′)/3
1−2δ′(1+4δ′) log( 5 log2(n/δ′)

δ′ )
}

and

∞⋂
t=1

 |St ∩H0|
|St| ∨ 1

≤ δ′ |H0|
n + (1 + 4δ′)

√
4δ′ |H0|

n log( log2(n/δ)
δ′ )

|St| ∨ 1
+

(1 + 4δ′) log( log2(n/δ′)
δ′ )

3(|St| ∨ 1)


in particular, these events hold on E3 (defined in the proof), which holds with probability greater than
1− δ′.

Proof. As in the proof of Lemma 1, let Pi,∗ = inft≥1 Pi,t for all i ∈ H0.

Define the event,

E3 :=

{
∀s ∈ (0, 1] :

∑
i∈H0

1{Pi,∗ ≤ s}

≤ s|H0|+ (1 + 4s)

√
2 max{2s, 2δ′/n}|H0| log( log2(n/δ′)

δ′ ) + 1+4s
3 log( log2(n/δ′)

δ′ )

}
We have that P(E3) ≥ 1 − δ′ by applying Lemma 9 found in the appendix with c = 2δ′/n and
Xi = Pi,∗ for i ∈ H0 so that m = |H0|. Note that there exists some threshold τt ∈ [0, 1] such that
BH selects all indices with Pi,Ti(t) ≤ τt so that St = S(τt) := {i ∈ [n] : Pi,Ti(t) ≤ τt}. Then

|St ∩H0| =
∑
i∈H0

1{Pi,Ti(t) ≤ τt} ≤
∑
i∈H0

1{Pi,∗ ≤ τt}.

By definition, τt = sup{s ≤ 1 : |S(s)|
n δ′ ≥ s}, otherwise we take it to be 0, so that τt ≤ δ′|S(τt)|/n.

We apply this inequality and E3 to observe

|St ∩H0| ≤ τt|H0|+ (1 + 4τt)

√
2 max{2δ′/n, 2τt}|H0| log( log2(n/δ′)

δ′ ) + 1+4τt
3 log( log2(n/δ′)

δ′ )

≤ δ′|S(τt)| |H0|
n + (1 + 4δ′)

√
2 max{2δ′/n, 2δ′|S(τt)| 1n}|H0| log( log2(n/δ′)

δ′ ) + 1+4δ′

3 log( log2(n/δ′)
δ′ )

= δ′|S(τt)| |H0|
n + 2(1 + 4δ′)

√
δ|S(τt)| |H0|

n log( log2(n/δ′)
δ′ ) + 1+4δ′

3 log( log2(n/δ′)
δ′ )

≤ 2δ′(1 + 4δ′)|S(τt)| |H0|
n + 4(1+4δ′)

3 log( log2(n)
δ′ )

where the last inequality follows from a+ 2
√
ab+ b = (

√
a+
√
b)2 ≤ 2(a+ b). After rearranging,

because |St| = |St ∩H1|+ |St ∩H0| ≤ |H1|+ |St ∩H0| we obtain the theorem.

We will refer to event E3 defined in the proof above in what follows.
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C Proof of Theorem 2

We will need the following event. Let a ∈ Rn+ be a fixed vector to be defined later in the proof and
define

E4,j :=

∑
i∈Hj

ai log(1/ρi) ≤ 5 log(1/δ)
∑
i∈Hj

ai

 j ∈ {0, 1}

Lemma 3. min{P(E4,0),P(E4,1)} ≥ 1− δ.

Proof. The proof is the same forH0 andH1 so we prove it for i = 1, . . . , n. Because for i = 1, . . . , n
the ρi are independent, sub-uniformly distributed random variables, we have that Zi = ai log(1/ρi)
are independent random variables satisfying P(Zi ≥ t) ≤ exp(−t/ai). To see this, P(ρi ≤ x) ≤ x
by definition, and thus P(ai log(1/ρi) ≥ ai log(1/x)) ≤ x. Set t = ai log(1/x) and solve for x.
The result follows by applying Lemma 8.

We restate the theorem using the above events.
Theorem 2 (FDR, TPR). Let H1 = {i ∈ [n] : µi > µ0}, H0 = {i ∈ [n] : µi ≤ µ0}. Define
∆i = µi − µ0 for i ∈ H1, ∆i = minj∈H1

µj − µi for i ∈ H0, and ∆ = mini∈H1
∆i. For all t we

have E[ |St∩H0|
|St| ] ≤ δ. Moreover, on E4,0 ∩ E4,1 (which holds with probability at least 1− 2δ), there

exists a T such that

T .
∑
i∈H0

∆−2
i log(log(∆−2

i )/δ) +
∑
i∈H1

∆−2
i log(n log(∆−2

i )/δ)

and E[ |St∩H1|
|H1| ] ≥ 1− δ for all t ≥ T . Also, on the same events there exists a T such that

T . n∆−2 log(log(∆−2)/δ)

and E[ |St∩H1|
|H1| ] ≥ 1− δ for all t ≥ T . Note, neither follows from the other.

Proof. Define the random set I = {i ∈ H1 : ρi ≥ δ}. Note, this is equivalent to I = {i ∈ H1 :
µ̂i,Ti(t) + φ(Ti(t), δ) ≥ µi ∀t ∈ N} since if ρi ≥ δ then φ(Ti(t), δ) > φ(Ti(t), ρi) and

µ̂i,Ti(t) + φ(Ti(t), δ) ≥ µi + φ(Ti(t), δ)− φ(Ti(t), ρi) ≥ µi.
Our aim is to show that this “well-behaved” set of indices I will be added to St in the claimed amount
of time. This is sufficient for the TPR result because E|I| =

∑
i∈H1

E[1{ρi > δ}] =
∑
i∈H1

P(ρi >

δ) ≥ (1− δ)|H1| since each ρi is a sub-uniformly distributed random variable. To be clear, we are
not claiming which particular indices ofH1 will be added to St (indeed, I is a random set), just that
their number exceeds (1− δ)|H1| in expectation.

Note that St ⊆ St+1 for all t so define T = min{t ∈ N : I ⊆ St+1} if such inclusion ever exists,
otherwise let T =∞. Then

T =

∞∑
t=1

1{I 6⊆ St}

=

∞∑
t=1

1{It ∈ H0, I 6⊆ St}+ 1{It ∈ H1}

We will bound each sum separately, starting with the first.

