
A Related Work

A.1 Causality

As mentioned before, there is a huge and old literature on causality, for both testing causal rela-
tionships and inferring causal graphs that is impossible to detail here. Below, we point out some
representative directions of research that are relevant to our work. This discussion is far from
exhaustive, and the reader is encouraged to pursue the references cited in the mentioned works.

Most work on statistical tests for causal models has been in the parametric setting. Structural
equation models have traditionally been tested for goodness-of-fit by comparing observed and
predicted covariance matrices [BL92]. Another class of tests that has been proposed assumes that
the causal factors and the noise factors are conditionally independent. In the additive noise model
[HJM+09, PJS11, ZPJS12, SSS+17], each variable is the sum of a (non-linear) function of its parent
variables and independent noise, often assumed to be Gaussian. This point of view has been refined
into an information-geometric criterion in [JMZ+12]. In the non-parametric setting, which is the
concern of this paper, Tian and Pearl [TP02] show how to derive functional constraints from causal
Bayesian networks that give equality and inequality constraints among the (distributions of) observed
variables, not just conditional independence relations. Kang and Tian [KT06] derive such functional
constraints on interventional distributions. Although these results yield non-trivial constraints, it is
not clear how to use them for testing goodness-of-fit with statistical guarantees.

Pearl and Verma [PV95, VP92] investigated whether a given list of conditional independence relations
in observational data can be explained by a Bayesian net with unobserved variables. In fact, there
may be a large number of causal Bayesian networks that are consistent with a given set of conditional
independence relations. [SGS00, ARSZ05], and Zhang [Zha08] (building on the FCI algorithm
[SMR99]) has given a complete and sound algorithm for recovering a representative of the equivalence
class consistent with a set of conditional independence relations.

The problem of learning causal graphs has been extensively studied. When there are no confounding
variables, Hauser and Bühlmann [HB12b], following up on work by Eberhardt and others [EGS05,
Ebe07], find the information-theoretically minimum number of interventions that are sufficient to
identify7 the underlying causal graph and provide a polynomial time algorithm to find such a set of
interventions. Subsequent work considered the setting when both observational and interventional
data are available. Learning from the interventional setting has been a recent focus of study [HB12a,
WSYU17, YKU18], motivated by advances in genomics that allow high-resolution observational and
interventional data for gene expression using flow cytometry and CRISPR technologies [SPP+05,
MBS+15, DPL+16]. A recent paper [KDV17] extends the work of [HB12b] to minimize the total cost
of interventions where each vertex is assigned a cost. Another work by Shanmugam et al. [SKDV15]
investigates the problem of learning causal graphs without confounding variables using interventions
on sets of small size. In the presence of confounding variables, there are several works which aim to
learn the causal graph from interventional data (e.g., [MMLM06, HEH13]). In particular, a recent
work of Kocaoglu et al. [KSB17] gives an efficient randomized algorithm to learn a causal network
with confounding variables while minimizing the number of interventions from which conditional
independence relations are obtained.

From the perspective of query learning, learning circuits with value injection queries was introduced
by Angluin et al. [AACW09]. The value injection query model is a deterministic circuit defined
over an underlying directed acyclic graph whose output is determined by the value of the output
node. [AACW09] considers the problem of learning the outputs of all value injection queries (i.e.,
interventions) where the learner has oracle access to value injection queries with the objective of
minimizing the number of queries, when the size of alphabet set is constant. This was later generalized
to large alphabet and analog circuits in [AACR08, Rey09].

All the works mentioned above assume access to an oracle that gives conditional independence
relations between variables in the observed and interventional distributions. This is clearly a problem-
atic assumption because it implicitly requires unbounded training data. For example, Scheines and
Spirtes [SS08] have pointed out that measurement error, quantization and aggregation can easily alter
conditional independence relations. The problem of developing finite sample bounds for testing and

7More precisely, the goal is to discover the causal graph given the conditional independence relations satisfied
by the interventional distributions.

15

learning causal models has been repeatedly posed in the literature. The excellent survey by Guyon,
Janzing and Schölkopf [GJS10] on causality from a machine learning perspective underlines the issue
as one of the “ten open problems” in the area. To the best of our knowledge, our work is the first to
show finite sample complexity and running time bounds for inference problems on causal Bayesian
networks.

An application of our learning algorithm is to the problem of transportability, studied in [BP13, SP08,
LH13, PB11, BP12], which refers to the notion of transferring causal knowledge from a set of source
domains to a target domain to identify causal effects in the target domain, when there are certain
commonalities between the source and target domains. Most work in this area assume the existence
of an algorithm that learns the set of all interventions, that is the complete specification of the model,
of the source domains. Our learning algorithm can be used for this purpose; it is efficient in terms of
time, interventions, and sample complexity, and it learns each intervention distribution to error at
most ε.

A.2 Distribution Testing and Learning

There is a vast literature on testing and learning high dimensional distributions in the statistics, and
information theory literature, and more recently in computer science with a focus on the computational
efficiency of solving such problems. We will not be able to cover and do justice to all of these works
in this section. However, we will provide pointers to some of the resources, and also discuss some of
the recent progress that is the most closely related to the work we present here.

In the distribution learning and testing framework, the closest to our work is learning and testing
graphical models. The seminal work of Chow-Liu [CL68] considered the problem of learning
tree-structured graphical models. Motivated by applications across many fields, the problem of
learning graphical models from samples has gathered recent interest. Of particular interest is the
apparent gap between the sample complexity and computational complexity of learning graphical
models. [AKN06, BMS08] provided algorithms for learning bounded degree graphical models with
polynomial sample and time complexity. A lower bound on the sample complexity that grows
exponentially with the degree, and only logarithmically with the number of dimensions was provided
by [SW12], and recent works [Bre15, VMLC16, KM17] have proposed algorithms with near optimal
sample complexity, and polynomial running time for learning Ising models.

Sample and computational complexity of testing graphical models has been studied recently,
in [CDKS17] for testing Bayesian Networks, and in [DDK18] for testing Ising models. Given
sample access to an unknown Bayesian Network, or Ising model, they study the sample complexity,
and computation complexity of deciding whether the unknown model is equal to a known fixed model
(hypothesis testing).

The problem of testing and learning distribution properties has itself received wide attention in
statistics with a history of over a century [Fis25, LR06, CT06]. In these fields, the emphasis is
on asymptotic analysis characterizing the convergence rates, and error exponents, as the number
of samples tends to infinity. A recent line of work originating from [GR00, BFR+00] focuses on
sublinear algorithms where the goal is to design algorithms with the number of samples that is smaller
than the domain size (e.g., [Can15, Gol17], and references therein).

While most of these results are for learning and testing low dimensional (usually one dimensional)
distributions, there are some notable exceptions. Testing for properties such as independence, and
monotonicity in high dimensions have been considered recently [BFRV11, ADK15, DK16]. These
results show that the optimal sample complexity for testing these properties grows exponentially with
the number of dimensions. A line of recent work [DP17, CDKS17, DDK17, DDK18] overcomes
this barrier by utilizing additional structure in the high-dimensional distribution induced by Bayesian
network or Markov Random Field assumptions.

B Proof Sketch for the Fully Observable Case

In the absence of unobservable variables, the analysis becomes much simpler. Let us look at the
two-sample testing problem on input causal models X and Y defined on a DAG G. Now, each
c-component is a single vertex, so that every “local” intervention is of the form P [Vi | do(pa(Vi))]
for a vertex Vi and an assignment pa(Vi) to the parents of Vi. We define our tester to accept iff each

16

such local intervention on X and Y yields distributions which differ by at most ε2/2n in squared
Hellinger distance. The squared Hellinger distance is defined as follows for two distributions P and
Q on [D]:

H2(P,Q) : = 1−
∑
i∈[D]

√
P (i) ·Q(i) = 1−BC(P,Q) (4)

where BC(P,Q) is the Fidelity or Bhattacharya coefficient of P and Q. Below, our subadditivity
theorem shows that if the algorithm accepts, then for every intervention, the resulting distributions
for X and Y differ by at most ε2/2 in squared Hellinger distance, implying ∆(X ,Y) ≤ ε.
Theorem 6. Let X and Y be two causal Bayesian networks defined on a known and common DAG
G with no hidden variables. Identify the vertices in V as {V1, . . . , Vn} arranged in a topological
order. Suppose we know that

H2(PX [Vj | do(pa(Vj))], PY [Vj | do(pa(Vj))]) ≤ γ ∀j ∈ [n],∀pa(Vj) ∈ Σ|Pa(Vj)|. (5)

Then, for each subset T ⊆ V and t ∈ Σ|T|,

H2 (PX [V \T | do(t)], PY [V \T | do(t)]) ≤ γn. (6)

Proof. Fix T ⊆ V and an assignment t ∈ Σ|T|. Let W = V\T = {W1,W2, . . . ,Wm} whose
indices are arranged in a topological ordering. By the definition of squared Hellinger distance:

H2

(
PX [W|do(t)],
PY [W|do(t)]

)
= 1−

∑
w1,w2,...,wm

√
PX [w1, w2, . . . , wm|do(t)]
PY [w1, w2, . . . , ym|do(t)]

= 1−
∑

w1,...,wm−1

√
PX [w1, . . . , wm−1|do(t)]
PY [w1, . . . , wm−1|do(t)]

∑
wm

√
PX [wm|w1, . . . , wm−1, do(t)]
PY [wm|w1, . . . , wm−1, do(t)]

= 1−
∑

w1,...,wm−1

√
PX [w1, . . . , wm−1|do(t)]
PY [w1, . . . , wm−1|do(t)]

∑
wm

√
PX [wm|do(pa(Wm))]
PY [wm|do(pa(Wm))]

.

The above step can be obtained easily by using Lemma 17 and the conditional independence
constraints obtained from G. Therefore:

H2

(
PX [W|do(t)],
PY [W|do(t)]

)
≤ 1−

∑
w1,...,wm−1

√
PX [w1, . . . , wm−1|do(t)]
PY [w1, . . . , wm−1|do(t)]

(1− γ) (from (5))

= H2

(
PX [W1 . . .Wm−1 | do(t)],
PY [W1 . . .Wm−1|do(t)]

)
(1− γ) + γ.

By induction on n, we get:

H2

(
PX [W|do(t)],
PY [W|do(t)]

)
≤ γ[1 + (1− γ) + (1− γ)2 + . . .+ (1− γ)m−1]

= 1− (1− γ)m ≤ 1− (1− γ)n ≤ nγ.

The time and sample complexities are then determined by that required for two-sample testing on
each pair of local distributions with accuracy ε2/2n in H2 distance. We defer this calculation, as
well as bounding the total number of interventions, to later when we analyze semi-Markovian CBNs.

C Preliminaries

Notation. We use capital (bold capital) letters to denote variables (sets of variables), e.g., A is
a variable and B is a set of variables. We use small (bold small) letters to denote values taken by
the corresponding variables (sets of variables), e.g., a is the value of A and b is the value of the
set of variables B. The variables in this paper take values in a discrete set Σ. We use [n] to denote
{1, 2, . . . , n}.

