
A Proofs

A.1 Proof of Theorem 1

Proof of Theorem 1. Lagrangianizing the constraints of the optimization problem of Definition 2, we
obtain:

max
π

min
τ

max
ω

(
ρ(π, τ)− 1

λ
Hτ,π̄(S1:T ||A1:T−1) + ω · (κφ(π̃, τ)− κ̂)

)
.

Under the assumption that there exists τ that matches the features while strictly satisfying the
probabilistic inequality constraints (which we kept implicit for the sake of clarity), Slater’s condition
and, thus, strong duality, holds [33]. Then, we can write:

max
ω

max
π

min
τ

(
ρ(π, τ) + ω · κφ(π̃, τ)− 1

λ
Hτ,π̄(S1:T ||A1:T−1)

)
− ω · κ̂.

The inner minimization problem in this expression is equivalent to a maximum causal entropy
estimation problem scaled by λ [21] and has a softmin Boltzmann distribution over state outcomes,

softmin
x

f(x) = − 1

λ
log
∑

x

e−λf(x),

which is a smooth relaxation of the min function. Thus, we can safely remove the entropy term, while
replacing min with softmin:

max
ω

max
π

softmin
τ

(
ρ(π, τ) + ω · κφ(π̃, τ)

)
− ω · κ̂.

A.2 Proof of Theorem 2

Proof of Theorem 2. For the sake of completeness, we derive the theorem for the zero-sum game
where the entropy regularizer is explicitly stated, although we already know from Theorem 1 that it
will lead to a softmin solution. Thus, we want to solve the problem:

max
π

min
τ

{
ρR(π, τ) + ρR̃(π̃, τ)− 1

λ
Hτ,π̄(S1:T ||A1:T−1)

}
.

Consider the computation of the distribution over final states sT after state-action sequence s1:T−1,
a1:T−1 , namely τ(·|s1:T−1,a1:T−1). Specifically, we want to solve the optimization problem:

min
τ(·|s1:T−1,a1:T−1)

L(τ, s1:T−1,a1:T−1),

where:
L(τ, s1:T−1,a1:T−1) = τ(s1:T−1||a1:T−2)

∑

sT

τ(sT |s1:T−1,a1:T−1) (15)

(
π(a1:T−1||s1:T−1)R(sT−1, aT−1, sT)

+ π̃(a1:T−1|s1:T−1)R̃(sT−1, aT−1, sT)

+
1

λ
π̄(a1:T−1|s1:T−1) log τ (sT |s1:T−1,a1:T−1)

)
.

Notice that we kept implicit the positivity constraints, τ(sT |s1:T−1,a1:T−1) >= 0, and the normal-
ization ones,

∑
sT
τ(sT |s1:T−1,a1:T−1) = 1. Differentiating with respect to τ(sT |s1:T−1,a1:T−1)

we obtain:
∂L

∂τ
= τ(s1:T−1||a1:T−2)

(
(π(a1:T−1||s1:T−1)R(sT−1, aT−1, sT)

+ π̃(a1:T−1|s1:T−1)R̃(sT−1, aT−1, sT)

+ λ−1π̄(a1:T−1|s1:T−1) log τ(sT |s1:T−1,a1:T−1)

+ λ−1π̄(a1:T−1|s1:T−1)
)
.

12

Equating this last term to zero and solving for τ(sT |s1:T−1,a1:T−1), we obtain:

τ(sT |s1:T−1,a1:T−1) ∝ e−λQ(s1:T−1,a1:T−1,sT)

where we set:

Q(s1:T−1,a1:T−1, sT) =
π(a1:T−1||s1:T−1)R(sT−1, aT−1, sT) + π̃(a1:T−1|s1:T−1)R̃(sT−1, aT−1, sT)

π̄(a1:T−1|s1:T−1)

Notice that we neglect the term λπ̄(a1:T−1|s1:T−1) since it is constant over next states. Although
convenient, this form requires the knowledge of the whole state-action history in order to compute
τ . However, since π̄ is arbitrary and do not affect our solution, we can set it to (π + π̃)/2, thus
obtaining:

Q(s1:T−1,a1:T−1, sT) =
π(a1:T−1||s1:T−1)R(sT−1, aT−1, sT) + π̃(a1:T−1|s1:T−1)R̃(sT−1, aT−1, sT)

π(a1:T−1||s1:T−1) + π̃(a1:T−1|s1:T−1)

= bT−1R(sT−1, aT−1, sT) + (1− bT−1)R̃(sT−1, aT−1, sT),

where we neglect the constant term 2 since it can easily be embedded into λ. Here, we introduce a
continuous "belief state" summarizing the history of states and actions:

bt ,
π(a1:t||s1:t)

π(a1:t||s1:t) + π̃(a1:t||s1:t)
.

Notice that now Q(sT−1, aT−1, bT−1, sT) depends only on variables at time T − 1, and so does τ .
Then, our final next-state distribution is obtained after normalization:

τ∗(sT |sT−1, aT−1, bT−1) =
e−λQ(sT−1,aT−1,bT−1,sT)

∑
s′T
e−λQ(sT−1,aT−1,bT−1,s′T)

. (16)

Continuing backwards, the optimal action for π to take in state sT−1 and belief state bT−2 is:

π∗(sT−1, bT−2) = argmax
aT−1

QR

(
sT−1, aT−1,

bT−2

Z(sT−1, aT−1, bT−2)

)
, (17)

where we define Z(st, at, bt−1) , bt−1 + (1− bt−1)π̃(at|st) and QR is the expected reward under
τ∗:

QR(sT−1, aT−1, bT−1) =
∑

sT

τ∗(sT |sT−1, aT−1, bT−1)R(sT−1, aT−1, sT).

Equation (17) can be verified by noticing that, after taking an action aT−1, the belief state bT−2 must
be updated according to (8). Furthermore, it is easy to verify that the optimal policy is deterministic
by writing the objective as a function of the whole history rather than belief states.

Given the distribution over final states sT and the final action aT−1, we can compute the objective
value at time T − 1 by substituting Equation (16) and 17 into Equation (15):

V (sT−1, bT−2) =
∑
sT

τ∗
(
sT |sT−1, π

∗(sT−1, bT−2),
bT−2

Z′(sT−1, bT−2)

)
(
π(a1:T−1||s1:T−1)R(sT−1, π

∗(sT−1, bT−2), sT)

+ π̃(a1:T−1|s1:T−1)R̃(sT−1, π
∗(sT−1, bT−2), sT)

− π̄(a1:T−1|s1:T−1)Q

(
sT−1, π

∗(sT−1, bT−2),
bT−2

Z′(sT−1, bT−2)
, sT

)
− λ−1π̄(a1:T−1|s1:T−1) log

∑
s′
T

e
−λQ

(
sT−1,π

∗(sT−1,bT−2),
bT−2

Z′(sT−1,bT−2)
,s′T

))

= − λ−1π̄(a1:T−1|s1:T−1) log
∑
s′
T

e
−λQ

(
sT−1,π

∗(sT−1,bT−2),
bT−2

Z′(sT−1,bT−2)
,s′T

)

= Z′(sT−1, bT−2) softmin
sT

Q

(
sT−1, π

∗(sT−1, bT−2),
bT−2

Z′(sT−1, bT−2)
, sT

)
,

13

where we defined Z ′(st, bt−1) , bt−1 + (1− bt−1)π̃(π∗(st, bt−1)|st) = Z(st, π
∗(st, bt−1), bt−1).

We can now move to the preceding time-step to choose τ(·|sT−2, aT−2, bT−2). Similarly as before,
we want to compute:

min
τ(·|sT−2,aT−2,bT−2)

L(τ, sT−2, aT−2, bT−3),

where we replace the dependency on the full history with the previously-defined belief state:

L(τ, sT−2, aT−2, bT−3) =
∑

sT−1

τ(sT−1|sT−2, aT−2, bT−2)Z(sT−2, aT−2, bT−3)

(
bT−2R(sT−2, aT−2, sT−1)

+ (1− bT−2)R̃(sT−2, aT−2, sT−1)

+ V (sT−1, bT−2)

+ λ−1 log τ(sT−1|sT−2, aT−2, bT−2)
)
.