For any j ∈ I we have

µ̂j,Tj(t) + φ(Tj(t), δ) ≥ µj + φ(Tj(t), δ)− φ(Tj(t), ρj) ≥ µj .

Thus {I 6⊆ St} implies that

arg max
j∈Sct

µ̂j,Tj(t) + φ(Tj(t), δ) ≥ min
j∈I

µj ≥ min
j∈H1

µj .
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On the other hand, for any i ∈ H0 we have

µ̂i,Ti(t) + φ(Ti(t), δ) ≤ µi + φ(Ti(t), δ) + φ(Ti(t), ρi)

≤ µi + 2φ(Ti(t), δρi)

so that µ̂i,Ti(t) + φ(Ti(t), δ) ≤ minj∈H1
µj = µi + ∆i whenever Ti(t) ≥ φ−1(∆i

2 , δρi). If Ti(t)
were this large, the arm i ∈ H0 could not be pulled because its upper confidence bound would be
below the upper confidence bound of an arm j ∈ I ∩ Sct . Thus,

∞∑
t=1

1{It ∈ H0, I 6⊆ St} ≤
∑
i∈H0

φ−1(∆i

2 , δρi)

≤
∑
i∈H0

c∆−2
i log(log(∆−2

i )/(δρi))

≤
∑
i∈H0

c∆−2
i log(log(∆−2

i )/δ) + c∆−2
i log(1/ρi)

E4,0
≤

∑
i∈H0

c∆−2
i log(log(∆−2

i )/δ) + 5c∆−2
i log(1/δ)

≤
∑
i∈H0

c′∆−2
i log(log(∆−2

i )/δ)

≤ c′′|H0|∆−2 log(log(∆−2)/δ)

which concludes the upper bound on the first term.

For the second term, consider a time that It ∈ H1. Recall δ′ = δ/(9.6 log(3000/δ)). For any j ∈ H1

and arbitrary k ≤ n by the BH procedure in the algorithm we have

µ̂j,Tj(t) − φ(Tj(t), δ
′ k
n ) ≥ µj − φ(Tj(t), δ

′ k
n )− φ(Tj(t), ρj)

≥ µj − 2φ(Tj(t), δ
′ρj

k
n )

so that µ̂j,Tj(t) − φ(Tj(t), δ
′ρj

k
n ) ≥ µ0 whenever Tj(t) ≥ φ−1(

µj−µ0

2 , δ′ρj
k
n ), guaranteeing its

spot in s(k). In the worst case, the arms are added one at a time to s(k), instead as a group. Thus, if
π is any mapH1 → {1, . . . , |H1|} then

∞∑
t=1

1{It ∈ H1} ≤ max
π

∑
i∈H1

φ−1(µi−µ0

2 , δ′ρi
π(i)
n )

≤ max
π

∑
i∈H1

(
c∆−2

i log( n
π(i) log(∆−2

i )/δ′) + c∆−2
i log(1/ρi)

)
E4,1
≤ max

π

∑
i∈H1

(
c∆−2

i log( n
π(i) log(∆−2

i )/δ) + 5c∆−2
i log(1/δ)

)
≤ max

π

∑
i∈H1

c′∆−2
i log( n

π(i) log(∆−2
i )/δ)

=

|H1|∑
i=1

c′∆−2 log(ni log(∆−2)/δ).

The first claimed upper bound of T , the diverse means case, is completed by considering the second
to last line and noting trivially that π(i) ≥ 1. To obtain the second upper bound of T , we consider
the last line and note that

k∑
i=1

log(ni ) ≤
∫ k

0

log(nx )dx = k log(n)− (x log x− x)
∣∣∣k
x=0

= k log(nk ) + k ≤ n.
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Combining the previous two displays we get
∞∑
t=1

1{It ∈ H1} ≤
|H1|∑
i=1

c∆−2 log(ni log(∆−2)/δ)

≤ c|H1|∆−2 log(log(∆−2)/δ) +

|H1|∑
i=1

c∆−2 log(ni )

≤ c|H1|∆−2 log(log(∆−2)/δ) + cn∆−2

≤ c′′n∆−2 log(log(∆−2)/δ).

D Proof of Theorem 3

Our analysis will also make use of the following events, that we will prove each hold with probability
at least 1− δ. Let β := 5

3(1−4δ) log(1/δ) and define:

E1 :=

{∣∣∣∣∣
{
i ∈ H1 :

∞⋂
t=1

{|µ̂i,t − µi| ≤ φ(t, δβ )}

}∣∣∣∣∣ ≥ 1

2
|H1|

}

E2,j :=

 ⋂
i∈Hj

∞⋂
t=1

{|µ̂i,t − µi| ≤ φ(t, δ
|Hj | )}

 j ∈ {0, 1}

Also, recall from Lemma 2 the event

E3 :=

{
∀s ∈ (0, 1] :

∑
i∈H0

1{Pi,∗ ≤ s}

≤ s|H0|+ (1 + 4s)

√
2 max{2s, 2δ′/n}|H0| log( log2(n/δ′)

δ′ ) + 1+4s
3 log( log2(n/δ′)

δ′ )

}
Lemma 2 guarantees that this event holds with probability greater than 1− δ.

We restate the theorem using the above events.

Theorem 3 (FDR, FWPD). For all t we have E[ |St∩H0|
|St| ] ≤ δ. Moreover, on E1∩E2,1∩E3∩E4,0∩E4,1

(which holds with probability at least 1− 5δ), there exists a T such that
T . (n− |H1|)∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ) + |H1|∆−2 log(log(∆−2)/δ)

andH1 ⊆ St for all t ≥ T .

We need a few technical lemmas, specifically, the proof of events E1 and E2,1 and their consequences.
Lemma 4. P(E1) ≥ 1− δ.

Proof. We break the proof up into two cases based on the cardinality |H1|. If |H1| ≤ β then

P

( ⋃
i∈H1

∞⋃
t=1

{|µ̂i,t − µi| ≥ φ(t, δβ )}

)
≤
∑
i∈H1

P

( ∞⋃
t=1

{|µ̂i,t − µi| ≥ φ(t, δβ )}

)
≤ δ |H1|

β

which is less than δ by the case definition. So in what follows, assume that |H1| > β. By definition

P

( ∞⋃
t=1

{|µ̂i,t − µi| ≥ φ(t, δ)}

)
= P(ρi ≤ δ) ≤ δ.