17

Probability and Statistics. The total variation (TV) distance between distributions P and Q over
the same set [D] is δTV (P,Q) := 1

2

∑
i∈[D] |P (i) −Q(i)|. The squared Hellinger distance (given

in (4)) and the total variation distance are related by the following.
Lemma 5 (Hellinger vs total variation). The Hellinger distance and the total variation distance
between two distributions P and Q are related by the following inequality:

H2(P,Q) ≤ δTV (P,Q) ≤
√

2H2(P,Q).

The problem of two-sample testing for discrete distributions in Hellinger distance, and learning with
respect to total variation distance has been studied in the literature, and the following two lemmas
state two results we use. Let P and Q denote distributions over a domain of size D.
Lemma 1. [Hellinger Test, [DKW18]] Given O(min(D2/3/ε8/3, D3/4/ε2)) samples from each
unknown distributions P and Q, we can distinguish between P = Q vs H2(P,Q) ≥ ε2 with
probability at least 2/3. This probability can be boosted to 1 − δ at a cost of an additional
O(log(1/δ)) factor in the sample complexity. The running time of the algorithm is quasi-linear in
the sample size 8.

Lemma 6 (Learning in TV distance, folklore (e.g. [DL12])). For all δ ∈ (0, 1), the empirical

distribution P̂ computed using Θ
(
D
ε2 +

log 1
δ

ε2

)
samples from P satisfiesH2(P, P̂) ≤ δTV (P, P̂) ≤ ε,

with probability at least 1− δ.

Bayesian Networks. Bayesian networks are popular probabilistic graphical models for describing
high-dimensional distributions.
Definition 2. A Bayesian Network (BN) N is a distribution that can be specified by a tuple
〈V, G, {Pr[Vi | pa(Vi)] : Vi ∈ V,pa(Vi) ∈ Σ|Pa(Vi)|}〉 where: (i) V is a set of variables over
alphabet Σ, (ii) G is a directed acyclic graph with nodes corresponding to the elements of V, and
(iii) Pr[Vi | pa(Vi)] is the conditional distribution of variable Vi given that its parents Pa(Vi) in G
take the values pa(Vi).

The Bayesian Network N = 〈V, G, {Pr[Vi | pa(Vi)]}〉 defines a unique probability distribution PN
over Σ|V|, as follows. For all v ∈ Σ|V|,

PN [v] =
∏
Vi∈V

Pr[vi | pa(Vi)].

In this distribution, each variable Vi is independent of its non-descendants given its parents in G.

Conditional independence relations in graphical models are captured by the following definitions.
Definition 3. Given a DAG G, a (not necessarily directed) path p in G is said to be blocked by a set
of nodes Z, if (i) p contains a chain node B (A→ B → C) or a fork node B (A← B → C) such
that B ∈ Z (or) (ii) p contains a collider node B (A→ B ← C) such that B /∈ Z and no descendant
of B is in Z.

Definition 4 (d-separation). For a given DAG G on V, two disjoint sets of vertices X,Y ⊆ V are
said to be d-separated by Z in G, if every (not necessarily directed) path in G between X and Y is
blocked by Z.

Lemma 7 (Graphical criterion for independence). For a given BN N = 〈V, G, {Pr[Vi | pa(Vi)]}〉
and X,Y,Z ⊂ V, if X and Y are d-separated by Z in G, then X is independent of Y given Z in
PN , denoted by [X |= Y | Z] in PN .

C.1 Causality

We describe Pearl’s notion of causality from [Pea95]. Central to his formalism is the notion of an
intervention. Given a variable set V and a subset X ⊂ V, an intervention do(x) is the process of
fixing the set of variables X to the values x. The interventional distribution Pr[V | do(x)] is the
distribution on V after setting X to x. As discussed in the introduction, an intervention is quite
different from conditioning.

8The sample complexity here is an improvement of the previously known result of [DK16].

18

Another important component of Pearl’s formalism is that some variables may be unobservable. The
unobservable variables can neither be observed nor be intervened. We partition our variable set into
two sets V and U, where the variables in V are observable and the variables in U are unobservable.
Given a directed acyclic graph H on V ∪U and a subset X ⊆ (V ∪U), we use ΠH(X),PaH(X),
AnH(X), and DeH(X) to denote the set of all parents, observable parents, observable ancestors and
observable descendants respectively of X, excluding X, in H . When the graph H is clear, we may
omit the subscript. As usual, small letters, π(X), pa(X), an(X) and de(X) are used to denote their
corresponding values. And, we use HX and HX to denote the graph obtained from H by removing
the incoming edges to X and outgoing edges from X respectively.
Definition 5 (Causal Bayesian Network). A causal Bayesian network (CBN) is a collection of
interventional distributions that can be defined in terms of a tuple 〈V,U, G, {Pr[Vi | π(Vi)] : Vi ∈
V,π(Vi) ∈ Σ|Π(Vi)|}, {Pr[Ui | π(Ui)] : Ui ∈ U,π(Ui) ∈ Σ|Π(Ui)|}〉, where (i) V and U are the
sets of observable and unobservable variables respectively, (ii) G is a directed acyclic graph on
V ∪U, and (iii) Pr[Vi | π(Vi)] and Pr[Ui | π(Ui)] are the conditional probability distributions of
Vi and Ui resp. given that its parents Π(Vi) and Π(Ui) resp. take the values π(Vi) and π(Ui)) resp.

A CBN M = 〈V,U, G, {Pr[Vi | π(Vi)]}, {Pr[Ui | π(Ui)]}〉 defines a unique interventional
distribution PM[V | do(x)] for every subset X ⊆ V (including X = ∅) and assignment x ∈ Σ|X|,
as follows. For all v ∈ Σ|V|:

PM[v | do(x)] =

{∑
u

∏
Vi∈V\X Pr[vi | π(Vi)] ·

∏
Ui∈U Pr[ui | π(Ui)] if vis consistent with x

0 otherwise.

We say that G is the causal graph corresponding to the CBNM.

Another equivalent way to define a CBN is by specifying the set of interventional distributions
PM[V | do(x)] for all subsets X and assignments x. To connect to the preceding definition, we
require that each PM[V | do(x)] is defined by the Bayesian network described by GX with the
conditional probability distributions obtained by setting the variables in X to the constants x.

It is standard in the causality literature to work with causal graphs of a particular structure:
Definition 6 (Semi-Markovian causal graph and Semi-Markovian Bayesian network). A semi-
Markovian causal graph (SMCG) G is a directed acyclic graph on V ∪U where every unobservable
variable is a root node and has exactly two children, both observable. A semi-Markovian Bayesian
network (SMBN) is a causal Bayesian network where the causal graph is semi-Markovian.

There exists a known reduction (described formally in Appendix I) from general causal Bayesian
networks to semi-Markovian Bayesian networks that preserves all the properties we use in our
analysis, so that henceforth, we will restrict only to SMBNs.

In SMCGs, the divergent edges Vi ← Uk → Vj are usually represented by bi-directed edges
Vi ↔ Vj . A bi-directed edge between two observable variables implicitly represents the presence of
an unobservable parent.
Definition 7 (c-component). For a given SMCG G, S ⊆ V is a c-component of G, if S is a maximal
set such that between any two vertices of S , there exists a path that uses only bi-directed edges.

Since a c-component forms an equivalence relation, the set of all c-components forms a partition
of V, the observable vertices of G. We use the notation C(V) = {S1,S2, . . . ,Sk} to denote the
partition of V into the c-components of G, where each Si ⊆ V is a c-component of G.

Also, for X ⊆ V, the induced subgraph G[X] is the subgraph obtained by removing the vertices
V \X and their corresponding edges from G. We use the notation C(X) = {S1,S2, . . . ,Sk} to
denote the set of all c-components of G[X], that is each Si ⊆ X is a c-component of G[X]. The next
two lemmas capture the factorizations of distributions in SMBN.
Lemma 8. LetM be a given SMBN with respect to the SMCG G. For any set S ⊆ V, and a
subset D such that (V \ S) ⊇ D ⊇ Pa(S), and for any assignment s,d, PM[s | do(d)] = PM[s |
do(pa(S))], where pa(S) denotes the assignment consistent with d.

Proof. When the parents of S, Pa(S), are targeted for intervention, the distribution on S remains the
same irrespective of whether the other vertices in (V \ S) are intervened or not.

19

Lemma 9 (c-component factorization, [TP02]). Given a SMBNM with respect to the causal graph
G and a subset X ⊆ V, let C(V\X) = {S1, . . . ,Sk}. For any given assignment v,

PM[v \ x | do(x)] =
∏
i

PM[si | do(v \ si)].

For a given SMCG G, the in-degree and out-degree of an observable vertex Vi ∈ V denote the
number of observable parents and observable children of Vi in G respectively. The maximum in-
degree of a SMCG G is the maximum in-degree over all the observable vertices. The maximum
degree of a SMCG G is the maximum of the sum of the in-degree and out-degree over all the
observable vertices.
Definition 8 (Graphs with bounded in-degree and bounded c-component). Gd,` denotes the class of
SMCGs with maximum in-degree at most d and the size of the largest c-component at most `.

C.2 Problem Definitions

Here we define the testing and learning problems considered in the paper. LetM and N be two
SMBNs. We say thatM = N , if

PM[V \T | do(t)] = PN [V \T | do(t)] ∀T ⊆ V, t ∈ Σ|T|.

And we say that ∆(M,N) > ε, if there exists T ⊆ V and t ∈ Σ|T| such that

δTV (PM[V \T | do(t)], PN [V \T | do(t)]) > ε.

Definition 9 (Causal Goodness-of-fit Testing (CGFT(G,M, ε))). Given a SMCG G, a (known)
SMBN M on G, and ε > 0. Let X denote an unknown SMBN on G. The objective of
CGFT(G,M, ε) is to distinguish between X =M versus ∆(X ,M) > ε with probability at least
2/3, by performing interventions and taking samples from the resulting interventional distributions of
X .
Definition 10 (Causal Two-sample Testing (C2ST(G, ε))). Given a SMCG G, and ε > 0. Let X
and Y be two unknown SMBNs on G. The objective of C2ST(G, ε) is to distinguish between X = Y
versus ∆(X ,Y) > ε with probability at least 2/3, by performing interventions and taking samples
from the resulting interventional distributions of X and Y .
Definition 11 (Learning SMBNs (CL(G, ε))). Given a SMCG G and ε > 0. Let X be an unknown
SMBN on G. The objective of CL(G, ε) is to perform interventions and taking samples from the
resulting interventional distributions of X , and return an oracle that for any T ⊆ V and t ∈ Σ|T|

returns an estimated interventional distribution PES [V \T | do(t)] such that

δTV ([PX [V \T | do(t)], PES [V \T | do(t)]) < ε.

We emphasize that in all three problems, the causal graph G is known explicitly in advance.