By differentiating, equating to zero, and solving for τ , we obtain:

τ∗(sT−1|sT−2, aT−2, bT−2) =
e−λQ(sT−2,aT−2,bT−2,sT−1)

∑
s′T−1

e−λQ(sT−2,aT−2,bT−2,s′T−1)
,

where:

Q(sT−2, aT−2, bT−2, sT−1) = bT−2R(sT−2, aT−2, sT−1)

+ (1− bT−2)R̃(sT−2, aT−2, sT−1)

+ V (sT−1, bT−2).

Similarly as before, we can compute the optimal action aT−2 as:

π∗(sT−2, bT−3) = argmax
aT−2

QR

(
sT−2, aT−2,

bT−3

Z(sT−2, aT−2, bT−3)

)
,

where QR is, similarly to Q, augmented with the future expectation:

QR(sT−2, aT−2, bT−2) =
∑

sT−1

τ∗(sT−1|sT−2, aT−2, bT−2)
(
R(sT−2, aT−2, sT−1)

+QR(sT−1, π
∗(sT−1, bT−2),

bT−2

Z ′(sT−1, bT−2)
)
)
.

Finally, the objective value is:

V (sT−2, bT−3) =
∑
sT−1

τ∗
(
sT−1|sT−2, π

∗(sT−2, bT−3),
bT−3

Z′(sT−2, bT−3)

)
Z′(sT−2, bT−3)

(
bT−3

Z′(sT−2, bT−3)
R(sT−2, π

∗(sT−2, bT−3), sT−1)

+

(
1− bT−3

Z′(sT−2, bT−3)

)
R̃(sT−2, π

∗(sT−2, bT−3), sT−1)

+ V

(
sT−1,

bT−3

Z′(sT−2, bT−3)

)
− Q

(
sT−2, π

∗(sT−2, bT−3),
bT−3

Z′(sT−2, bT−3)
, sT−1

)
− λ−1 log

∑
s′
T−1

e
−λQ

(
sT−2,π

∗(sT−2,bT−3),
bT−3

Z′(sT−2,bT−3)
,s′T−1

))

= Z′(sT−2, bT−3) softmin
sT−1

Q

(
sT−2, π

∗(sT−2, bT−3),
bT−3

Z′(sT−2, bT−3)
, sT−1

)
.

Continuing this procedure backwards, alternating the computation of transitions and optimal actions,
completes the proof.

14

A.3 Proof of Corollary 1

Proof of Corollary 1. We start by showing that:

Ψ(st, bt−1) = Eπ̃,τ∗
[
T−1∑

i=t

φ(si, ai, si+1)|st, bt−1

]
. (18)

This can be easily proven by induction using similar steps as in the proof of Theorem 2. Clearly, at
time step T − 1:

Ψ(sT−1, bT−2) =
∑

aT−1

π̃(aT−1|sT−1)
∑

sT

τ∗(sT |sT−1, aT−1, bT−1)φ(sT−1, aT−1, sT).

Recalling the belief update rule (8), we have:

bT−1 =
bT−21 [aT−1 = π∗(sT−1, bT−2)]

bT−21 [aT−1 = π∗(sT−1, bT−2)] + (1− bT−2)π̃(aT−1|sT−1)
,

where the indicator is due to the fact that π∗ is deterministic. Notice that this is equivalent to the
more concise update rule given in the main statement. Thus, (18) holds at time T − 1. Assume now
that (18) holds at time t+ 1. Let us show that this implies (18) holds at time t as well. We have:

Ψ(st, bt−1) =
∑

at

π̃(at|st)
∑

st+1

τ∗(st+1|st, at, bt) [φ(st, at, st+1) + Ψ(st+1, bt)]

=
∑

at

π̃(at|st)
∑

st+1

τ∗(st+1|st, at, bt)
(
φ(st, at, st+1) + Eπ̃,τ∗

[
T−1∑

i=t+1

φ(si, ai, si+1)|st+1, bt

])