By Bernstein’s inequality, with probability at least 1− δ∑
i∈H1

1{ρi ≤ δ} ≤ δ|H1|+
√

2δ|H1| log(1/δ) + 1
3 log(1/δ)

≤ δ|H1|+ 2
√

1
2δ|H1| log(1/δ) + (1− 1

3 ) 1
2 log(1/δ)

≤ 2δ|H1|+ 5
6 log(1/δ)
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where the last line follows from a+ 2
√
ab+ b = (

√
a+
√
b)2 ≤ 2a+ 2b, which implies∑

i∈H1

1{ρi > δ} ≥ (1− 2δ)|H1| − 5
6 log(1/δ)

≥ 1
2 |H1|

where we use the fact that |H1| > β = 5
3(1−4δ) log(1/δ). Combining these two results, and noting

that at most one of the cases |H1| > β or |H1| ≤ β can be true, we obtain that P(E1) ≥ 1− δ.

Lemma 5. min{P(E2,0),P(E2,1)} ≥ 1− δ.

Proof. The result follows from a union bound:

P(Ec2,1) = P

({ ⋃
i∈H1

∞⋃
t=1

{|µ̂i,t − µi| ≤ φ(t, δ
|H1| )}

})

≤
∑
i∈H1

P

({ ∞⋃
t=1

{|µ̂i,t − µi| ≤ φ(t, δ
|H1| )}

})
≤
∑
i∈H1

δ

|H1|
≤ δ.

The proof that P(E2,0) ≥ 1− δ follows analogously.

The next lemma shows an important consequence of these events holding.
Lemma 6. If E1 ∩ E2,1 then for all t

H1 * St =⇒ max
i∈H1∩Sct

µ̂i,Ti(t) + φ(Ti(t),
δ

2|St|∨β ) ≥ min
i∈H1

µi.

Proof. Define the random set It =
{
i ∈ H1 : µ̂i,Ti(t) + φ(Ti(t),

δ
2|St|∨β ) ≥ µi

}
. We will prove

that on E1∩E2,1 we have It∩Sct 6= ∅ which implies the result. First we use the fact that 2|St|∨β ≥ β
so that

|It| =
∣∣∣{i ∈ H1 : µ̂i,Ti(t) + φ(Ti(t),

δ
2|St|∨β ) ≥ µi

}∣∣∣
≥
∣∣∣{i ∈ H1 : µ̂i,Ti(t) + φ(Ti(t),

δ
β ) ≥ µi

}∣∣∣
≥

∣∣∣∣∣
{
i ∈ H1 :

∞⋂
t=1

{|µ̂i,Ti(t) − µi| ≤ φ(Ti(t),
δ
β )}

}∣∣∣∣∣
≥

∣∣∣∣∣
{
i ∈ H1 :

∞⋂
t=1

{|µ̂i,t − µi| ≤ φ(t, δβ )}

}∣∣∣∣∣
E1
≥ 1

2
|H1|.

Given |It| ≥ 1
2 |H1|, if |St| < 1

2 |H1| then |St| < |It| which implies Sct ∩ It 6= ∅. On the other hand,
if |St| ≥ |H1|/2 then we use the fact that 2|St| ∨ β ≥ 2|St| ≥ |H1| to observe

|It| =
∣∣∣{i ∈ H1 : µ̂i,Ti(t) + φ(Ti(t),

δ
2|St|∨β ) ≥ µi

}∣∣∣
≥
∣∣∣{i ∈ H1 : µ̂i,Ti(t) + φ(Ti(t),

δ
|H1| ) ≥ µi

}∣∣∣
≥

∣∣∣∣∣
{
i ∈ H1 :

∞⋂
t=1

{|µ̂i,Ti(t) − µi| ≤ φ(Ti(t),
δ
|H1| )}

}∣∣∣∣∣
≥

∣∣∣∣∣
{
i ∈ H1 :

∞⋂
t=1

{|µ̂i,t − µi| ≤ φ(t, δ
|H1| )}

}∣∣∣∣∣
E2,1
≥ |H1|

which implies It = H1, thus It ∩ Sct = H1 ∩ Sct which is non-empty by assumption.
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We are now ready to prove Theorem 3.

Proof. We proceed similarly to Theorem 1. Note that St ⊆ St+1 for all t so define T = min{t ∈ N :
H1 ⊆ St+1} if such inclusion ever exists, otherwise let T =∞. Then

T =

∞∑
t=1

1{H1 6⊆ St}

=

∞∑
t=1

1{It ∈ H0,H1 6⊆ St}+ 1{It ∈ H1}.

Note that we are in the TPR setting, like Theorem 2, and so the upperbound
∑∞
t=1 1{It ∈ H1} ≤

cn∆−2 log(log(∆−2)/δ) applies here as well. Thus, we only need to bound the first sum.

Lemma 6 (which requires E1 ∩ E2,1) says that if there is at least one arm fromH1 not in St then the
largest upper confidence bound of some arm inH1 ∩Sct is at least as large as minj∈H1

µj ≥ µ0 + ∆.
Thus, {H1 6⊆ St} implies that

arg max
i∈Sct

µ̂i,Ti(t) + φ(Ti(t), δ) ≥ min
i∈H1

µi = µ0 + ∆.