D Testing and Learning Algorithms for SMBNs

D.1 Testing

Recall that in Section 2, we provided an algorithm for the two-sample testing problem when the
SMCG G is common and known. We will now consider the problem of two sample testing, where X
and Y are still on the same common SMCG G, but G is unknown. We now show an algorithm that
uses the same number of interventions and samples as Theorem 4 for the known G case, however
requiring O(n`+1K`(2d+7/4)ε−2) time.
Theorem 7 (Algorithm for C2ST(G, ε) – Unknown graph). Consider the same set-up as Theorem 4,
except that the SMCG G ∈ Gd,` is unknown. Then, there is an algorithm to this problem, that makes
O(K`d(3d)` log n) interventions to X and Y , taking O(K`(d+7/4)nε−2) samples per intervention,
in time Õ(n`K`(2d+7/4)nε−2).

Proof. We first use Lemma 10 and obtain a set of interventions I, such that I is a covering set with
error probability at most 1/6. Note that Lemma 10 holds even when the underlying graph G is
unknown.

20

Algorithm 2: Algorithm for C2ST(G, ε) – Unknown graph

I: Covering intervention set

1. Under each intervention I = Pr[V \T | do(t)] ∈ I:

(a) Obtain O(K`(d+7/4)nε−2) samples from the interventional distribution of I
in both models X and Y .

(b) For each subset S ⊆ V \T of size ≤ `, using Lemma 1, Lemma 8 and the
obtained samples, test (with error probability at most 1/(6K`d2`n)):

PX [S | do(t)] = PY [S | do(t)] versus H2

(
PX [S | do(t)],
PY [S | do(t)]

)
≥ ε2

2K`(d+1)n

Output “∆(X ,Y) > ε” if the latter.

2. Output “X = Y”.

For each intervention, we go over all subsets S of size ≤ `. Therefore we perform at most
(
n
≤`
)

=

O(n`) sub-tests for an intervention. For each sub-test, the algorithm’s running time is quasi-linear
in the sample complexity (Lemma 1), therefore taking a total time of O(n`K`(2d+7/4)nε−2). The
number of interventions follow from Lemma 10 and the number of samples follow from the algorithm.

Correctness. As in the proof of Theorem 4, we use Theorem 3 to show that when ∆(X ,Y) > ε,
then there exists a subset S of some c-component and an I ∈ I that does not intervene any node in S
but intervenes Pa(S) with some assignment pa(s) such that

H2(PX [S | do(pa(S))], PY [S | do(pa(S))]) > ε2/(2K`(d+1)n).

This together with Lemma 3 proves that PX and PY are far in terms of the total variation distance.
Since the error probability of each sub-test is bounded by at most 1/(6K`d2`n) and the error
probability of I being a covering intervention set is at most 1/6, by union bound, we will have an
error of at most 1/3 over the entire algorithm.

D.2 Learning

Our next result is on learning SMBNs over a known causal graph. Our algorithm is improper,
meaning that it does not output a causal model in the form of an SMBN, but rather outputs an
oracle which succinctly encodes all the interventional distributions. See Definition 11 for a rigorous
formulation of the problem.

Theorem 8 (Algorithm for CL(G, ε)). For any given SMCG G ∈ Gd,` with n vertices and a
parameter ε > 0, there exists an algorithm that takes as input an unknown SMBN X over G, that
performsO(K`d(3d)` log n) interventions to X , taking Õ(K`(2d+3)n2ε−4) samples per intervention,
that runs in time Õ

(
2`K`(3d+3)n3ε−4

)
, and that with probability at least 2/3, outputs an oracle N

with the following behavior. Given as input any T ⊆ V and assignment t ∈ Σ|T|, N outputs an
interventional distribution PN [V \T|do(t)] such that:

δTV (PX [V \T | do(t)], PN [V \T | do(t)]) < ε

When the maximum degree (in-degree plus out-degree) of G is bounded by d, then our algorithm uses
O(K`d(3d)``d2 logK) interventions with the same sample complexity and running time as above.

21

Algorithm 3: Algorithm for CL(G, ε)

I: Covering intervention set
1. Under each intervention I ∈ I:

(a) Obtain Õ(n2K`(2d+3)ε−4) samples from the interventional distribution of I
in X .

(b) For each subset S of a c-component, if I does not set S but sets Pa(S) to
pa(S), use Lemma 6, Lemma 8 and the obtained samples to learn:

PN [S|do(pa(S))] s.t., H2(PN [S|do(pa(S))], PX [S|do(pa(S))]) ≤ ε2

2K`(d+1)n

with probability of error at most 1/(3K`d2`n).

2. Return the following oracle N that takes as input: T ⊆ V and t ∈ Σ|T|

(i) Let C(V \T) = {S1, . . . ,Sp}.

(ii) Output the distribution PN [V\T | do(t)] where
for any assignment v \ t:

PN [v \ t | do(t)] =

p∏
i=1

PN [si | do(v \ si)]

The covering intervention set used in the algorithm above is as defined in Definition 1.

Number of interventions, time, and sample requirements. The number of interventions is ob-
tained using the bound on the size of the covering intervention set from Lemma 10. When the
maximum degree is bounded, we can use Lemma 11. The number of samples per intervention is
obtained from Lemma 6. Since the algorithm learns at most nK`d2` interventions (subroutines), and
each subroutine takes time linear in the sample size, the time complexity follows.

Correctness. For any given T, do(t), let C(V \T) = {S1, . . . ,Sp}. Lemma 9 justifies that

PN [v \ t | do(t)] =
∏
i

PN [si | do(v \ si)].

Similar to the proof of Theorem 4, using Theorem 3 and Lemma 5, we get:

H2(PN [V \T | do(t)], PX [V \T | do(t)]) < ε2/2

=⇒ δTV (PN [V \T | do(t)], PX [V \T | do(t)]) < ε.

E Main Ingredients of the Analysis

E.1 Covering Intervention Sets

Let G ∈ Gd,`. G contains (i) at most n c-components; (ii) for each c-component, there are at most 2`

possible subsets; and (iii) for every subset of a c-component, there can be at most `d observable parents.
Hence, the trivial bound on the number of interventions required by our algorithms (Algorithm 1,2
and 3), i.e., covering set of interventions, is n2`Σ`d. However, the size of the covering set can be
further improved. For example, suppose we have a collection of n/(d+ 1) disjoint stars, where each
star has d arms (directed inwards). Then, there is a covering set of interventions of size O((|Σ|+1)d).
The reason is that the same intervention can be applied to each star in parallel, and the number
of interventions to each star is bounded by a function of d and |Σ| and does not depend on n. A
generalization of this argument for any G ∈ Gd,` provides a covering set of interventions of size
O(K`d(3d)`(log n+ `d logK)).
Lemma 10 (Counting Lemma: bounded in-degree). Let G ∈ Gd,` be a SMCG with n vertices and
Σ be an alphabet set of size K. Then, there is a randomized algorithm that outputs a set I of size

22

O(K`d(3d)`(log n+ `d logK+ log(1/δ))). such that, with probability at least 1− δ, I is a covering
intervention set.

Proof. Let t = K`d(3d)`(log n+ 2`d logK + log(1/δ)). The interventions in I are chosen by the
following procedure: For each j ∈ [t] and for each Vi ∈ V , Vi is observed in Ij with probability
1/(d+ 1) and otherwise, Vi is intervened with the assignment chosen uniformly from Σ. Let Vi = ∗
denotes that Vi is not intervened. Consider a fixed c-component C, a fixed subset S ⊆ C, a fixed
assignment pa(S) ∈ Σ|Pa(S)| and a fixed j ∈ [t]. Now,

Pr[Ij(S) = ∗|S| ∧ Ij(Pa(S)) = pa(S)] =

(
1

d+ 1

)|S|
·
(

d

K(d+ 1)

)|Pa(S)|

≥ (d+ 1)−`K−`de−` [Since |Pa(S)| ≤ `d and |S| ≤ `]
≥ (3d)−`K−`d.

This implies that

Pr[∀j ∈ [t], (Ij(S) 6= ∗|S| ∨ Ij(Pa(S)) 6= pa(S))] ≤
(
1− (3d)−`K−`d

)t ≤ δ

n
K−2`d.

Hence,

Pr[∃ C,∃S ⊆ C,∃pa(S) ∈ Σ|Pa(S)|,∀j ∈ [t], (Ij(S) 6= ∗|S| ∨ Ij(Pa(S)) 6= pa(S))]

≤ n2`K`d · δ
n
K−2`d ≤ δ

by the union bound.

Remark 1. The above proof can be made deterministic by using explicit deterministic constructions
of almost `d-wise independent random variables [AGHP92, EGL+92, NN90].

To illustrate Remark 1, we will require the following definition.

Definition 12 (almost k-wise independence). Let S ⊂ {0, 1}m be a sample space and let X =
{X1, X2, . . . , Xm} be chosen uniformly from S. S is (ε, k)-independent if for any k positions
i1 < i2 < · · · < ik and for any k bit string α ∈ {0, 1}k,

|Pr[Xi1 , Xi2 , . . . , Xik = α]− 2−k| ≤ ε.

[NN90] presented an efficient construction of a sample spaceA ⊂ {0, 1}m of sizeO(k logm·22k · 1

ε4
)

such that A is (ε, k)-independent.

Let |Σ| be an alphabet set of size K, m = n logK and k = `d logK. Let S ⊆ {0, 1}m represent
the binary encoding of the set of all possible assignments of the observable vertices V. To obtain
Remark 1, it is sufficient to construct a small set of assignmentsA ⊂ {0, 1}m such that: for every α ∈
{0, 1}k and for any k indices i1 < i2 < · · · < ik, there exists an assignment a = (a1, . . . , am) ∈ A
such that ai1 , ai2 , . . . , aik = α. Also note that any sample space A ⊂ {0, 1}m which is (2−k−1, k)-
independent will achieve the desired property. Hence, the construction of [NN90] yields the required
set of assignments A of size O(`d · logK ·K6`d · log n).

For bounded-degree graphs, we can use the Lovász local lemma and further minimize the size of the
covering set.

Lemma 11. [Counting Lemma: bounded total degree] Let G ∈ Gd,` be an SMCG with n vertices,
whose variables take values in Σ with |Σ| = K, and whose maximum degree is bounded by d. Then,
there exists covering intervention set I of size O(K`d(3d)``d2 logK).

Proof. Let t = K`d(3d)`(`d2 + `d logK + 2). The interventions in I are chosen by the following
procedure: For each j ∈ [t] and for each Vi ∈ V , Vi is observed in Ij with probability 1/(d+ 1) and
otherwise, Vi is intervened with the assignment chosen uniformly from the set Σ. Let Vi = ∗ denotes
that Vi is observed (not intervened).

23

For a fixed set S that is a subset of a c-component and a fixed assignment pa(S) ∈ Σ|Pa(S)|, let
AS,pa(S) be the event: ∀j ∈ [t], (Ij(S) 6= ∗|S|∨Ij(Pa(S)) 6= pa(S)). Similar to the proof of Lemma
10, for any fixed S and pa(S): Pr[AS,pa(S)] ≤ 1/(42`d

2

K`d).

Now, note thatAS,pa(S) andAT,pa(T) are independent if Pa(S) and Pa(T) are disjoint. For a fixed S,
the number of subsets T such that Pa(S)∩Pa(T) 6= ∅ is at most 2`d

2

(since, the number of children
of the parents of S is at most `d2). Therefore, for a fixed S and pa(S), AS,pa(S) is independent of all
AT,pa(T)’s except for at most 2`d

2

K`d many of them (taking into account the number of possible
assignments pa(T)). Hence, the Lovász Local Lemma [AS04, Chapter 5] guarantees that there exists
a set of t interventions such that ¬AS,pa(S) for all S and pa(S).