= Eπ̃,τ∗
[
T−1∑

i=t

φ(si, ai, si+1)|st, bt−1

]
,

where the last equation holds since bt−1 is again correctly updated as given in the main statement.
Finally, since b0 = 0.5 is the only possible initial belief state:

κφ(π̃, τ∗) = Eπ̃,τ∗
[
T−1∑

t=1

φ(st, at, st+1)

]

=
∑

s1

p(s1)Eπ̃,τ∗
[
T−1∑

t=1

φ(st, at, st+1)|s1

]

=
∑

s1

p(s1)Ψ(s1, b0).

This concludes the proof.

15

s1 s2
a1, 0, ε

a2, 0, 1− ε

a1, 1, 1− ε
a2, 1, ε

a1, 1, 1− ε
a2, 1, ε

a1, 0, ε

a2, 0, 1− ε

Figure 2: The two-state MDP used throughout this section. The notation a, r, p on the arcs denotes a
stochastic transition performed by action a with probability p and reward r. The initial state is s1.

B A Simple Two-State MDP

In order to provide a better understanding of the proposed approach, we begin by considering a
simple example where we can clearly appreciate the effect of all elements involved in our algorithm.

Consider the simple MDP of Figure 2. The MDP has two states (s1 and s2) and two actions (a1 and
a2). Action a1 forces the system to change state, while a2 stays in the current state. All actions fail
with probability ε ∈ [0, 0.5] and succeed with probability 1− ε. The reward is 1 whenever the state is
changed, 0 otherwise. The system starts deterministically in state s1 and runs for T = 4 time steps.
Clearly, the optimal policy is to execute a1 in all states for ε < 0.5, while any policy is optimal for
ε = 0.5.

We now establish some common parameters that will be used throughout this section. Then, we
analyze the effect of each of them separately. First, we need to specify features that allow us to define
the marginal constraints of Section 3.1. In order to better visualize the results, we adopt only one
feature (so that our objective is a function defined on the real line). A useful property we would like
to capture is the fact that action a1 frequently changes the current state. Thus, we define our (scalar)
feature function as:

φ(s, a, s′) =

{
1 if s 6= s′ and a = a1

0 otherwise

Notice that the feature expectations κφ(π, τ) of some policy π under some transition probabilities τ
are equivalent to the expected number of times in which a1 changes state. Thus, if we assume π to
choose a1 with a fixed probability p (independently of the state) and that the horizon is T , we have:

κφ(π, τε) = p(1− ε)(T − 1),

where τε denotes the transition probabilities of our two-state MDP with probability of failure ε.
Unless otherwise stated, we adopt the true feature expectations instead of the sample statistics κ̂φ.

We consider a uniform reference policy π̃ (hence p = 0.5). Notice that, under uniform π̃, the set of
all reachable belief states in a fixed horizon T scales linearly with T rather than exponentially4:

B = {0} ∪
{

0.5

0.5 + 0.5t
| t = 1, . . . , T

}

This fact can be better verified from the belief update rule (8). Thus, in this small domain we can
adopt the full belief set so that no approximation error will be incurred. With T = 4, we have
B = {0, 0.5, 0.67, 0.8, 0.89}.
Finally, we use no entropy, l1, or l22 regularization.

The effect of stochasticity We start by analyzing how the objective function (6) and the corre-
sponding solution change for different values of ε, i.e., for different levels of stochasticity in the
underlying system. From Figure 3a, we can notice that the optimal solution lies in an interval
when the system is deterministic, while, as we increase the stochasticity through ε, it moves on an
increasingly peaked corner. Furthermore, the algorithm becomes more conservative for larger ε, as
can be noticed from the expected return achieved by the min-max solution for different weights

4Whatever action is chosen, π̃(a|s) = 0.5, and, thus, we need not enumerate all possible trajectories.