On the other hand, for κ = 1
1−2δ′(1+4δ′) |H1|+ 4(1+4δ′)/3

1−2δ′(1+4δ′) log( 5 log2(n/δ′)
δ′ ), we have |St| ≤ κ from

Lemma 2 (which requires E3), and for any i ∈ H0 we have
µ̂i,Ti(t) + φ(Ti(t),

δ
|St|∨β ) ≤ µi + φ(Ti(t),

δ
|St|∨β ) + φ(Ti(t), ρi)

≤ µi + φ(Ti(t),
δ
κ ) + φ(Ti(t), ρi)

≤ µi + 2φ(Ti(t),
δρi
κ )

≤ µ0 + 2φ(Ti(t),
δρi
κ )

so that µ̂i,Ti(t) + φ(Ti(t),
δ

|St|∨β ) ≤ µ0 + ∆ whenever Ti(t) ≥ φ−2(∆
2 ,

δρi
κ ). Thus,

∞∑
t=1

1{It ∈ H0,H1 6⊆ St} ≤
∑
i∈H0

φ−2(∆
2 ,

δρi
κ )

≤
∑
i∈H0

c∆−2 log(κ log(∆−2)/δ) + c∆−2 log(1/ρi)

E4,0
≤

∑
i∈H0

c′∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ) + 5c∆−2 log(1/δ)

≤ |H0|c′′∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ)

We conclude that

T =

T∑
t=1

1{It ∈ H0,H1 6⊆ St}+ 1{It ∈ H1,H1 6⊆ St}

≤ (n− |H1|)c∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ) + cn∆−2 log(log(∆−2)/δ)

≤ (n− |H1|)c′∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ) + c′|H1|∆−2 log(log(∆−2)/δ).

E Proof of Theorem 4

We restate the theorem using the above events.

Theorem 4 (FWER, FWPD). For all t we have E[ |St∩H0|
|St| ] ≤ δ. Moreover, on E1 ∩ E2,0 ∩ E2,1 ∩

E3 ∩ E4,0 ∩ E4,1 (which holds with probability at least 1− 6δ), we haveH0 ∩Rt = ∅ for all t ∈ N
and there exists a T such that

T .(n− |H1|)∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ)

+ |H1|∆−2 log(max{n− (1− 2δ(1 + 4δ))|H1|, log log(n/δ)} log(∆−2)/δ)

andH1 ⊆ Rt for all t ≥ T . Note, together this impliesH1 = Rt for all t ≥ T .
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The following lemma shows that a tight control on the size of St allows us to conclude a FWER.

Lemma 7. If E3 ∩ E2,0 holds thenRt ∩H0 = ∅ for all t.

Proof. By Lemma 2 (which requires E3) we have |St| ≤ 1
1−2δ′(1+4δ′) |H1| +

4(1+4δ′)/3
1−2δ′(1+4δ′) log( 5 log2(n/δ′)

δ′ ) = |H1|+η
1−2δ′(1+4δ′) for all times t and η = 4(1+4δ′)

3 log(5 log2(n)/δ′).
This implies

n− (1− 2δ′(1 + 4δ′))|St|+ η ≥ n− |H1| = |H0| (3)

but for i ∈ St ∩H0 ⊆ H0 we have that E2,0 applies so

µ̂i,Ti(t) − φ(Ti(t),
δ

n−(1−2δ′(1+4δ′))|St|+η ) ≤ µ̂i,Ti(t) − φ(Ti(t),
δ
|H0| )

E2,0
≤ µi ≤ µ0

where the last inequality holds because maxi∈H0 µi ≤ µ0. Thus, no arms fromH0 will be added to
Rt.

Now that we have FWER control, we need to show that all the arms in H1 are added to Rt in the
claimed amount of time.

Proof. Note that Rt ⊆ Rt+1 for all t so define T = min{t ∈ N : H1 ⊆ Rt+1} if such inclusion
ever exists, otherwise let T =∞. Noting thatRt ⊆ St we have

T =

∞∑
t=1

1{H1 6⊆ Rt}

=

∞∑
t=1

1{H1 6⊆ St}+ 1{H1 6⊆ Rt,H1 ⊆ St}

=

∞∑
t=1

1{H1 6⊆ St}+ 1{Jt ∈ H0,H1 6⊆ Rt,H1 ⊆ St}+ 1{Jt ∈ H1,H1 6⊆ Rt,H1 ⊆ St}

First sum. Note that we are in the FWPD setting, so the selection rule for It identical to that of the
setting of Theorem 3, and

∑∞
t=1 1{H1 6⊆ St} is precisely what is bounded in the proof of Theorem 3

(which requires E1 ∩ E2,1 ∩ E3 ∩ E4,0 ∩ E4,1). Thus,

T∑
t=1

1{H1 6⊆ St}

≤ (n− |H1|)c′∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ) + c′|H1|∆−2 log(log(∆−2)/δ).

Second sum. Recall that Jt = arg min
i∈St\Rt

µ̂i,Ti(t) + φ(Ti(t),
δ
|St| ). Now, on the event {H1 6⊆

Rt,H1 ⊆ St} we have that |H1| ≤ |St| and that there exists a j ∈ H1 ∩ (St \ Rt) such that

µ̂j,Tj(t) + φ(Tj(t),
δ
|St| ) ≥ µ̂j,Tj(t) + φ(Tj(t),

δ
|H1| )

E2,1
≥ µj
≥ µ0 + ∆.

On the other hand, for κ = 1
1−2δ′(1+4δ′) |H1|+ 4(1+4δ′)/3

1−2δ′(1+4δ′) log( 5 log2(n/δ′)
δ′ ), we have |St| ≤ κ from

Lemma 2 (which requires E3), and for any i ∈ H0 ∩ (St \ Rt) we have

µ̂i,Ti(t) + φ(Ti(t),
δ
|St| ) ≤ µi + φ(Ti(t),

δ
κ ) + φ(Ti(t), ρi)

≤ µi + 2φ(Ti(t),
δρi
κ )

≤ µ0 + 2φ(Ti(t),
δρi
κ )
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so that µ̂i,Ti(t) +φ(Ti(t),
δ
|St| ) ≤ µ0 + ∆ whenever Ti(t) ≥ φ−2(∆

2 ,
δρi
κ ). By an identical argument

to that made in the proof of Theorem 3 we very crudely have the bound

∞∑
t=1

1{Jt ∈ H0,H1 6⊆ Rt,H1 ⊆ St} ≤
∑
i∈H0

φ−2(∆
2 ,

δρi
κ )

≤ c|H0|∆−2 log(max{|H1|, log log(n/δ)} log(∆−2)/δ).