Remark 2 (Explicitness). Although Lemma 11 only asserts the existence of a covering intervention,
its proof can be turned into a linear time algorithm using the constructive proofs of the Lovász Local
Lemma [Mos09, MT10].

E.2 Subadditivity Theorem for SMBNs

The next theorem states that if two causal models are “far”, then they must be “far” under some
“local” intervention.
Theorem 3. (Subadditivity Theorem) LetM andN be two SMBNs defined on a known and common
SMCG G ∈ Gd,`. For a given intervention do(t), let V \T partition into C = {C1,C2, . . . ,Cp},
the c-components with respect to the induced graph G[V \T]. Suppose

H2(PM[Cj | do(pa(Cj))], PN [Cj | do(pa(Cj))]) ≤ γ ∀j ∈ [p],∀pa(Cj) ∈ Σ|Pa(Cj)|.
(2)

Then
H2 (PM[V \T | do(t)], PN [V \T | do(t)]) ≤ ε ∀t ∈ Σ|T| (3)

where ε = γ|Σ|`(d+1)n.

Proof. Let W = V \T = {W1, . . . ,Wr}, where the indices are arranged in a topological ordering.
Here we focus only on distributions on W after the intervention do(t). That is, our focus is restricted
to the graph GT, the intervention do(t) and the vertices W = V \T. We know that

H2 (PM[W | do(t)], PN [W | do(t)]) = 1−
∑
w

√
PM[w | do(t)]PN [w | do(t)]

= 1−BC (PM[W | do(t)], PN [W | do(t)]) (7)
where BC(PM[W | do(t)], PN [W | do(t)]) is the Bhattacharya coefficient of PM[W | do(t)] and
PN [W | do(t)] (see (4)).

For each j ∈ [p], identify the vertices in Cj as {Wnj,1 , . . . ,Wnj,sj
} where sj = |Cj | and nj,1 <

· · · < nj,sj . Using Lemma 9, we express the distributions in terms of the product
∏p
j=1 Pr[cj |

do(w \ cj)] [TP02],
BC(PM[W | do(t)], PN [W | do(t)])

=
∑
w

√
PM[w | do(t)]
PN [w | do(t)]

=
∑
w

√√√√ p∏
j=1

PM[cj | do(w \ cj)]
PN [cj | do(w \ cj)]

=
∑
w

√√√√ p∏
j=1

sj∏
i=1

PM[wnj,i | wnj,1 , . . . , wnj,i−1
, do(w \ cj)]

PN [wnj,i | wnj,1 , . . . , wnj,i−1 , do(w \ cj)]

=
∑
w

√√√√ p∏
j=1

sj∏
i=1

PM[wnj,i | wnj,1 , . . . , wnj,i−1 , do(pa(Wnj,1 , . . . ,Wnj,i−1))]
PN [wnj,i | wnj,1 , . . . , wnj,i−1

, do(pa(Wnj,1 , . . . ,Wnj,i−1
))]

(using Lemma 17).

(8)

24

The column-wise notation used above (within the square root) represent the multiplication of all those
terms inside the square root, and is only used to represent lengthy multiplications in a single line.

For i ∈ [sj], let

dep(nj,i) := {Wnj,1 , . . . ,Wnj,i} ∪ (Pa({Wnj,1 , . . . ,Wnj,i}) \T).

For j ∈ [p], i ∈ [sj], let Xnj,i : Σ|dep(nj,i)| → [0, 1] be

Xnj,i(wdep(nj,i)) :=

√
PM[wnj,i | wnj,1 , . . . , wnj,i−1 , do(pa(Wnj,1 , . . . ,Wnj,i−1))]
PN [wnj,i | wnj,1 , . . . , wnj,i−1

, do(pa(Wnj,1 , . . . ,Wnj,i−1
))]

.

Recall that indices of W follow a topological ordering. Using this topological ordering and plugging
in the expression above, we obtain

BC(PM[W | do(t)], PN [W | do(t)]) =
∑
w1

X1(wdep(1))
∑
w2

X2(wdep(2)) . . .
∑
wr

Xr(wdep(r))

(9)

where r = |W|. In order to prove the theorem, it will suffice to prove that this expression is at
least 1− ε, whenever (2) holds. To prove this, we will take the following path, which is essentially
an induction on r. For j ∈ [p], let bj = 1, dep(Cj) = Cj ∪ (Pa(Cj) \ T) and Yj(·) = 1 (a
constant function). Set b = (b1, . . . , bp), dep := (dep(1), . . . , dep(r), dep(C1), . . . , dep(Cp)),
and Y = (Y1, . . . , Yp).

In Definition 13, we define an optimization program, Pr,p(Σ, γ, C,b,dep,Y) whose objective value
is equal to BC(PM[W | do(t)], PN [W | do(t)]). In Appendix G, we provide the steps to prove
a lower bound on the objective of the program, thereby proving a lower bound on BC(PM[W |
do(t)], PN [W | do(t)]).

Also, from (2) and (7), for all j ∈ [p] and for all wdep(Cj)\Cj
,∑

wnj,1

Xnj,1(wdep(nj,1))
∑
wnj,2

Xnj,2(wdep(nj,2)) . . .
∑
wnj,sj

Xnj,sj
(wdep(nj,sj)) ≥ 1− γ

satisfying (11). Note that Pr,p(Σ, γ, C,b,dep,Y) is a program such that maxj |dep(Cj)| ≤ `(d+1).
By Lemma 16,

BC (PM[W | do(t)], PN [W | do(t)]) ≥ Opt(Pr,p) ≥ (1− |Σ|`(d+1)γ)p.

Using this in (7), we get

H2 (PM[W | do(t)], PN [W | do(t)]) ≤ 1− (1− |Σ|`(d+1)γ)p ≤ pγ|Σ|`(d+1) ≤ ε.

F Proofs for Lower Bound on Interventional Complexity

F.1 Proof of Lemma 4

Lemma 4. There exists a G, and a constant c such that for any set of interventions I with |I| <
c ·K`d−2 log n, there is a C ⊆ B, which is a c-component of G, and an assignment pa(C) such that
no intervention in I

• assigns pa(C) to Pa(C), and

• observes all variables in C.

Proof. We show existence of such a G using a probabilistic argument. We consider A = Ar ∪Af ,
where Ar := {A1, . . . , An}, and Af := {An+1, . . . , An+(`d)−2}. We consider B := B1 ∪B2 ∪
. . . ∪Bn/`, where for each i ∈ [n/`], Bi = {Bi,1, Bi,2, . . . , Bi,`}. V = A ∪B will be the set of
observable nodes in the graph. Therefore, the number of nodes is |V| = 2n+ `d− 2 = O(n).

The set of unobservable nodes are such that the following is satisfied:

25

• Bi is a c-component in G, for each Bi.

We consider random directed bipartite graphs on V generated as follows, where all the edges go from
A to B. Each c-component Bi has exactly `d parents, chosen as follows:

• Af ⊂ Pa(Bi), namely every vertex of Af is the parent of at least one node in Bi.

• The remaining two parents of Bi are chosen randomly from Ar with edge density p := 2/n.

Let I be a set of interventions that satisfies the conditions of Lemma 3. Let I′ ⊆ I be the interventions
that intervene all the nodes in A. The nodes in Af can be intervened in |Σ||Af | = K`d−2 ways. This
induces a partition of I′ into K`d−2 parts, where the interventions in each partition intervenes Af

with the same assignment. Let {I1, . . . , IK`d−2} such that I′ = I1 ∪ . . . ∪ IK`d−2 be this partition.
We will show that for each j, |Ij | = Ω(log n), implying that

|I| ≥ |I′| ≥ K`d−2 · Ω(log n) = Ω(K`d−2 log n).

Consider a Ij , with |Ij | = t. Further, for simplicity we assume that K = 2 for this part, and that
Σ = {0, 1}. Since all the nodes in Ar are intervened, consider one such node. For any node in Ar

consider the t bit binary string denoting whether it is intervened with 0 or 1 in the t interventions.
This divides the set Ar into 2t cells Z1, . . . ,Z2t , where two nodes are in the same cell if they are
intervened with the identical value by each intervention in Ij . The expected number of pairs of
vertices in Zh that are both parents of some vertex in B is O(p|Zh|2). Therefore, the expected
number of pairs of vertices that are both parents of some vertex in B and also belong to the same
cell is O

(∑
h p|Zh|2

)
, which is at least O(pn22−t) (since

∑
h Zh = n). Now for any such pair

of vertices A,A′ ∈ Ar that belong to the same cell, there exists no intervention such that A = 0
and A′ = 1, contradicting to our requirement. Therefore, pn22−t < 1 which implies t is at least
Ω(log n).

Now we proceed to prove Lemma 3.

F.2 Proof of Lemma 3

Lemma 3. Suppose an adaptive algorithm uses a sequence of interventions I to solve C2ST(G, ε)
or CL(G, ε). Let C ⊆ B be a c-component of G. Then, for any assignment pa(C) ∈ Σ|Pa(C)|, there
is an intervention I ∈ I such that the following conditions hold:

C1. I intervenes Pa(C) with the corresponding assignment of pa(C),9

C2. I does not intervene on any node in C.

Proof. In our construction we consider models where A is assigned 0|A| with probability one in the
observable distribution. In other words, each Ai ∈ A takes value 0 with probability one. Consider
any intervention I that targets a A′ ⊆ A. Consider the intervention I ′ that intervenes A′ the same
way as I , but intervenes the nodes in A \A′ with 0’s. Since there are no incoming arrows to A,
the distribution of I′ will be the same as I. Therefore, we assume that each intervention I we make
intervenes all the vertices in A.

Suppose there is an algorithm that makes a series of interventions I that do not satisfy the conditions of
Lemma 3. In other words, there exists a c-component C ⊆ B and an assignment pa(C), such that no
intervention in I satisfies C1 and C2. Let C = {V1, V2, . . . , V`} and Pa(C) = {W1,W2, . . . ,Ws}.
Let G′ be a subgraph of G on the vertices C ∪ Pa(C) whose edge set satisfies the following:

• C contains exactly `− 1 bidirected edges that form a tree.

• each of the parent vertices Wi has exactly one child node in C.

9In our construction, Pa(C) always take 0 in the natural distribution. Henceforth, the interventions where
some vertices in Pa(C) are not intervened are not considered here, as they are equivalent to the case when those
vertices are intervened with 0.

