
Supplementary material for the paper:
Revisiting (ε, γ, τ )-similarity learning for

domain adaptation

In this Supplementary material we provide proofs for all theoretical results presented in the
main paper and several additional experimental evaluations.

1 Proofs from Section 3

Before proving Lemma 1, we first note that one can bound the goodness in the target domain
as follows:

ET ,R(K) = ES,R(K) + ET ,R(K)− ES,R(K) ≤ ε+ ET ,R(K)− ES,R(K) (1)

following from the (ε, γ)−goodness of K for (P,R). Now we focus on the difference between
the last two terms in (1). We get the following:

ET ,R(K)− ES,R(K) = E
x∼S

[lγ(y.gR(x))]− E
x∼T

[lγ(y.gR(x))] (2)

= E
x∼µ

[
dT
dµ lγ(y.gR (x))

]
− E
x∼µ

[
dS
dµ lγ(y.gR (x))

]
≤ E
x∼µ

[(
dT
dµ −

dS
dµ

)
+
lγ(ygR (x))[ygR (x) < γ]

]
, (3)

where (3) is obtained by noticing that t ≤ t+ ∀t ∈ R, and due to the positivity of lγ and its
property of being zero when calculated at a point t ≥ γ.
We now use (3) as a starting point to prove Lemma 1.
Lemma 1 (same landmarks). Let K be an (ε, γ)-good similarity for problem (S,R). Then
K is (ε+ ε′, γ)-good for problem (T ,R), where:

ε′ = d1+,γ(T ,S)Mµ,R(K)

with

d1+,γ(T ,S) = E
x∼µ

[(
dT
dµ −

dS
dµ

)
+

[ygR (x) < γ]
]
.

Moreover, if T � S then the obtained results holds with

ε′ =
√
dχ2

+,γ
(T ,S)MS,R(K)

√
ε

where

dχ2
+,γ

(T ,S) = E
x∼S

((dT
dS − 1

)
+

)2

[ygR (x) < γ]

 .
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Proof. Using (3), we write:

E
x∼µ

[(
dT
dµ −

dS
dµ

)
+
lγ(ygR (x))[ygR (x) < γ]

]

≤ E
x∼µ

[(
dT
dµ −

dS
dµ

)
+

[ygR (x) < γ]
]
Mµ,R(K) (4)

= d1+,γ(T ,S)Mµ,R(K)
where we use Hölder’s inequality with `1 and `∞ norms to obtain (4). For the case when S
dominates T , we take µ = S and we have:

E
x∼µ

[(
dT
dµ −

dS
dµ

)
+
lγ(ygR (x))[ygR (x) < γ]

]2

(5)

= E
x∼S

[(
dT
dS − 1

)
+
lγ(ygR (x))[ygR (x) < γ]

]2

≤ E
x∼S

((dT
dS − 1

)
+

)2

[ygR (x) < γ]

 E
x∼S

[
lγ(ygR (x))2] (6)

= dχ2
+,γ

(T ,S) E
x∼S

[
lγ(ygR (x))2]

≤ dχ2
+,γ

(T ,S)MS,R(K) E
x∼S

[lγ(ygR (x))] (7)

≤ dχ2
+,γ

(T ,S)MS,R(K)ε.

To obtain (6), we applied the Cauchy-Schwartz inequality. Inequality 7 is obtained thanks
to the boundedness and positivity of lγ via Hölder inequality for norms `1 and `∞. The last
line follows from the (ε, γ)−goodness of K for problem (S,R).

Theorem 1. Let K be an (ε, γ)-good similarity for problem (S,R1). Then K is (ε+ε′+ε′′, γ)-
good for problem (T ,R2), with:

ε′′ = 1
γ
d1(R1,R2)

and
ε′ = d1+,γ(T ,S)Mµ,R2(K),

where d1(R1,R2) = E
x′∼µ

[∣∣∣dR1
dµ −

dR2
dµ

∣∣∣] . Moreover, if T � S, then the obtained result holds
with

ε′ =
√
dχ2

+,γ
(T ,S)Mµ,R(K)

√
ε.

Proof.
ET ,R2(K)− ET ,R1(K) = E

x∼T
[lγ(ygR2 (x))− lγ(ygR1 (x))]

≤ 1
γ

E
x∼T

[|ygR1 (x)− ygR2 (x) |] (8)

= 1
γ

E
x∼T

[∣∣∣∣ E
x′∼µ

[(
dR1

dµ −
dR2

dµ

)
yy′K(x, x′)

]∣∣∣∣]
≤ 1
γ

E
x∼T

[
E

x′∼µ

[∣∣∣∣(dR1

dµ −
dR2

dµ

)
yy′K(x, x′)

∣∣∣∣]] (9)

≤ 1
γ

E
x′∼µ

[∣∣∣∣dR1

dµ −
dR2

dµ

∣∣∣∣] . (10)

Here (8) holds because lγ is 1
γ−lipschitz. (9) is obtained applying Jensen inequality with the

convexity of the | · | function. Line (10) comes from the fact that |yy′K(x, x′)| ≤ 1. As for ε′,
it is directly obtained by Lemma 1 depending on the assumption made about the absolute
continuity of the target distribution with respect to the source distribution.
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2 Proof from Section 4

Theorem 2. Let K be a similarity function defined on a feature space X . Let MS,R(K)
denote its worst performance associated to loss function lγ and achieved by an example drawn
from S, where R is the landmarks distribution. Assume that S dominates T and that the
cumulative distribution function Flγ of the loss function associated with S and R̂ is k times
differentiable atMS,R̂(K), and that k > 0 is the minimum integer such that F (k)

lγ
6= 0. Then

for all α > 1, r ≥ 1, there exists m0 ≥ 1 such that for all m ≥ m0, we have with probability
at least 1− δ:

MS,R(K) ≤MŜ,R̂(K) + 2
γ

Radr (H1(K)) + 1
γ2

√
2

log
( 2
δ

)
r

+

 (−1)k+1 log
( 2α
δ

)
k!