Third sum. An arm j ∈ H1 ∩ (St \ Rt) is accepted intoRt if µ̂i,Ti(t) − φ(Ti(t),
δ
χt

) ≥ µ0 where

χt = n − (1 − 2δ′(1 + 4δ′))|St| + 4(1+4δ′)
3 log(5 log2(n/δ′)/δ′). On the event {H1 6⊆ Rt,H1 ⊆

St} we have χt ≤ n − (1 − 2δ′(1 + 4δ′))|H1| + 4(1+4δ′)
3 log(5 log2(n/δ′)/δ′) =: u. Thus, for

j ∈ H1 ∩ (St \ Rt)

µ̂j,Tj(t) − φ(Tj(t),
δ
χt

) ≥ µ̂j,Tj(t) − φ(Tj(t),
δ
u )

≥ µj − φ(Tj(t),
δ
u )− φ(Tj(t), ρj)

≥ µj − 2φ(Tj(t),
δρj
u )

≥ µ0 + ∆− 2φ(Tj(t),
δρj
u )

so that µ̂j,Tj(t) − φ(Tj(t),
δ
χt

) ≥ µ0 whenever Tj(t) ≥ φ−1(∆
2 ,

δρj
u ). By the same arguments made

throughout these proofs we have

∞∑
t=1

1{Jt ∈ H1,H1 6⊆ Rt,H1 ⊆ St} ≤
∑
j∈H1

φ−1(∆
2 ,

δρj
u )

≤ c|H1|∆−2 log(u log(∆−2)/δ)

≤ c′|H1|∆−2 log(max{n− (1− 2δ(1 + 4δ))|H1|, log log(n/δ)} log(∆−2)/δ).

Summing all three sums together yields the result.

F Proof of Theorem 5

We define a new event,

E5 :=

{∑
i∈H1

1{ρi ≤ δ} ≤ δ|H1|+
√

2δ|H1| log(1/δ) + 1
3 log(1/δ)

}

By a direct application of Bernstein’s inequality, this holds with probability greater than 1− δ.

Theorem 5 (FWER, TPR). For all t we have E[ |St∩H0|
|St| ] ≤ δ. Moreover, on E1 ∩ E2,1 ∩ E3 ∩ E4,0 ∩

E4,1 ∩ E2,0 ∩ E5 (which holds with probability at least 1− 7δ), we haveH0 ∩Rt = ∅ for all t ∈ N
and there exists a T such that

T .(n− |H1|)∆−2 log(log(∆−2)/δ)

+ |H1|∆−2 log(max{n− (1− 2δ)|H1|, log log(n/δ)} log(∆−2)/δ)

and E[ |Rt∩H1|
|H1| ] ≥ 1− δ for all t ≥ T .

Proof. First, we invoke Lemma 7 (which requires E3 ∩ E2,0) which controls the FWER. All that is
left is to control the sample complexity.

Let I = {i ∈ H1 : ρi ≥ δ} be the same random set defined in the proof of Theorem 2. Note that
Rt ⊆ Rt+1 for all t so define T = min{t ∈ N : I ⊆ Rt+1} if such inclusion ever exists, otherwise
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let T =∞. Noting thatRt ⊆ St we have

T =

∞∑
t=1

1{I 6⊆ Rt}

=

∞∑
t=1

1{I 6⊆ St}+ 1{I 6⊆ Rt, I ⊆ St}

=

∞∑
t=1

1{I 6⊆ St}+ 1{Jt ∈ H0, I 6⊆ Rt, I ⊆ St}+ 1{Jt ∈ H1, I 6⊆ Rt, I ⊆ St}.

First sum. Since we are in the TPR setting we have ξt = 1 so the first sum is precisely the quantity
bounded in the proof of Theorem 2. Thus,

∞∑
t=1

1{I 6⊆ St} ≤ cn∆−2 log(log(∆−2)/δ).

Second sum. Recall that Jt = arg max
i∈St\Rt

µ̂i,Ti(t) + φ(Ti(t), δ). Now, on the event {I 6⊆ Rt, I ⊆

St} there exists a j ∈ I ∩ (St \ Rt) such that

µ̂j,Tj(t) + φ(Tj(t), δ) ≥ µj + φ(Tj(t), δ)− φ(Tj(t), ρj)

≥ µj
≥ µ0 + ∆

where the first inequality follows by the definition of I. On the other hand, for any i ∈ H0 we have

µ̂i,Ti(t) + φ(Ti(t), δ) ≤ µi + φ(Ti(t), δ) + φ(Ti(t), ρi)

≤ µi + 2φ(Ti(t), δρi)

≤ µ0 + 2φ(Ti(t), δρi)

so that µ̂i,Ti(t) +φ(Ti(t), δ) ≤ µ0 + ∆ whenever Ti(t) ≥ φ−1(∆
2 , δρi). Thus, by the same sequence

of steps used in Theorem 2 we have
∞∑
t=1

1{Jt ∈ H0, I 6⊆ Rt, I ⊆ St} ≤
∑
i∈H0

φ−1(∆
2 , δρi)

E4,0
≤ c|H0|∆−2 log(log(∆−2)/δ).

Third sum. In bounding the analogous sum in the proof of Theorem 4 we used the fact thatH1 ⊆ St
to lowerbound |St| to obtain an upperbound on ξt. Now that we only have I ⊆ St we observe that

|St| ≥ |I| ≥ |H1| −
∑
i∈H1

1{ρi ≤ δ}
E5
≥ |H1|(1− δ −

√
2δ log(1/δ)
|H1| − log(1/δ)

3|H1| ).

Using this approximation the same argument yields
∞∑
t=1

1{Jt ∈ H1, I 6⊆ Rt, I ⊆ St}

≤ c′|H1|∆−2 log(max{n− (1− 3δ −
√

2δ log(1/δ)
|H1| − log(1/δ)

3|H1| )|H1|, log log(n/δ)} log(∆−2)/δ)

≤ c′′|H1|∆−2 log(max{n− (1− 3δ −
√

2δ log(1/δ)/|H1|)|H1|, log log(n/δ)} log(∆−2)/δ).

G Successive Elimination and Uniform Allocation Algorithms

The following gives a sample complexity bound for Successive Elimination and Uniform allocation
strategies. Note that for these algorithms, up to n arms are pulled at each time t.
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Algorithm 2 Uniform and Successive elimination algorithms for identifying arms with means above µ0.

Input: Threshold µ0, confidence δ, confidence interval φ(·, ·)
Initialize: Set S1 = ∅
For t = 1, 2, . . .

if Successive Elimination
Pull each and every arm in [n]− St.

else if Uniform
Pull each and every arm in [n].