26

In our construction, we consider models where the distribution on the rest of the vertices of G (i.e.,
V \ (C ∪ Pa(C))) will be independent of the distribution on C ∪ Pa(C). Therefore, we can restrict
our focus on G′. We will show the existence of two modelsM and N on G′ such that:

S.1 Let T ⊆ (C ∪ Pa(C)), t ∈ Σ|T|. Let {C1, . . . ,Cq} be the c-components of the induced
graph G′[C \ T]. Suppose under the intervention do(t), the conditions C1, or C2 is not
satisfied, then, the distributions over C \T inM and N are identical under do(t), namely,

PM[C \T | do(t)] =
∏
i

PM[Ci | do(t)] =
∏
i

PN [Ci | do(t)] = PN [C \T | do(t)]

where for each i, PM[Ci | do(t)] = PN [Ci | do(t)] and is a uniform distribution over
{0, 1}|Ci|,

S.2 δTV (PM[C | do(pa(C))], PN [C | do(pa(C))]) = 1.10

Recall that the sequence of interventions performed by an (adaptive) algorithm is denoted by I.
The assignment pa(C) gets fixed only after the algorithm fixes all the interventions in I. However,
we know that any intervention in I belongs to the category S.1. And for each such intervention
in I, the corresponding distributions on models M and N are equal, and is defined by a set of
uniform distributions over the c-components. Therefore, we can construct an adversary that, for each
intervention in I performed by the algorithm (sequentially), outputs a distribution11 based on S.1.
When the algorithm terminates, the assignment pa(C) gets fixed, and we can show the existence of
two modelsM and N such that

• the models agree on all the interventional distributions in I, and all such distributions also
match the corresponding distributions that were revealed by the adversary.

• δTV (PM[C | do(pa(C))], PN [C | do(pa(C))]) = 1.

Moreover, we can construct such an adversary that outputs distributions in the same way, for all the
c-components C ⊆ B of G. Thus, an explicit construction of two modelsM and N on G′ that
generates distributions according to S.1 and S.2 would conclude our proof. The remainder of the
proof is dedicated towards this goal.

Let U be the set of all unobservable variables in G′. Let UVi ⊆ U represent the bidirected edges
incident to Vi in G′. Also, for each variable Vi we have an additional boolean random variable Ri
that provides randomness to Vi. All the randomness in the modelsM and N we construct are in
the hidden variables Ui’s and the Ri’s. In other words, the observable variables are a deterministic
function of these. The modelsM and N are defined as follows:

1. (a) For each bidirected edge Ui ∈ U, Ui is a Bern(0.5) random variable in bothM, and
N .

(b) In each model, Ri’s are also independent Bern(0.5) random variables.

2. For each i ∈ [s], Wi = 0 with probability one in bothM, and N .

3. For each Vi ∈ C, with probability one:

(a) when Pa(Vi) is not consistent with pa(Vi), then Vi = XOR(UVi , Ri) in both bothM,
and N .

(b) when Pa(Vi) is consistent with pa(Vi) and i 6= 1, then Vi = XOR(UVi) in bothM,
and N .

(c) when Pa(Vi) is consistent with pa(Vi) and i = 1, Vi takes
• Vi = XOR(UVi) inM, and
• Vi = XNOR(UVi) in N .

10Recall that pa(C) is the assignment that gets fixed after the algorithm fixes the sequence I.
11We consider the worst case, where the algorithm is provided with infinite samples.

27

Case 1: When I respects S.1. Consider an intervention I , identified by do(t), that respects S.1. That
is, either I intervenes some node in C, or I does not intervene Pa(C) with the assignment pa(C). Let
{C1, . . . ,Cq} be the c-components of the graph induced by C \T. Note that the models M , and N ,
differ only on the function V1. Therefore, when V1 is intervened in I , it is easy to see that the required
distributions are equal, and is a product of uniform distributions over the c-components.12 Suppose
V1 is not intervened in I , and without loss of generality let C1 be the c-component that contains V1.
Since the models differ only on V1, it is easy to see that PM[Ci | do(t)] = PN [Ci | do(t)] for all
i 6= 1, and is uniform over {0, 1}|Ci|. Hence, it is sufficient to prove that P [C1 | do(t)]’s are equal
and uniform in both models. Let S be the set of all Ui’s and Rj’s of the following type: a) Ui’s that
have one child in C1 and another child in T; b) Rj’s with respect to Vj ∈ C1 such that pa(Vj)

13 is
inconsistent with t (i.e., Vj ∈ C1 that computes XOR(UVj , Rj)). Now, for any fixed assignment
aC−1

1
to C1 \ {V1} and aS to S, because the bi-directed edges within C1 form a ‘tree’, the value of

every unobservable variable within C1
14 can be computed. Note that V1 computes XOR(aC−1

1
,aS)

inM, and XNOR(aC−1
1
,aS) in N . However, we know that S is a non-empty set and the bit parities

of S are uniformly distributed in both the models. This implies PM[C1 | do(t)] = PN [C1 | do(t)],
and is a uniform distribution over {0, 1}|C1|.

Case 2: When I respects S.2. Consider an intervention I that respects S.2. That is, Pa(C) is
intervened with the assignment pa(C) in I , and no node of C is intervened in I . Consider the set of
variables S as defined before for the S.1 case. Note that S is empty here. This implies, for any fixed
assignment aC−1 to C \ {V1}, V1 computes XOR(aC−1) inM, and V1 computes XNOR(aC−1) in
N . This implies, the supports of PM[C | do(pa(C))] and PN [C | do(pa(C))] are disjoint, and
therefore the total variation distance is 1.

Hence, irrespective of the number of samples taken from the interventions of I, any adaptive
algorithm that solves C2ST(G, ε) or CL(G, ε) must consider a sequence of interventions that satisfies
the conditions C1 and C2.

G Program Pr,p and Properties

In this section, we gather the technical tools used to prove the subadditivity result, Theorem 3. We
formulate our claims at a higher level of abstraction than needed for our purposes, so that the essence
of the argument becomes clearer. An illustration of the proof of the subadditivity theorem on a simple
causal graph with four vertices can be found in Appendix H.

We begin by defining the optimization problem, and then describe it at a high level.

Definition 13 (Program Pr,p(Σ, γ, C,b,dep,Y)). For integers r, p ≥ 0, suppose the following are
given:

1. an alphabet set Σ,

2. γ ∈ (0, 1),

3. a partition15 C of [r] into C1,C2, . . . ,Cp, where for each j ∈ [p], sj = |Cj | and the
elements of Cj are {nj,1, . . . , nj,sj} in increasing order,

4. a vector b = (b1, b2, . . . , bp) ∈ [0, 1]
p,

12Recall that our objective is to prove: PM[C \T | do(t)] =
∏

i PM[Ci | do(t)] =
∏

i PN [Ci | do(t)] =
PN [C \T | do(t)], where for each i, PM[Ci | do(t)] = PN [Ci | do(t)] is a uniform distribution over
{0, 1}|Ci|.

13We refer pa(Vj) with respect to the assignment pa(C).
14We refer to the unobservable variables Ui’s where both the children of Ui lie in C1.
15Here, we allow some members of C to be empty sets.

28

5. a vector of sets dep = (dep(1), . . . , dep(r), dep(C1), . . . , dep(Cp)) such that:

[nj,i] ⊇ dep(nj,i) ⊇ {nj,i} ∪ dep(nj,i−1) ∀j ∈ [p], i ∈ [sj]

sj 6= 0 =⇒ dep(Cj) ⊇ dep(nj,sj) ∀j ∈ [p]

sj = 0 =⇒ dep(Cj) = ∅ ∀j ∈ [p]

6. a set of functions Y = (Y1, Y2, . . . , Yp), where Yj : Σ|dep(Cj)| → [0, 1].

The program Pr,p(Σ, γ, C,b,dep,Y) is the following optimization problem over X = (X1, . . . , Xr)

where Xi : Σ|dep(i)| → [0, 1]:

min
X
fr,p(X)

def
=
∑
a1∈Σ

X1(adep(1))
∑
a2∈Σ

X2(adep(2)) · · ·
∑
ar∈Σ

Xr(adep(r)) ·
p∏
j=1

Yj(adep(Cj))

subject to∑
ai∈Σ

Xi(adep(i)) ≤ 1 ∀i ∈ [r],∀adep(i)\{i} ∈ Σ|dep(i)\{i}|

(10)∑
anj,1∈Σ

Xnj,1(adep(nj,1))
∑

anj,2∈Σ

Xnj,2(adep(nj,2)) · · ·
∑

anj,sj
∈Σ

Xnj,sj
(adep(nj,sj)) · Yj(adep(Cj))

≥ 1− bjγ ∀j ∈ [p],∀adep(Cj)\Cj

(11)

We will first describe the correspondence between the interventional formation of (8) and the above
program. Consider the following program where: for j ∈ [p], bj = 1, dep(Cj) = Cj∪(Pa(Cj)\T),
Yj(·) = 1 (a constant function), b = (b1, . . . , bp), dep := (dep(1), . . . , dep(r), dep(C1), . . . ,
dep(Cp)), and Y = (Y1, . . . , Yp). Substitution of the variables of the program X1, X2, . . . , Xn by
the corresponding Bhattacharya coefficients (as defined in (9)) will satisfy all the constraints (10)
and (11) of the program: (10) captures the fact that the Bhattacharyya coefficient is at most one; (11)
captures the closeness constraint in Theorem 3, i.e., (2). Also, the objective function fr,p captures the
required Bhattacharya coefficient of (8). Hence, proving a lower bound on the objective value of this
program will suffice to prove Theorem 3. The remainder of this section is dedicated towards this goal.

The next three lemmas (Lemmas 12, 13 and 14) all have the following flavor:

• They take as input an optimization problem (program Pr,p), and output a new program P new
r′,p.

• The optimal value of the program only goes down.
• The new program is simpler to analyze.16

We pass the original program Pr,p through the first lemma, and pass its output through the second.
The second lemma is applied multiple times until the output program satisfies a particular property.
The obtained program is then passed through the third lemma to obtain a new program Pr−1,p (with
a reduced value of r), and the steps repeat17. The above procedure reduces to a program with r = 0,
namely to a program of the form P0,p. We can lower bound the objective of this program by simply
using (11). Combining these will yield a lower bound on the optimum of the original program Pr,p,
thus proving Theorem 3.

The first lemma takes a program as input and outputs a new program with a smaller optimal value that
satisfies dep(r) = dep(Cf) (where r ∈ Cf). Let Opt(Pr,p) denote the optimal value of the program
Pr,p.
Lemma 12 (Dependent Set Reduction). Suppose r ∈ Cf . Let P new

r,p be the program obtained from
Pr,p by replacing dep(r) by dep(Cf), then

Opt(Pr,p) ≥ Opt(P new
r,p).

16We understand that this item is very subjective.
17The function Yj(cot) = 1 and bj = 1 take trivial values in the original program Pr,p, the Yj’s and bj’s will

play a crucial role in the intermediate programs obtained during this process.

29

Proof. Our goal is to reduce the given program Pr,p to a different program P new
r,p such that

Opt(Pr,p) ≥ Opt(P new
r,p), where P new

r,p is defined from Pr,p by defining dep(r) to be dep(Cf).