16

−10 −8 −6 −4 −2 0 2 4

−8

−6

−4

−2

0

2

4
ε = 0

ε = 0.1

ε = 0.2

ε =
0.3

ε =
0.4

ε =
0.5

w

O
b
je
ct
iv
e

(a)

−10 −8 −6 −4 −2 0 2 4

0

1

2

3

w

ρ
(π

∗ ,
τ
∗)

(b)

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

ρ(π∗,τ∗)
ρ(πε,τε)

ρ(π∗,τε)
ρ(πε,τε)

ε

N
or
m
al
iz
ed

E
x
p
ec
te
d
R
et
u
rn

(c)

Figure 3: (a) The objective function for different values of ε. The higher is the stochasticity, the more
peaked is the global optimum. (b) The robust expected return for different values of the Lagrange
multiplier w. (c) The normalized worst-case performance (solid line) and the true expected return
(dashed line) achieved by the optimal solution for different values of ε. Here πε denotes the optimal
policy under dynamics τε, while (π∗, τ∗) denote the min-max solution at the corresponding optimum.

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

w

O
b
je
ct
iv
e

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

w

O
b
je
ct
iv
e

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

w

O
b
je
ct
iv
e

(a)

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

w

O
b
je
ct
iv
e

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

w

O
b
je
ct
iv
e

−10 −8 −6 −4 −2 0 2 4

−4

−2

0

w

O
b
je
ct
iv
e

(b)

−2.9 −2.6 −2.3 −2 −1.7

0.65

0.7

0.75

0.8

0.85

w

O
b
je
ct
iv
e

λ =∞
λ = 10
λ = 20
λ = 100

(c)

Figure 4: (a) Approximation error due to missing belief states, and (b) how it can be alleviated by
adding entropy regularization (λ = 20). (c) The objective function for different entropy regularizers.

w (Figure 3b). This can be better observed from Figure 3c, which shows the true and worst-case
expected returns achieved by the global maximizer for each ε, normalized by the performance of
the corresponding optimal policy. This decrease in the worst-case performance is expected since
one feature is not sufficient for constraining the solution with high stochasticity. Interestingly, the
performance under the true dynamics τε remains optimal for all ε, which implies that the chosen
feature is sufficient for characterizing the optimal policy.

The effect of misspecified belief states When a non-uniform reference policy is used, the reachable
belief states cannot be efficiently enumerated as we did before. Thus, in practice we approximate
them with a smaller set. We now investigate the consequences of such approximation on the objective
function. We consider discretizing the belief space uniformly with 0.1 step, thus obtaining the set
B̃ = {0, 0.5, 0.6, 0.7, 0.8, 0.9}. Notice that values in (0, 0.5) cannot occur and are safely removed.
Figure 4a shows the resulting approximate objective function (from now on we use ε = 0.3). As
expected, the two missing belief states, which are now approximated with the closest one in B̃, result
in two small deviations from the ideal objective. These can be easily alleviated by using a more
fine-grained discretization or, as we shall see, by smoothing the objective.

The effect of entropy regularization Although subgradient methods are guaranteed to converge
under general assumptions, optimizing an almost non-differentiable objective function like the
one of Figure 3a can be very slow for high-dimensional problems5. Adding a small amount of
entropy regularization can dramatically improve the smoothness of the objective function and the
corresponding gradient, thus simplifying its optimization. Figure 4c shows an example. Interestingly,
the entropy regularizer can also be adopted to alleviate the approximation error due to discretizing
the belief space (Figure 4b), which can be much more efficient than increasing the size of B̃.

5Recall that our objective is to find a point with zero gradient, so that the feature expectations correctly match
the sample statistics.

17

−8 −6 −4 −2 0 2
−6

−4

−2

0

2 ρ(π∗,τ∗)
ρ(πε,τε)

> 1

ρ(π∗,τ∗)
ρ(πε,τε)

< 1

w

O
b
je
ct
iv
e

α, β = 0
α = 0.2
β = 0.4

(a)

−10 −8 −6 −4 −2 0

−4

−2

0

2

p =
0.5

p =
0.6

p =
0.7

p
=
0.
8

p
=
0.
9

w

O
b
je
ct
iv
e

(b)

0.5 0.6 0.7 0.8 0.9

0.4

0.6

0.8

1

ρ(π∗,τ∗)
ρ(πε,τε)

ρ(π∗,τε)
ρ(πε,τε)

p

N
or
m
al
iz
ed

E
x
p
ec
te
d
R
et
u
rn

(c)

Figure 5: (a) The objective function using l1 and l2 regularization. (b) The objective functions of
different reference policies. (c) Expected returns for increasingly good reference policies.