Apply Benjamini-Hochberg [11] selection to obtain FDR-controlled set St:
s(k) = {i ∈ [n] \ St : µ̂i,t − φ(t, δ kn ) ≥ µ0}, ∀k ∈ [n]

St+1 = St ∪ s(k̂) where k̂ = max{k ∈ [n] : |s(k)| ≥ k} (if 6 ∃k̂ set St+1 = St)

Theorem 6. For both the Successive Elimination and Uniform Allocation algorithms, for all t we

have that E[ |St∩H0|
|St| ] ≤ δ. In addition, in the case of successive elimination, if η = δ+

√
2δ log(1/δ)
|H1| +

log(1/δ)
3|H1| , then on the event E5 (which holds with probability greater than 1− δ) then there exists a T

such that

T . min
{
n∆−2 log( n

(1−η)|H1| log(∆−2)/δ),

(n− (1− η)|H1|)∆−2 log( n
(1−η)|H1| log(∆−2)/δ) +

∑
i∈H1

∆−2
i log(n log(∆−2

i )/δ)
}

and in the case of Uniform allocation,

T . n∆−2 log( n
(1−η)|H1| log(∆−2)/δ)

and E[ |St∩H1|
|St| ] > 1− δ for all t ≥ T .

Proof. Define the random set I = {i ∈ H1 : ρi ≥ δ}. Note, this is equivalent to I = {i ∈ H1 :
µ̂i,Ti(t) + φ(Ti(t), δ) ≥ µi ∀t ∈ N} since if ρi ≥ δ then φ(Ti(t), δ) > φ(Ti(t), ρi) and

µ̂i,Ti(t) + φ(Ti(t), δ) ≥ µi + φ(Ti(t), δ)− φ(Ti(t), ρi) ≥ µi.

Our aim is to show that this “well-behaved” set of indices I will be added to St in the claimed amount
of time. This is sufficient for the TPR result because E|I| =

∑
i∈H1

E[1{ρi > δ}] =
∑
i∈H1

P(ρi >

δ) ≥ (1− δ)|H1| since each ρi is a sub-uniformly distributed random variable. To be clear, we are
not claiming which particular indices ofH1 will be added to St (indeed, I is a random set), just that
their number exceeds (1− δ)|H1| in expectation.

First we consider the case of Successive Elimination. Let Ti = min{t ∈ N : i /∈ St} be the random
number of times arm i is pulled until the last time when it is added to St (may possibly be infinite).
At round t all arms in [n]−St are pulled and once an arm is added to St it will never be pulled again.
Note that i ∈ s(k) implies µ̂i,t − φ(t, δ kn ) ≥ µ0. Since for all i ∈ I

µ̂i,t − φ(t, δ kn ) ≥ µi − φ(t, δ kn )− φ(t, δ)

≥ µi − 2φ(t, δ kn )

= µ0 + ∆i − 2φ(t, δ kn )

we have that i ∈ s(k) whenever t ≥ φ−1(∆i

2 , δ
k
n ). In particular, because i ∈ s(1) implies i ∈ St we

have that Ti ≤ φ−1(∆i

2 , δ
1
n ) for all i ∈ I. But if ∆ = mini∈H1

∆i then we also have necessarily
that t ≤ φ−1(∆

2 , δ
|I|
n ) since at this time, all arms in I will be in s(|I|), which means k̂ ≥ |I| and so

I ⊆ St. This, of course, implies Ti ≤ φ−1(∆
2 , δ

|I|
n ) for all i ∈ [n] \ I . Putting these pieces together,
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we have that
n∑
i=1

Ti ≤ min
{
nφ−1(∆

2 , δ
|I|
n ), (n− |I|)φ−1(∆

2 , δ
|I|
n ) +

∑
i∈I

φ−1(∆i

2 , δ
1
n )
}

≤ min
{
cn∆−2 log( n

|I| log(∆−2)/δ),

c(n− |I|)∆−2 log( n
|I| log(∆−2)/δ) +

∑
i∈I

c∆−2
i log(n log(∆−2

i )/δ)
}
.

Now on event E5 (which holds with probability at least 1− δ) we have

|I| ≥ (1− δ −
√

2δ log(1/δ)
|H1| − log(1/δ)

3|H1| )|H1|

which implies that for η = δ +
√

2δ log(1/δ)
|H1| + log(1/δ)

3|H1| we have

n∑
i=1

Ti ≤ min
{
cn∆−2 log( n

(1−η)|H1| log(∆−2)/δ),

c(n− (1− η)|H1|)∆−2 log( n
(1−η)|H1| log(∆−2)/δ) +

∑
i∈H1

c∆−2
i log(n log(∆−2

i )/δ)
}
.

Now, in the case of Uniform allocation, we never stop pulling arms once they enter St. Hence, we
need to consider the number of samples needed before all the arms in I ⊂ St. By the same reasoning
as above, this is bounded by cn∆−2 log( n

(1−η)|H1| log(∆−2)/δ).

The following two theorems provide lower bounds for Uniform allocation.
Theorem 7 (FDR, TPR). Fix δ < 1/40, ∆ > 0. and k < n/2. For anyH1 ⊆ [n] such that |H1| = k
define an instance ({νi}ni=1, µ0) with µ0 = 0, νi = N (∆, 1) for i ∈ H1 , νi = N (0, 1) for i ∈ H0.
Any algorithm that samples each arm an equal number of times before outputting a set S ⊆ [n] after
τ total samples, and is FDR-δ and TPR-δ, τ on ({νi}ni=1, µ0) for all H1 ⊆ [n] such that |H1| = k
simultaneously, must satisfy t & n∆−2 log (n/k).

Proof. The proof is based on the construction of [29] which states that for any n > 2k, there exists a
collectionMn,k of subsets of [n] where a) each π ∈Mn,k has weight |π| = k, b) 2k ≥ |π4π′| > k

for all π 6= π′ ∈ Mn,k, and c) |Mn,k| ≥ ( n6k )k/4. Each π gives rise to an instance of the problem
({νi}ni=1, µ0) where µ0 = 0, H1 = π and so νi = N (∆, 1) if i ∈ π, otherwise and νi = N (µ0, 1)
otherwise. In particular, for each instance |H1| = k.