Let Xold = {Xold
1 , . . . Xold

r } be an optimal solution of Pr,p. Now we construct a feasible solution
Xnew = {Xnew

1 , . . . , Xnew
r } for the program P new

r,p , such that f new
r,p (Xnew) = fr,p(X

old) = Opt(Pr,p).
For all i 6= r, we define Xnew

i = Xold
i . For i = r, we define Xnew

r (adepnew(r)) = Xold
r (xdep(r)). In

other words, Xnew
r ignores the new variables added to depnew(r). Therefore,

f new
r,p (Xnew) =

∑
a1∈Σ

Xnew
1 (adep(1)) · · ·

∑
ar∈Σ

Xnew
r (adepnew(r)) ·

p∏
j=1

Yj(adep(Cj))

=
∑
a1∈Σ

Xold
1 (adep(1)) · · ·

∑
ar∈Σ

Xold
r (adep(r)) ·

p∏
j=1

Yj(adep(Cj)) (by definition of Xnew)

= fr,p(X
old) (by the definition of fr,p).

For the program P new
r,p , when i 6= r, Xnew satisfies the constraints in (10) (since the functions Xold

i and
Xnew
i are the same). Similarly, for j 6= f , constraints in (11) of the program P new

r,p are valid. When
i = r in (10), for each adepnew(r)\{r}, we get∑

ar

Xnew
r (adepnew(r)) =

∑
ar

Xold
r (adep(r)) ≤ 1.

When j = f in (11), for all adep(Cj)\Cj
, since nf,sf = r we get,∑

anf,1∈Σ

Xnew
nf,1

(adep(nf,1)) · · ·
∑
ar∈Σ

Xnew
r (adepnew(r)) · Yf (adep(Cf))

=
∑

anf,1∈Σ

Xold
nf,1

(adep(nf,1)) · · ·
∑
ar∈Σ

Xold
r (adep(r)) · Yf (adep(Cf)) (from definition of Xnew)

≥ 1− bfγ (using (11)).

This implies Xnew is a feasible solution for P new
r,p and hence Opt(Pr,p) ≥ Opt(P new

r,p).

The next lemma takes a program Pr,p as input and outputs a new program (with a smaller optimal
value) that satisfies r /∈ dep(Ch) (for some given Ch such that r /∈ Ch).

Lemma 13 (Y-R Reduction). Let Pr,p(Σ, γ, C,b,dep,Y) be a given program, and there exists
h ∈ [p] such that r /∈ Ch and r ∈ dep(Ch). Then, there exists a program P new

r,p (Σ, γ, C,bnew,depnew

,Ynew) such that

Opt(Pr,p) ≥ Opt(P new
r,p),

where

1. bnew
h = |Σ| · bh

2. depnew(Ch) = dep(Ch) \ {r}

3. bnew
j = bj ∀j ∈ [p] \ {h}

4. depnew(Cj) = dep(Cj) ∀j ∈ [p] \ {h}

5. depnew(i) = dep(i) ∀i ∈ [r]

6. Y new
j (adep(Cj)) = Yj(adep(Cj)) ∀j ∈ [p] \ {h},∀adep(Cj).

Proof. Let X′ be an optimal solution of Pr,p. Note that, since dep(Cnew
h) = dep(Ch) \ {r}, our goal

is to find a function Y new
h : Σ|dep(C

new
h)| → [0, 1], whose domain size is smaller than the domain size

of Yh (as Y new
h is independent of the value of ar), that satisfies the required constraints.

30

For a given set of functions X, a subset S ⊆ [r], and for a given assignment aS to S, let fr,p(X)|aS
represent the sum of all terms in fr,p(X) that are consistent with the assignment aS. Note that

fr,p(X
′) =

∑
adep(Ch)

fr,p(X
′)|adep(Ch)

. (12)

For each adep(Ch)\{r}, let

1. zh(adep(Ch)\{r}) = arg minar Yh(adep(Ch)\{r}, ar),

2. Y new
h (adepnew(Ch)) = Y new

h (adep(Ch)\{r}) = Yh(adep(Ch)\{r}, zh(adep(Ch)\{r})).

Based on the above definition of Y new
h , we know that f new

r (X′) ≤ fr,p(X′). In the remainder of the
proof, we show that X′ is also a feasible solution for P new

r,p . The first set of constraints of P new
r,p are

valid (as we have not modified X). Similarly, the second set of constraints is valid for all j 6= h
(as we have not changed any parameters). Now we prove the constraints in (11), for j = h. For all
assignments adepnew(Ch)\Ch

,∑
anh,1

X ′nh,1(adep(nh,1)) · · ·
∑
anh,sh

X ′nh,sh
(adep(nh,sh)) · Y new

h (adepnew(Ch))

=
∑
anh,1

X ′nh,1(adep(nh,1)) · · ·
∑
ahsj

X ′nh,sh
(adep(nh,sh)) · Yh(adep(Ch)\{r}, ar = zh(adep(Ch)\{r}))

(by definition of Y new
h)

=

∑
anh,1

X ′nh,1(adep(nh,1)) · · ·
∑
ahsj

X ′nh,sh
(adep(nh,sh)) ·

∑
ar

Yh(adep(Ch\{r}), ar)



−

∑
anh,1

X ′nh,1(adep(nh,1)) · · ·
∑
ahsj

X ′nh,sh
(adep(nh,sh)) ·

∑
ar:ar 6=

zh(adep(Ch)\{r})

Yh(adep(Ch)\{r}, ar)


≥

∑
ar

∑
anh,1

X ′nh,1(adep(nh,1)) · · ·
∑
anh,sh

X ′nh,sh
(adep(nh,sh)) · Yh(adep(Ch)\{r}, ar)



−

∑
anh,1

X ′nh,1(adep(nh,1)) · · ·
∑
ahsj

X ′nh,sh
(adep(nh,sh)) ·

∑
ar:ar 6=

z(adep(Ch)\{r})

1

 (∵ Yh(.) ≤ 1)

≥

[∑
ar∈Σ

(1− bhγ)

]
−

(|Σ| − 1) ·
∑
anh,1

X ′nh,1(adep(nh,1)) · · ·
∑
ahsj

X ′nh,sh
(adep(nh,sh))


(by constraint (11) of Pr,p)

≥ |Σ|(1− bhγ)− (|Σ| − 1)1 (by constraint (10) of Pr,p)
= 1− |Σ|bhγ
= 1− bnew

h γ.

After multiple passes through the above lemma, we get a program Pr,p that satisfies r /∈ dep(Cj),
for all Cj such that r /∈ Cj. The next lemma takes in such a program, and outputs a program with a
reduced value of r.

31

Lemma 14 (R-Elimination). Let Pr,p(Σ, γ, C,b,dep,Y) be a given program such that the element
r ∈ Cf . Suppose dep(r) = dep(Cf), and for all j ∈ [p] \ {f}, r /∈ dep(Cj). Then there exists a
program P new

r−1,p(Σ, γ, Cnew,b,depnew,Ynew) such that

Opt(Pr,p) ≥ Opt(P new
r−1,p)

where Ynew differs from Y only on the function Yf , Cnew differs from C only on the partition Cf

where Cnew
f = Cf \{r}, and depnew = (dep(1), dep(2), . . . , dep(r−1), dep(C1), . . . , dep(Cf−1),

depnew(Cnew
f), dep(Cf+1), . . . , dep(Cp)) where depnew(Cnew

f) = dep(r) \ {r}.

Proof. Let Xold be an optimal solution of Pr,p. For a given set of functions X, a subset S ⊆ [r],
and for a given assignment aS to S, let fr,p(X)|aS represent the sum of all terms in fr,p(X) that are
consistent with the assignment aS. Then, for all assignments adep(r)\{r}

fr,p(X
old)|adep(r)\{r} = Ladep(r)\{r} ·

∑
ar

Xold
r (adep(r)) · Yf (adep(r)) (13)

We define Y new
f (adepnew(Cnew

f)) = Y new
f (adep(r)\{r}) =

∑
ar
Xold
r (adep(r)) · Yf (adep(r)). Observe

that Y new
f : Σ|dep(r)\{r}| → [0, 1] because of constraint (10) and since Yf itself falls in the range

[0, 1]. Now, the new program P new
r−1,p is completely specified.

Observe that:

fr,p(X
old)|adep(r)\{r} = Ladep(r)\{r} · Y

new
f (adep(r)\{r}) = f new

r−1,p(X
old
r−1)|adep(r)\{r}

where Xold
r−1 = {Xold

1 , . . . , Xold
r−1}. This implies

fr,p(X
old) =

∑
adep(r)\{r}

fr,p(X
old)|adep(r)\{r} =

∑
adep(r)\{r}

f new
r−1,p(X

old
r−1)|adep(r)\{r} = f new

r−1,p(X
old
r−1).

We now show that the functions Xold
r−1 form a feasible solution for P new

r−1,p. The first set of constraints
(10) holds for P new

r−1,p because Xold is feasible for Pr,p. Also for all j 6= f , the second set of
constraints (11) holds for the same reason. For j = f :∑
anf,1

Xold
nf,1

(adep(nf,1)) · · ·
∑

anf,sf−1

Xold
nf,sf−1

(adep(nf,sf−1)) · Y new
f (adep(Cnew

f))

=
∑
anf,1

Xold
nf,1

(adep(nf,1)) · · ·
∑

anf,sf−1

Xold
nf,sf−1

(adep(nf,sf−1))
∑
ar

Xold
r (adep(r)) · Yf (adep(Cf))

(by definition)
≥ 1− bfγ

This completes the proof that Opt(Pr,p) ≥ Opt(P new
r−1,p).

Lemma 15. For any integers r, p ≥ 1 and given a program Pr,p(Σ, γ, C,b,dep,Y), there exists a
program P new

r−1,p(Σ, γ, Cnew, bnew, depnew, Ynew) such that

Opt(Pr,p) ≥ Opt(P new
r−1,p)

where

bnew
j = bj , ∀j ∈ [p] : r /∈ dep(Cj),

bnew
j = |Σ| · bj , ∀j ∈ [p] : r ∈ dep(Cj).

Proof. First we apply Lemma 12 (Dependent Set Reduction). Then, we apply Lemma 13 (Y-R
Reduction) repeatedly, until there does not exist any h ∈ [p] such that r ∈ dep(Ch) but r /∈ Ch. Note
that, in each step of this reduction, the respective bh increases by a factor of |Σ|. Finally, applying
Lemma 14 (R-Elimination) results in a program P new

r−1,p on r−1 inputs with the desired property.

32

Lemma 16. For a given program Pr,p(Σ, γ, C,b = 1,dep,Y = 1), suppose we know that
max
j
|dep(Cj)| is at most L. Then

Opt(Pr,p) ≥ (1− |Σ|Lγ)p.

Proof. We apply Lemma 15 recursively. Note that in each such reduction from Pr,p to Pr−1,p, the
value of bj increases by a factor of |Σ| only when r ∈ dep(Cj).

At r = 0, we have the program P0,p(Σ, γ, C′,b′,dep′,Y′). For all j ∈ [p], we know that b′j ≤ |Σ|L
(since |dep(Cj)| ≤ L). Therefore,

Opt(Pr,p) ≥ Opt(P0,p)

=

p∏
j=1

Y ′j (∅)

≥
p∏
j=1

(1− b′jγ) based on constraint (11) of the program P0,p

≥ (1− |Σ|Lγ)p.

H Illustration

In this section, we illustrate the proof of the subadditivity theorem and the c-component factorization
of [TP02] using models defined on the graph G̃ (shown in Figure 1), where the maximum in-degree
d and the maximum c-component size ` of G̃ are bounded by 1 and 2 respectively.