The effect of estimating feature expectations In practice, the feature expectations cannot be
computed in closed-form as we did so far but must be estimated from given trajectories. Consequently,
l1 or l22 regularization of the dual variables is typically required to enforce softened constraints, as the
estimation error might make the exact optimization problem of Definition 2 infeasible. Even if the
problem remained feasible, a deviation from the ideal feature expectations could void our robustness
guarantees since the true transition probabilities might not be part of the uncertainty set anymore.
We now show an example demonstrating this fact. Assume that the previously introduced feature
expectations κφ are now estimated from a small amount of data, obtaining a value κ̂φ that deviates
from the true one by 0.4, i.e., κ̂φ = κφ+0.4. The solid line in Figure 5a shows the resulting objective
(once again, we fix ε = 0.3). As we can notice, the optimum has been considerably shifted from
its ideal value of Figure 3a. Furthermore, the worst-case expected return achieved at such point,
ρ(π∗, τ∗), is now larger than the one achieved by the optimal policy ρ(πε, τε), which implies that our
solution is not robust anymore. However, we can easily solve this issue by regularizing the Lagrange
multiplier w. Figure 5a shows the results when adding l1 regularization with parameter β (which
enforces the soft constraint |κφ − κ̂φ| ≤ β) and l22 regularization with parameter α. As we can see,
for properly chosen parameters, the optimal weight coincides with the original one and so does the
worst-case expected return.

The effect of the reference policy So far, we have been using a uniform (non-informative) refer-
ence policy. Let us now investigate what happens when the reference policy gets closer to the optimal
one. We set π̃(a1|s) = p and π̃(a2|s) = 1 − p for all states s. Figure 5b shows how the objective
function varies when increasing p above 0.5. Furthermore, Figure 5c shows that the worst-case
expected return gets closer to the optimal one as p increases (i.e., as the reference policy becomes
optimal). This is again expected since, when the two policies involved in our min-max problem are
equivalent, the solution becomes Markovian. Although the single feature we have been using so far is
not enough for constraining history-dependent transition dynamics, it suffices for Markovian ones,
thus resulting in an optimal worst-case expected return.

18

C Additional Details on the Experiments

C.1 Gridworld

We provide additional details on the gridworld experiments.

MC In order to define our marginal constraints, we consider 6 features:

φ1(s, a, s′) = 1
[
a = UP ∧ (s′y > sy ∧ sy < N ∨ s′y = sy ∧ sy = N)

]

φ2(s, a, s′) = 1 [a = RIGHT ∧ (s′x > sx ∧ sx < N ∨ s′x = sx ∧ sx = N)]

φ3(s, a, s′) = 1
[
a = DOWN ∧ (s′y < sy ∧ sy > 0 ∨ s′y = sy ∧ sy = 0)

]

φ4(s, a, s′) = 1 [a = LEFT ∧ (s′x < sx ∧ sx > 0 ∨ s′x = sx ∧ sx = 0)]

φ5(s, a, s′) = 1
[
|sx − s′x|+ |sy − s′y| > 1

]

φ6(s, a, s′) = 1 [s = s′ ∧ sx ∈ (1, N) ∧ sy ∈ (1, N)]

Intuitively, the first 4 features are enabled by successful transitions. For instance, feature φ1 is 1
whenever action UP correctly increases the y coordinate of the current state (or stays at the upper
border). The last two features encode deterministic properties of the environment. φ5 is enabled
whenever a transition to a non-adjacent state is performed. This is impossible in the true MDP, so the
corresponding feature expectation must be zero. Similarly, φ6 is enabled whenever an action stays in
the current state while not at the borders. This is, again, impossible in the true MDP.