F
(k)
lγ

(MS,R̂(K))m

 1
k

,

where H1(K) is the hypothesis class defined by H1(K) = {x′ 7→ K(x, x′), x ∈ suppS}.

Proof. To proceed, we first rewrite the quantity of interest as

MS,R(K) =MS,R(K)−MŜ,R̂(K) +MŜ,R̂(K)

and further focus on bounding the difference between the first two terms which can be
separated into two quantities as follows:

M1 =MS,R(K)−MS,R̂(K),
M2 =MS,R̂(K)−MŜ,R̂(K).

We begin by bounding M1:

M1 = sup
x∈suppS

lγ(ygR(x))− sup
x∈suppS

lγ(ygR̂(x)) (11)

≤ sup
x∈suppS

{lγ(ygR(x))− lγ(ygR̂(x))} (12)

≤ 1
γ

sup
x∈suppS

|gR(x)− gR̂(x)| (13)

= 1
γ

sup
x∈suppS

∣∣∣∣∣ E
x′∼R

[y′K(x, x′)]− 1
r

r∑
i=1

y′iK(x, x′i)

∣∣∣∣∣ , (14)

where (13) holds due to the 1
γ -lipschitzness of lγ . The quantity in (14) is known as the

representativeness (see, for example, [1]) of sample SR drawn from R associated with the
hypothesis set Y.H1(K). In what follows, we denote it by RepR(Y.H1(K), SR) and notice

that its value changes at most by
2
γr

if an instance of SR is replaced since K takes values in

[−1, 1]. By applying Mc-Diarmid’s inequality, we have with a probability at least 1− δ
2 for

0 < δ ≤ 1

RepR(Y.H1(K), SR) ≤ E
SR∼Rm

[RepR(Y.H1(K), SR)] + 1
γ

√
2

log
( 2
δ

)
r

. (15)

The expectation term in (15) can be bounded by twice the Rademacher complexity of
hypotheses class Y.H1(K) denoted by Radr (Y.H1(K)) (see, for example, [1, Lemma 26.2]),
which also equals Radr (H1(K)). Hence, with a probability at least 1− δ

2 , we have:

M1 ≤
2
γ

Radr (H1(K)) + 1
γ2

√
2

log
( 2
δ

)
r

. (16)
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Now, we focus on M2 and examine the probability over the draw of S that it exceeds a
certain threshold. For a given t > 0, we have:

P
S∼Sm

[M2 ≥ t]

= P
S∼Sm

[
MS,R̂(K)−MŜ,R̂(K) ≥ t

]
= P
S∼Sm

[
MŜ,R̂(K) ≤MS,R̂(K)− t

]
= P
S∼Sm

[
max

1≤i≤m
lγ(yigR̂(xi)) ≤MS,R̂(K)− t

]
= P
x∼S

[
lγ(ygR̂(x)) ≤MS,R̂(K)− t

]m
= Flγ

(
MS,R̂(K)− t

)m
.

By the assumptions made on the regularity of Flγ , setting t to
t

m
1
k

yields:

P
S∼Sm

[
M2 ≥

t

m
1
k

]
(17)

=
(

1 + F
(k)
lγ

(MS,R̂(K)) (−t)k

mk! + o

(
tk

m

))m
−→
m→∞

exp
(
F

(k)
lγ

(MS,R̂(K)) (−t)k

k!

)
, (18)

where the left-hand side in (18) is obtained from a Taylor expansion. This implies for any
α > 1 that there exists m0 ∈ N∗ such that for all m ≥ m0,

P
S∼Sm

[
M2 ≥

t

m
1
k

]
≤ α exp

(
F

(k)
lγ

(MS,R̂(K)) (−t)k

k!

)
.

Setting this bound to δ
2 and solving for t yields that with a probability at least 1− 1

δ

M2 ≤

 (−1)k+1 log
( 2α
δ

)
k!

F
(k)
lγ

(MS,R̂(K))m

 1
k

. (19)

Finally we use a union bound to bound the probability that the two inequalities (16) and
(19) occur simultaneously in order to obtain the desired result.

3 Additional experimental evaluations

In this section, we provide experimental results for two data generation scenarios where we
vary the variance of the generated classes by setting σ equal to 0.2 and 1. We present the
generated data in Figure 1. From it, we can observe that increasing the value of σ makes
the classification problem more difficult. This fact is reflected in Figure 2, where, similar to
the main paper, we present the target goodness as a function of the rotation angle for these
two scenarios. Several observations can be made from these visualizations. First, the general
behaviour of the target goodness remains consistent with that presented in the main paper
with the performances of the similarity function obtained by minimizing the established
bounds being better that those obtained without adaptation. However, one may also note
that the difference between the case T � S and the case when this assumption is not made
becomes less significant. This can be explained by the fact that in these extreme cases, the
overall value of the bound is dominated by the source goodness term that remains quite low
in the first case and is very high in the second one.
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Figure 1: Generated data for (left) 30◦, (middle) 60◦, (right) 90◦ degrees rotation with
(top row) σ = 0.2, (bottom row) σ = 1.

Figure 2: Target goodness as a function of the rotation degree when (left) T 6� S and
(middle) T � S. (right) Divergence values for both cases considered. Each row correspond
to a different value of σ used to generate the data. Here, top row σ = 0.2 and bottom
row σ = 1.
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