Note that if (i), |H1∩Sct |
|H1| = 1− |H1∩St|

|H1| ≤ η and (ii) |H0∩St|
|H0∩St|+|H1∩St| = |H0∩St|

|St| ≤ η then

|H14St| = |H1 ∩ Sct |+ |Hc1 ∩ St|
= |H1 ∩ Sct |+ |H0 ∩ St|
(i)

≤ η|H1|+ |H0 ∩ St|
(ii)

≤ η|H1|+ η
1−η |H1 ∩ St|

≤ 2η
1−η |H1|.

Thus, if (i) and (ii) hold and η < 1/5 then |H14St| ≤ k/2 and soH14St can therefore be used as
an estimator for anyH1 = π ∈Mn,k since minπ,π′∈Mn,k

|π4π′| > k.

By assumption, E[ |H0∩St|
|St| ] ≤ δ so by Markov’s inequality we have P( |H0∩St|

|St| ≥ 8δ) ≤ 1/8.

Likewise, by assumption E[
|H1∩Sct |
|H1| ] = 1−E[ |H1∩St|

|H1| ] ≤ δ, so again P(
|H1∩Sct |
|H1| ≥ 8δ) ≤ 1/8. Thus,

with probability at least 3/4, |H1∩Sct |
|H1| < 8δ and |H0∩St|

|St| ≤ 8δ. To apply the above argument, we
just need 8δ < 1/5 which holds when δ < 1/40, then St could predict the correct π ∈ Mn,k with
probability at least 1/4.
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We will now use an information theoretic inequality to lower bound the t that would make such
an estimator possible. Let Pπ be the probability law of sampling τ samples from each arm under
π. Then KL(Pπ, Pπ′) ≤ ∆2τ |π4π′|/2 ≤ ∆2τk. Directly applying Theorem 2.5 of [30] to our
|Mn,k| ≥ ( n6k )k/4 hypotheses, we have that any estimator has a probability of misidentification of at
least

1
2

(
1− 2∆2τk

log |Mn,k|
−

√
2∆2τk

log2 |Mn,k|

)
≥ 1

2

(
1− 8∆2τ

log(n/6k)
−

√
32∆2τ

k log2(n/k)

)
which is at least 1/4 unless τ & ∆−2 log(n/k).

Theorem 8 (FWER, FWPD). Fix δ < 3/8 and ∆ > 0. For any H1 ⊆ [n] consider an instance
({νi}ni=1, µ0) such that µ0 = −∆/2 and νi = N (µi, 1) where µi = ∆/2 if i ∈ H1 and µi = −∆/2
if i ∈ H0. Any algorithm that samples each arm an equal number of times before outputting a set
S ⊆ [n] after τ total samples, and is FWER-δ and FWPD-δ, τ on ({νi}ni=1, µ0) for all H1 ⊆ [n]
simultaneously, must satisfy τ & n∆−2 log(n).

Proof. Fix t ∈ N. Because the empirical mean is a sufficient statistic for each arm and they are
independent, the joint probability distribution of the from the n arms is given by P0 :=

∏n
i=1N (µi, 1)

and the distribution after t-pulls on each arm is P t0 :=
∏n
i=1N (µi, 1/t)

For any j ∈ [n] define Pj as the joint distribution if the jth arm’s identity was flipped: if j ∈ H0

replace its mean with 1, if j ∈ H1 replace its means withH0. Note that Pj := P0
N (−µi,1)
N (µi,1) and that

KL(Pj |P0) = KL(N (−µi, 1)|N (µi, 1)) = 2µ2
i = ∆2/2 and KL(P tj |P t0) = t∆2/2.

Now, because the algorithm was assumed FWER-δ and FWPD-δ, t on all instances indexed by
H1 ⊆ [n], it will be able to distinguish between {Pk}nk=0 using just t per arm with probability at
least 1− 2δ ≥ 1/4. The multiple hypothesis testing lower bound of Tsybakov [30, Theorem 2.5],
implies that the probability of misclassification of any estimator will be at least

1

2
(1− t∆2

log(n)
−

√
t∆2

log2(n)
) ≥ 1

4

unless t & ∆−2 log n.

H Technical Lemmas

Lemma 8. Fix a ∈ Rn+ and for i = 1, . . . , n let Zi be independent random variables satisfying
P(Zi ≥ t) ≤ exp(−t/ai). Then

P

(
n∑
i=1

(Zi − ai) ≥ t

)
≤ exp

(
−min{ t

4||a||∞ ,
t2

4||a||22
}
)

and moreover, with probability at least 1− δ,
∑n
i=1 Zi ≤ 5 log(1/δ)

∑n
i=1 ai.

Proof. For i = 1, . . . , n we have that Zi = ai log(1/ρi) are independent random variables satisfying
P(Zi ≥ t) ≤ exp(−t/ai), because the ρi are independent sub-uniformly distributed random variables.
It is straightforward to verify that log(E[exp(λ(Zi − ai))]) ≤ −aiλ− log(1− λai) ≤ a2iλ

2

2(1−λai) for
λ ≤ 1/||a||∞. Using the standard Chernoff-bound technique, we have for λ = min{ t

2||a||22
, 1

2||a||∞ }
that

P

(
n∑
i=1

(Zi − ai) ≥ t

)
≤ exp

(
−λt+

n∑
i=1

a2
iλ

2

2(1− λai)

)
≤ exp

(
−λt+ λ2||a||22

)
≤ exp

(
−min{ t

4||a||∞ ,
t2

4||a||22
}
)

≤ exp
(
− 1

4 min{ t
||a||1 ,

t2

||a||21
}
)
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where the last inequality holds by ||a||∞ ≤ ||a||2 ≤ ||a||1 =
∑n
i=1 ai. The result follows from

setting the right hand side equal to δ and solving for t.

Lemma 9. Fix δ ∈ (0, 1/2]. Let Xi ∈ [0, 1] for i = 1, . . . ,m be independent random variables,
each satisfying P(Xi ≤ s) ≤ s. Define A(s) =

∑m
i=1 1{Xi ≤ s}, then for any c ∈ (0, 1)

P
(
∃s ∈ (0, 1] : A(s) > sm+ (1 + 4s)

√
2 max{2s, c}m log( log2(2/c)

δ ) + 1+4s
3 log( log2(2/c)

δ )

)
≤ δ.