For solving the dynamic program of Algorithm 1, we enumerate all possible belief states reachable
in a horizon T = 66. Notice that, for longer horizons, all belief values are above 0.999 and can be
neglected by introducing a negligible approximation error.

We set λ = 100, while we add l22 entropy regularization with parameter α = 0.01 to the dual objective.
We optimize the latter using standard gradient ascent, stopping when the l∞ norm of the gradient
goes below 10−5 or 200 iterations are reached.

LR We adopt the same features as for MC. Given the set of input trajectories, we learn a multi-class
logistic model to predict the next state s′ from a state-action pair s, a. That is, we learn the conditional
probabilities:

P (s′|s, a) ∝ ewᵀφ(s,a,s′),

with w as the parameter computed by the logistic model.

RECT We use l1 constrained uncertainty sets computed using Hoeffding’s inequality with 95%
confidence level, as described in Appendix A in [9].

FQI We use extra-trees with an ensemble of 50 approximators, with a minimum number of 2
samples to split a node. We run the algorithm for 50 iterations and evaluate the greedy policy with
respect to the resulting Q-function.

MLE We estimate the transition probabilities using maximum likelihood:

P (s′|s, a) =
#[s, a, s′]

#[s, a]
,

where #[s, a] denotes the number of times action a was taken from state s in the given trajectories,
and similarly for #[s, a, s′].

Additional results We now investigate the sensitivity of our approach to the choice of the entropy
regularization parameter λ. In order to address this point, we repeat the experiments for a fixed
gridworld of size 11 × 11 using different values of λ, with all other parameters as before. Figure
6 shows how the expected return under the true and estimated dynamics vary as a function of λ.
As expected, we notice a clear performance drop under the estimated dynamics as λ increases, i.e.,

6As described in Appendix B, when using a uniform reference policy we can efficiently enumerate all
reachable belief states in a horizon T .

19

10−1 100 101 102 103 104 105 106

−400

−350

−300

−250

−200

λ

E
x
p
ec
te
d
R
et
u
rn

True
Robust

Figure 6: Expected returns as a function of the entropy regularizer λ

as the regularization is removed. Interestingly, the performance under the true dynamics decreases
by a much smaller margin. Furthermore, the robust expected return becomes higher than the true
one only for very small values of λ, i.e., when keeping high entropy becomes more important than
minimizing the reward. This intuitively suggests that, using intermediate values of λ, we are able to
find less conservative solutions while preserving robustness guarantees under certain assumptions on
the unknown MDP. Proving this statement from a theoretical perspective would be of great practical
interest and is left for future work.

C.2 Invasive Species

We provide additional details on the invasive species experiment.

MC We consider 14 different features. The first 10 are binary and discretize the population in bins
of width 50. Thus,

φj(s, a, s
′) = 1

[
s ∈ (50(j − 1), 50j]

]
∀j = 1, . . . , 10.

The next 2 features encode population intervals in which the two available actions transition with
very high probability according to our dynamics:

φ11(s, a, s′) = 1 [a 6= C ∧ (s′ < s− 30 ∨ s′ > s+ 100)]

φ12(s, a, s′) = 1 [a = C ∧ (s′ > s+ 30 ∨ s′ < s− 100)] ,

where ’C’ represents the control action. Thus, these features are enabled whenever an action fails
at transitioning to an interval containing the true next state with high probability. Finally, the last 2
features encode the (absolute) population change after an action has been applied:

φ13(s, a, s′) = |s− s′|1 [a 6= C]

φ14(s, a, s′) = |s− s′|1 [a = C]

We discretize belief states in 18 different values in [0.1, 0.9] and we add entropy regularization with
λ = 100. For the experiment with 50 trajectories, we add l1 regularization with β = 0.01 for all
feature components except φ11 and φ12 (for which β = 0). As usual when given more data, we
decrease β to 0.001 for the experiment with 100 trajectories. We run MC for at most 200 iterations,
stopping when the l∞-norm of the gradient goes below 10−4.

Other algorithms We keep the same configuration as in the gridworld experiments for all other
algorithms. For LR, we use the new feature functions.

20