𝑉1 𝑉2 𝑉3 𝑉4

Figure 1: Causal graph G̃

H.1 Illustration of c-component factorization

H.1.1 Rule 3 of do-calculus

First we recall the Rule 3 of do-calculus [Pea09]. LetM be a SMBN defined on some SMCG G
and let W,X,Y,Z be disjoint sets of observable variables. Then, for any assignment w,x,y, z, the
Rule 3 of do-calculus says that

PM[y | w, do(z,x)] = PM[y | w, z, do(x)]

if Y is independent of Z conditioned on X,W in the graph GX,Z, where GX,Z is the graph
obtained from G by removing the incoming edges to X and outgoing edges from Z. The conditional
independence constraints are based on the well-known d-separation criterion [Pea09].

H.1.2 C-component Factorization

Now we are ready to illustrate the c-component factorization of [TP02]. LetM be a SMBN defined
on G̃. We will prove that for any assignment v1, v2, v3, v4,

PM[v1, v2, v3, v4] = PM[v1, v3 | do(v2, v4)]PM[v2, v4 | do(v1, v3)].

33

Proof. By Bayes’ rule:

PM[v1, v2, v3, v4] = PM[v1]PM[v2 | v1]PM[v3 | v1, v2]PM[v4 | v1, v2, v3]. (14)

By definition of SMBN, it directly follows that PM[v1] = PM[v1 | do(v2)] = PM[v1 | do(v2, v4)]
and PM[v2 | v1] = PM[v2 | do(v1)] = PM[v2 | do(v1, v3)].

Also, the following conditional independence constraints can be verified using d-separation: (i) V3 is
independent of V2 conditioned on V1 in the graph G̃V2 ; (ii) V4 is independent of V1, V3 conditioned
on V2 in the graph G̃V1,V3

. Hence, using the Rule 3 of do-calculus we get

PM[v3 | v1, v2] = PM[v3 | v1, do(v2)] = PM[v3 | v1, do(v2, v4)]

PM[v4 | v1, v2, v3] = PM[v4 | v2, do(v1, v3)].

Substituting the above equalities in Equation (14),

PM[v1, v2, v3, v4] = PM[v1 | do(v2)]PM[v2 | do(v1, v3)]PM[v3 | v1, do(v2)]PM[v4 | v2, do(v1, v3)].

Applying Bayes’ rule to the above expression yields the desired factorization:

PM[v1, v2, v3, v4] = PM[v1, v3 | do(v2, v4)]PN [v2, v4 | do(v1, v3)].

H.2 Illustration of subadditivity theorem

Here we illustrate the proof of the subadditivity theorem (Theorem 3) with respect to modelsM and
N defined on G̃ for the case T = ∅. Other cases (where T 6= ∅) can be easily proved using similar
arguments. In particular, we prove the following statement:

Theorem 9. LetM and N be two SMBNs defined on a known and common SMCG G̃. Let V
partition into C = {C1 = {V1, V3},C2 = {V2, V4}}, the c-components with respect to the induced
graph G̃. Suppose

H2(PM[V1, V3 | do(v2)], PN [V1, V3 | do(v2)]) ≤ γ ∀v2 ∈ Σ (15)

H2(PM[V2, V4 | do(v1, v3)], PN [V2, V4 | do(v1, v3)]) ≤ γ ∀v2 ∈ Σ2. (16)

Then

H2 (PM[V], PN [V]) ≤ ε (17)

where ε = 2|Σ|γ.

Proof. We know that H2(PM[V], PN [V]) = 1−BC(PM[V], PN [V]). By c-component factoriza-
tion ([TP02]), we get

BC(PM[V], PN [V])

=
∑
v

√
PM[v]PN [v]

=
∑
v

√
PM[v1, v3 | do(v2)]PM[v2, v4 | do(v1, v3)]
PN [v1, v3 | do(v2)]PN [v2, v4 | do(v1, v3)]

=
∑
v

√
PM[v1 | do(v2)]PM[v3 | v1, do(v2)]PM[v2 | do(v1, v3)]PM[v4 | v2, do(v1, v3)]
PN [v1 | do(v2)]PN [v3 | v1, do(v2)]PN [v2 | do(v1, v3)]PN [v4 | v2, do(v1, v3)]

=
∑
v

√
PM[v1]PM[v3 | v1, do(v2)]PM[v2 | do(v1)]PM[v4 | v2, do(v1, v3)]
PN [v1]PN [v3 | v1, do(v2)]PN [v2 | do(v1)]PN [v4 | v2, do(v1, v3)]

(18)

Let: dep(1) = {1}, dep(2) = {1, 2}, dep(3) = {1, 2, 3} and dep(4) = {1, 2, 3, 4}. Also, let:
dep(C1) = {1, 2, 3} and dep(C2) = {1, 2, 3, 4}. And, for j ∈ {1, 2}, let Yj : Σ2 → [0, 1] be a
function.

34

Consider the following optimization problem18 P4,2 over X = {X1, X2, X3, X4} where Xi :

Σ|dep(i)| → [0, 1]:

min
X
f4,2(X)

def
=∑

v1∈Σ

X1(v1)
∑
v2∈Σ

X2(v1, v2)
∑
v3∈Σ

X3(v1, v2, v3)
∑
v4∈Σ

X4(v1, v2, v3, v4)Y1(v1, v2, v3)Y2(v1, v2, v3, v4)

subject to∑
vi∈Σ

Xi(vdep(i)) ≤ 1 ∀i ∈ [4],∀vdep(i)\{i} ∈ Σ|dep(i)\{i}| (19)

∑
v1∈Σ

X1(v1)
∑
v3∈Σ

X3(v1, v2, v3) · Y1(v1, v2, v3) ≥ 1− b1γ ∀v2 ∈ Σ (20)

∑
v2∈Σ

X2(v1, v2)
∑
v4∈Σ

X4(v1, v2, v3, v4) · Y2(v1, v2, v3, v4) ≥ 1− b2γ ∀v1 ∈ Σ,∀v3 ∈ Σ

(21)
where Yj(·) = 1 for both j ∈ {1, 2}, and b1 = b2 = 1.

The instantiation of P4,2 with Xi(vdep(i)) =
√
PM[vi| · · · , do(· · ·)]PN [vi| · · · , do(· · ·)] of Equa-

tion (18) for each i ∈ [4] satisfies all the constraints (19), (20), (21) of P4,2. Hence, any lower bound
for the optimal value of the above program P4,2 (denoted by Opt(P4,2)) will also be a lower bound
for BC(PM[V], PN [V]) (Equation (18)). Therefore, in what follows, we will show a lower bound
for Opt(P4,2).

Step 1 (R-Elimination): Let Xopt = {Xopt
1 , Xopt

2 , Xopt
3 , Xopt

4 } be an optimal solution of P4,2. We
now define a new program P (I)

3,2
19 over three variables such that Opt(P4,2) ≥ Opt(P (I)

3,2). The
program P (I)

3,2 is an optimization problem over X = {X1, X2, X3} such that:

min
X
f (I)

3,2(X)
def
=
∑
v1∈Σ

X1(v1)
∑
v2∈Σ

X2(v1, v2)
∑
v3∈Σ

X3(v1, v2, v3)Y (I)
1 (v1, v2, v3)Y (I)

2 (v1, v2, v3)

subject to∑
vi∈Σ

Xi(vdep(I)(i)) ≤ 1 ∀i ∈ [4],∀vdep(I)(i)\{i} ∈ Σ|dep
(I)(i)\{i}| (22)

∑
v1∈Σ

X1(v1)
∑
v3∈Σ

X3(v1, v2, v3) · Y (I)
1 (v1, v2, v3) ≥ 1− b(I)

1 γ ∀v2 ∈ Σ (23)

∑
v2∈Σ

X2(v1, v2) · Y (I)
2 (v1, v2, v3) ≥ 1− b(I)

2 γ ∀v1, v3 ∈ Σ2 (24)

where all the parameters of P (I)
3,2 remain the same as P4,2 except the following:

• dep(I)(C2) is equal to {1, 2, 3}.

• For each v1, v2, v3: Y (I)
2 (v1, v2, v3) =

∑
v4∈ΣX4(v1, v2, v3, v4).

By definition, it immediately follows that Xopt
1 , Xopt

2 , Xopt
3 is a feasible solution for the new program

P (I)
3,2, and the objective value f (I)

3,2 = f4,2. Hence it is sufficient to show a lower bound for Opt(P (I)
3,2)

(Since BC(PM[V], PN [V]) ≥ Opt(P4,2) ≥ Opt(P (I)
3,2)).

Step 2 (Y-R-Reduction): Note that 3 /∈ C2, but 3 ∈ depI(C2). Hence, we reduce the previous
program P (I)

3,2 to the following new program P (II)
3,2 that satisfies 3 /∈ dep(II)(C2) , such that the optimal

value of the new program is smaller than the optimal value of P (I)
3,2:

18Here the subscript 4 denotes the number of vertices of G̃, and the subscript 2 denotes the number of
c-components of G̃.

19We will define a sequence of new programs while we prove the theorem, where the superscrips in roman
numerals are only used to indicate the the corresponding program of the sequence.

35

min
X
f (II)

3,2(X)
def
=
∑
v1∈Σ

X1(v1)
∑
v2∈Σ

X2(v1, v2)
∑
v3∈Σ

X3(v1, v2, v3)Y (II)
1 (v1, v2, v3)Y (II)

2 (v1, v2)

subject to∑
vi∈Σ

Xi(vdep(II)(i)) ≤ 1 ∀i ∈ [3],∀vdep(II)(i)\{i} ∈ Σ|dep
(II)(i)\{i}| (25)

∑
v1∈Σ

X1(v1)
∑
v3∈Σ

X3(v1, v2, v3) · Y (II)
1 (v1, v2, v3) ≥ 1− b(II)

1 γ ∀v2 ∈ Σ (26)

∑
v2∈Σ

X2(v1, v2) · Y (II)
2 (v1, v2) ≥ 1− b(II)

2 γ ∀v1 ∈ Σ (27)

where all the parameters of P (II)
3,2 remain the same as P (I)

3,2 except the following:

• b(II)
2 = |Σ|b(I)

2 = |Σ| (because b(I)
2 = 1).

• dep(II)(C2) = {1, 2}.

• For each v1, v2: Y (II)
2 (v1, v2) = Y (I)

2 (v1, v2, arg minv3 Y
(I)
2 (v1, v2, v3)).

Let Xopt = (Xopt
1 , Xopt

2 , Xopt
3) be an optimal solution for P (I)

3,2. We prove that Xopt is a feasible
solution for P (II)

3,2 . Except for (27), all the other constraints of P (II)
3,2 can be easily verified. Hence, we

prove(27): for each v1 ∈ Σ,

∑
v2∈Σ

X2(v1, v2) · Y (II)
2 (v1, v2)

=
∑
v2∈Σ

X2(v1, v2) · Y (I)
2 (v1, v2, arg min

v3

Y (I)
2 (v1, v2, v3)) (by definition of Y (II)

2)

=

[∑
v2∈Σ

X2(v1, v2)
∑
v3

Y (I)
2 (v1, v2, v3)

]
−

[∑
v2∈Σ

X2(v1, v2) · Y (I)
2 (v1, v2, arg min

v3

Y (I)
2 (v1, v2, v3))

]

≥

[∑
v3∈Σ

(1− b(I)
2 γ)

]
−

[
(|Σ| − 1) ·

∑
v2∈Σ

X2(v1, v2)

]
(by constraint (24) of P (I)

3,2)

≥ |Σ|(1− b(I)
2 γ)− (|Σ| − 1)1 (by constraint (22) of P (I)

3,2)

= 1− |Σ|b(I)
2 γ = 1− b(II)

2 γ.