Moreover,

P
(
∃s ∈ (0, 1] : A(s) > sm+ (1 + 2s)

√
4sm log( 2 log2(2/s)2

δ ) + 1+2s
3 log( 2 log2(2/s)2

δ )

)
≤ δ.

Also, recall that by the Dvoretzky-Kiefer-Wolfowitz inequality [31] we have
P
(
∃s ∈ (0, 1] : A(s) > sm+

√
m log(1/δ)/2

)
≤ δ.

Proof. First note that M(s) = A(s)−E[A(s)]
1−s is a martingale with respect to the filtration Ft = {A(s) :

s ≤ t}. Thus, for λ > 0 we have that exp(λM(s)) is a non-negative sub-martingale and we can
apply Doob’s maximal inequality to obtain

P
(

sup
s≤t

M(s) ≥ ε/(1− t)
)

= P
(

sup
s≤t

exp(λM(s)) ≥ exp(λε/(1− t))
)

≤ exp(−λε/(1− t))E [exp(λM(t))]

= exp(− λ
1−tε)E

[
exp( λ

1−t (A(t)− E[A(s)]))
]
.

Observe that for all t < 1 we have

min
λ

exp(− λ
1−tε)E

[
exp( λ

1−t (A(t)− E[A(s)]))
]

= min
λ

exp(−λε)E [exp(λ(A(t)− E[A(s)]))] .

Noting thatA(t) is a sum of independent random variables with each in [0, 1] and expectation less than
t so that E[A(t)] ≤ mt, we apply Bernstein’s inequality to obtain logE [exp(λ(A(t)− E[A(t)]))] ≤
mtλ2

2(1−λ/3) for λ ∈ (0, 3). Optimizing over λ ∈ (0, 3) we have

P
(
∃s ≤ t : A(s) > E[A(s)] + 1−s

1−t

√
2mt log(1/δ) + 1−s

1−t log(1/δ)/3
)
≤ δ

For k ∈ N define Tk = {s ∈ [0, 1] : 2−k−1 < s ≤ 2−k}. Note that 2−blog2(2/c)c ≤ c. So for any
k = 1, 2, . . . , blog2(2/c)c, with probability at least 1− δ

blog2(2/c)c we have that for any s ∈ Tk

A(s) ≤ E[A(s)] + 1−s
1−2−k

√
2 max{c, 2−k}m log(log2(2/c)/δ) + 1−s

1−2−k
log(log2(2/c)/δ)/3.

1Note that cases s ∈ Tk for k > blog2(2/c)c are handled by k = blog2(2/c)c. For any k ≥ 1 and
s ∈ Tk we have s ≥ 2−k−1 so that 1 + 4s ≥ 1

1−min{2s,2−1} ≥
1−s

1−2−k
and 2s ≥ 2−k. Thus,

P
(
∃s ∈ Tk : A(s) > E[A(s)] + (1 + 4s)

√
2 max{c, 2s}m log(log2(2/c)/δ) + (1 + 4s) log(log2(2/c)/δ)/3

)
≤ P

(
∃s ∈ Tk : A(s) > E[A(s)] + 1−s

1−2−k

√
2 max{c, 2−k}m log(log2(2/c)/δ) + 1−s

1−2−k
log(log2(2/c)/δ)/3

)
≤ δ 1

log2(2/c)
≤ δ 1

blog2(2/c)c
.

Union bounding over k = 2, . . . , blog2(2/c)c handles ∪∞k=2Tk = (0, 1/4]. To handle s ∈ (1/4, 1],
we note that

P
(
∃s ∈ (1/4, 1] : A(s) > E[A(s)] + (1 + 4s)

√
2 max{c, 2s}m log(log2(2/c)/δ) + (1 + 4s) log(log2(2/c)/δ)/3

)
≤ P

(
∃s ∈ Tk : A(s) > E[A(s)] +

√
m log(log2(2/c)/δ)

)
≤
(
δ

1

log2(2/c)

)2

≤ δ 1

blog2(2/c)c

30



where the second to last inequality holds by the DKW inequality [31].

On the other hand, for any k ≥ 1 and s ∈ Tk we have s ≥ 2−k−1 so that 1 + 2s ≥ 1−s
1−min{2s,2−1} ≥

1−s
1−2−k

and 2−k−1 ≤ s ≤ 2−k.

P
(
∃s ∈ Tk : A(s) > E[A(s)] + (1 + 2s)

√
4sm log(2 log2( 2

s )2/δ) + (1 + 2s) log(2 log2( 2
s )2/δ)/3

)
≤ P

(
∃s ∈ Tk : A(s) > E[A(s)] + 1−s

1−2−k

√
2 · 2−km log(2(k + 1)2/δ) + 1−s

1−2−k
log(2(k + 1)2/δ)/3

)
≤ δ 1

2(k + 1)2
.

Union bounding over all k ≥ 0 and noting that
∑∞
k=0

1
2(k+1)2 ≤ 1 completes the proof since

∪k≥0Tk = (0, 1]

—————————————————- Recall that the PDF of the k-th order statistic of the
uniform distribution on [0, 1] is given by,

dP(p0
` ≤ x)

dx
= `

(
m

`

)
(1− x)m−`x`−1.

First we consider the case when ` > 1.
∞∑
k=1

1

k
P(

(k − 1)α

n
≤ p0

` ≤
kα

n
) ≤ P(p0

` ≤
α

n
) +

∫ 1

x=α
n

α

nx
dP(p0

` ≤ x)

= P(p0
` ≤

α

n
) +

α

n
`

(
m

`

)∫ 1

x=α
n

(1− x)m−`x`−2dx

≤ α

n
+
α

n
`

(
m

`

)
(`− 1)−1

(
m− 1

`− 1

)−1 ∫ 1

α/n

(`− 1)

(
m− 1

`− 1

)
(1− x)m−`x`−2dx

≤ α

n
+
α

n

m!

(`− 1)!(m− `)!
(`− 2)!(m− `)!

(m− 1)!

≤ α

n
+
α

n

m

`− 1

When ` = 1, the argument is slightly different. Firstly note that

P(
(k − 1)α

n
≤ p0

` ≤
kα

n
) ≤

∞∑
k=1

1

k
P(

(k − 1)α

n
≤ p0

` ≤
kα

n
) ≤
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