Also note that f (II)
3,2(X) = f (I)

3,2(X). Hence Opt(P (II)
3,2) ≤ Opt(P (I)

3,2).

Step 3 (R-Elimination): Since 3 ∈ C1 and dep(II)(3) = dep(II)(C1), 3 /∈ C2 and 3 /∈ dep(II)(C2),
we can reduce P (II)

3,2 to a much simpler program P (III)
2,2 which is defined over only two variables.

Let Xopt = {Xopt
1 , Xopt

2 , Xopt
3 } be an optimal solution of P (II)

3,2 . The new program P (III)
2,2 over X =

{X1, X2} is defined as follows:

min
X
f (III)

2,2 (X)
def
=
∑
v1∈Σ

X1(v1)
∑
v2∈Σ

X2(v1, v2)Y (III)
1 (v1, v2)Y (III)

2 (v1, v2)

subject to∑
vi∈Σ

Xi(vdep(III)(i)) ≤ 1 ∀i ∈ [2],∀vdep(III)(i)\{i} ∈ Σ|dep
(III)(i)\{i}| (28)

∑
v1∈Σ

X1(v1) · Y (III)
1 (v1, v2) ≥ 1− b(III)

1 γ ∀v2 ∈ Σ (29)

∑
v2∈Σ

X2(v1, v2) · Y (III)
2 (v1, v2) ≥ 1− b(III)

2 γ ∀v1 ∈ Σ (30)

36

where all the parameters of P (III)
2,2 remain the same as P (II)

3,2 except the following:

• dep(III)(C1) = {1, 2}.

• For each v1, v2: Y (III)
1 (v1, v2) =

∑
v3∈ΣX3(v1, v2, v3)Y (II)

1 (v1, v2, v3).

It directly follows from the definition that Xopt
1 , Xopt

2 is a feasible solution to the new program P (III)
2,2 ,

and f (III)
2,2 (Xopt

1 , Xopt
2) = f (II)

3,2(Xopt
1 , Xopt

2 , Xopt
3). Therefore, Opt(P (III)

2,2) ≤ Opt(P (II)
3,2), and hence it is

sufficient to show a lower bound for Opt(P (III)
2,2) to achieve the desired bound.

Step 4 (Y-R-Reduction): Since 2 /∈ C1 and 2 ∈ dep(III)(C1), we reduce the program P (III)
2,2 to a new

program P (IV)
2,2 that satisfies 2 ∈ dep(IV)(C1), such that optimal value of the new program is lesser

than the previous program.

min
X
f (IV)

2,2 (X)
def
=
∑
v1∈Σ

X1(v1)
∑
v2∈Σ

X2(v1, v2) ·
2∏
j=1

Y (IV)
j (vdep(IV)(Cj))

subject to∑
vi∈Σ

Xi(vdep(IV)(i)) ≤ 1 ∀i ∈ [2],∀vdep(IV)(i)\{i} ∈ Σ|dep
(IV)(i)\{i}| (31)

∑
v1∈Σ

X1(v1) · Y (IV)
1 (v1) ≥ 1− b(IV)

1 γ (32)

∑
v2∈Σ

X2(v1, v2) · Y (IV)
2 (v1, v2) ≥ 1− b(IV)

2 γ ∀v1 ∈ Σ (33)

where all the other parameters of P (IV)
2,2 remain the same as P (III)

2,2 except the following:

• b(IV)
1 = |Σ|b(III)

1 = |Σ| (because b(III)
2 = 1).

• dep(IV)(C1) = {1}.

• For each v1: Y (IV)
1 (v1) = Y (III)

1 (v1, arg minv2 Y
(III)
1 (v1, v2)).

Let Xopt = (Xopt
1 , Xopt

2) be an optimal solution of P (III)
2,2 . Similar to Step 2, it is easy to see that

Xopt is also a feasible solution of P (IV)
2,2 : The constraint (32) can be verified similar to Step 2.

Feasilibility of all the other constraints of P (IV)
2,2 directly follows from the definition of the P (IV)

2,2 . Also
f (IV)

2,2 (Xopt) ≤ f (III)
2,2 (Xopt). Therefore Opt(P (IV)

2,2) ≤ Opt(P (III)
2,2), and hence it is sufficient to show

a lower bound for Opt(P (IV)
2,2). Note that we can directly apply constraints (33), and (32) one after

another to the objective function of P (IV)
2,2 and obtain a lower bound for Opt(P (IV)

2,2):

Opt(P (IV)
2,2) ≥ (1− b(IV)

2 γ)(1− b(IV)
1 γ)

≥ (1− |Σ|γ)2 (Since b(IV)
1 = b(IV)

1 = |Σ|)]
≥ 1− 2|Σ|γ.

Because Opt(P (IV)
2,2) ≤ Opt(P (III)

2,2) ≤ Opt(P (II)
3,2) ≤ Opt(P (I)

3,2) ≤ Opt(P4,2) ≤
BC(PM[V], PN [V]), it implies BC(PM[V], PN [V]) ≥ 1 − 2|Σ|γ, and hence
H2(PM[V], PN [V]) ≤ 2|Σ|γ.

I Reduction from General Graphs

First we define the effective parents and the c-component relation for general causal graphs.

37

Definition 14 (Effective Parents Pa+). Given a general causal graph H and a vertex Vi ∈ V, the
effective parents of Vi, denoted by Pa+(Vi), is the set of all observable vertices Vj such that either
Vj is a parent of Vi or there exists a directed path from Vj to Vi that contains only unobservable
variables.

Definition 15 (c-component). For a given general causal graphH , two vertices Vi and Vj are related
by the c-component relation if (i) there exists an unobservable variable Uk such that H contains
two paths (i) from Uk to Vi; and (ii) from Uk to Vi, where both the paths use only unobservable
variables, or (ii) there exists another vertex Vz ∈ V such that Vi and Vz (and) Vj and Vz are related
by c-component relation.

We study Semi Markovian Bayesian Networks (SMBN)’s without any loss of generality owing to the
projection of a general causal graph to a SMCG [TP02, VP90]. For a given graphH they showed that
there is an equivalent SMCG G such that the c-component factorization and some other important
properties hold. Namely,

• The set of observable nodes in H and G are the same.

• The topological ordering of the observable nodes in H and G are the same.

• The c-components of H and G are identical and the c-component factorization formula
(Lemma 9 here, (20) in Lemma 2 of [TP02]) holds even for the general causal graph (See
Section 5 of [TP02]). They show this based on a known previously known reduction from
H to G [VP90]. The proof is based on the fact that for any subset S ⊆ V of observ-
able variables, the induced subgraphs G[S] and H[S] require the same set of conditional
independence constraints.

• The parents of nodes in G are the effective parents of nodes in H .

All the results presented in this paper depend only on the above mentioned properties. Therefore,
we can reduce the given general causal graph H to a SMCG G using the available reduction and
work with G, where the parents of vertices of G correspond to the effective parents of the respectives
vertices of H . Now we proceed to show the algorithm of [VP90] that preserves all the required
properties mentioned above.

Projection Algorithm of [TP02, VP90] For a given causal graph H , the projection algorithm
reduces the given causal graph H to a SMCG G by the following procedure:

1. For each observable variable Vi ∈ V of H , add an observable variable Vi in G.

2. For each pair of observable variables Vi, Vj ∈ V, if there exists a directed edge from Vi
to Vj in H, or if there exists a directed path from Vi to Vj that contains only unobservable
variables in H , then add a directed edge from Vi to Vj in G.

3. For each pair of observable variables Vi, Vj ∈ V, if there exists an unobservable variable
Uk such that there exist two directed paths in H from Uk to Vi and from Uk to Vj such that
both the paths contain only the unobservable variables, then add a bi-directed edge between
Vi and Vj in G.

J Conditional Independence

The following lemma captures a useful fact about conditional independence between variables in a
SMBN.

Lemma 17 (Independence Lemma). Let M be a SMBN with respect to a SMCG G with the vertex
set V = {V1, . . . , Vn} (where the indices respect topological ordering). For a given intervention
do(t), let C = {Vn1 , Vn2 , . . . , Vns} be a c-component of the induced subgraph G′ = G[V \ T],
where s = |C| and n1 < n2 < · · · < ns. Then for a given vertex Vni , for a given set D such
that V \ (T ∪ {Vn1

, . . . , Vni}) ⊇ D ⊇ PaG′({Vn1
, . . . , Vni}), and a given set of assignments

vn1
, . . . , vni , d,

PM[vni | vn1 , . . . , vni−1 , do(d, t)] = PM[vni | vn1 , . . . , vni−1 , do(paG′(Vn1 , . . . , Vni), t)]

where paG′(vn1
, . . . , vni) is the assignment that is consistent with D.

38

Proof. By Bayes’ theorem

PM

[
vnj,i

∣∣∣∣ vnj,1 , . . . , vnj,i−1 ,
do(paG′(Vnj,1 , . . . , Vnj,i), t)

]
(34)

=
PM[vnj,i , vnj,1 , . . . , vnj,i−1

| do(paG′(Vnj,1 , . . . , Vnj,i), t)]

PM[vnj,1 , . . . , vnj,i−1 | do(paG′(Vnj,1 , . . . , Vnj,i), t)]
. (35)

We apply Lemma 8 with respect to the graph G′ = G[V \T] that is obtained after the intervention
do(t) for both the numerator and the denominator of (34) seperately. Therefore:

PM

[
vnj,i

∣∣∣∣ vnj,1 , . . . , vnj,i−1
,

do(paG′(Vnj,1 , . . . , Vnj,i), t)

]
=
PM[vnj,i , vnj,1 , . . . , vnj,i−1 | do(d, t)]

PM[vnj,1 , . . . , vnj,i−1
| do(d, t)]

= PM[vnj,i | vnj,1 , . . . , vnj,i−1 , do(d, t)].

39

	Related Work
	Causality
	Distribution Testing and Learning

	Proof Sketch for the Fully Observable Case
	Preliminaries
	Causality
	Problem Definitions

	Testing and Learning Algorithms for SMBNs
	Testing
	Learning

	Main Ingredients of the Analysis
	Covering Intervention Sets
	Subadditivity Theorem for SMBNs

	Proofs for Lower Bound on Interventional Complexity
	Proof of Lemma 4
	Proof of Lemma 3

	Program Pr,p and Properties
	Illustration
	Illustration of c-component factorization
	Rule 3 of do-calculus
	C-component Factorization

	Illustration of subadditivity theorem

	Reduction from General Graphs
	Conditional Independence

