9 Appendix

This appendix contains additional discussion of experiments.

9.1 Experiments
9.1.1 Grid World Navigation

In Section [3.1] (in the main paper), we described two ways to adapt our algorithm to MDPs with
a continuous state space: constraint sampling, and choosing a deterministic model of the internal
dynamics. In this section, we evaluate our method on an MDP with a discrete state space in order
to avoid the need for these two tricks. Our goal is to learn the internal dynamics and use it to assist
the user through internal-to-real dynamics transfer. To sanity-check our algorithm and analyze its
behavior under various hyperparameter settings and regularization choices, we implement a simple,
deterministic grid world environment in which the simulated user attempts to navigate to a target
position.

Hypothesis. Our algorithm is capable of learning accurate tabular representations of the internal
dynamics for MDPs with a discrete state space. The two regularization schemes proposed in Section
[3.2] (in the main paper) improve the quality of the learned internal dynamics model.

Task description. The state space consists of 49 states arranged in a 7x7 grid. The action space
consists of four discrete actions that deterministically move the agent one step in each of the cardinal
directions. The reward function emits a large bonus when the agent hits the target, a large penalty
when the agent goes out of bounds, and includes a shaping term that rewards the agent for moving
closer to the target. An episode lasts at most 100 timesteps. Each of the 49 states is a potential target,
so the environment naturally yields 49 distinct tasks.

Corrupting the internal dynamics. To simulate suboptimal behavior, we create two users: one user
whose action labels have been randomly scrambled in the same way at all states (e.g., the user’s
‘left’ button actually moves them down instead, and this confusion is the same throughout the state
space), and a different user whose action labels have been randomly scrambled in potentially different
ways depending on which state they’re in (e.g., ‘left’ takes them down in the top half of the grid, but
takes them right in the bottom half). We refer to these two corruption models as ‘globally scrambled
actions’ and ‘locally scrambled actions’ respectively. The users behave near-optimally with respect to
their internal beliefs of the action labels, i.e., their internal dynamics, but because their beliefs about
the action labels are incorrect, they act suboptimally in the actual environment.

Evaluation. We evaluate our method on its ability to learn the internal dynamics models of the
simulated suboptimal users, i.e., on its ability to unscramble their actions, given demonstrations of
their failed attempts to solve the task. The dependent measures are the next-state prediction accuracy
of the learned internal dynamics compared to the ground truth internal dynamics, as well as the user’s
success rate when they are assisted with internal-to-real dynamics transfer (see Section[d.1]in the
main paper) using the learned internal dynamics.

Implementation details. We use tabular representations of the (Qp, functions and the internal
dynamics T. We collect 1000 demonstrations per training task, set p = 2 - 1073 in Equation@(in
the main paper), and enumerate the constraints in Equation [6] (in the main paper) instead of sampling.

Manipulated factors. We manipulate (1) whether or not the user receives assistance in the form of
internal-to-real dynamics transfer using the learned internal dynamics model — a binary variable; (2)
the number of training tasks on which we collect demonstrations — an integer-valued variable between
1 and 49; (3) the structure of the internal dynamics model — a categorical variable that can take on
two values: state intent, which structures the internal dynamics in the usual way, or action intent,
which uses Equation (/| (in the main paper) instead; and (4) the user’s internal dynamics corruption
scheme — a categorical variable that can take on two values: globally scrambled actions, or locally
scrambled actions.

Analysis. Figure] provides overall support for the hypothesis that our method can effectively learn a
tabular representation of the internal dynamics for an MDP with a discrete state space. The learned
internal dynamics models are accurate with respect to the ground truth internal dynamics, especially
when the user’s internal dynamics corruption is systematic throughout the state space (top and bottom
left plots).

13

Globally Scrambled Actions Locally Scrambled Actions

0.6
3100 g -
S Random E E
E 0.75 Action Intent Prior <04 o)
8 ¢~ No Prior 8 L
£0.50 - | & -
OE, o o 50.2 . Ran.dom .
5025 P = Actlon. Intent Prior
8 g 0.0+ 4 No Prior
£ 0.00 4 ="
0 20 40 0 20 40
Number of Training Tasks Number of Training Tasks
Globally Scrambled Actions Locally Scrambled Actions
® 1.00 - - 3 08 Random Policy L S *
& 0 ¥ L Action Intent Prior
N [%]
2 - § 0.6 ¢+ No Prior
o 3 O
3050 ¥ B4 o
-g ***** Random Policy E : ?:
20.25 ¥ Action Intent Prior 20 e
2 o T S - g0.2
< ;L[¢~ No Prior < I["[
0.00 0.0
0 20 10 0 20 10
Number of Training Tasks Number of Training Tasks

Figure 4: Error bars show standard error on ten random seeds. Corrupting the internal dynamics of the simulated
user by scrambling actions the same way at all states (top and bottom left plots) induces a much easier internal
dynamics learning problem than scrambling actions differently at each state (top and bottom right plots).

We also compare the two regularization schemes discussed in Section[3.2](in the main paper): training
on multiple tasks, and imposing an action intent prior. Internal models are easier to learn when the
user demonstrates their behavior on multiple training tasks, as shown by the increase in accuracy
as the number of tasks (on the horizontal axis) increases. Regularizing the internal dynamics using
action intent can be useful in some cases when the internal dynamics systematically deviate from the
real dynamics, like when the user’s actions are scrambled in the same way throughout the state space
(top and bottom left plots, compare orange vs. teal curve), but can have a varying effect in other cases
where the internal dynamics are severely biased away from reality, like when the action scrambling
varies between states (top and bottom right plots, compare orange vs. teal curve).

9.1.2 2D Continuous Navigation

In the previous section, we adopted a tabular grid world environment in order to avoid constraint
sampling in Equation [§] (in the main paper). Now, we would like to show that our method still works
even when we sample constraints to be able to handle a continuous state space.

Hypothesis. Our algorithm can learn accurate continuous representations of the internal dynamics
for MDPs with a continuous state space.

Task description. As mentioned in Section (1| (in the main paper), a classic study in cognitive
science shows that people’s intuitive judgments about the physics of projectile motion are closer
to Aristotelian impetus theory than to true Newtonian dynamics [11]. In other words, people tend
to ignore or underestimate the effects of inertia. Inspired by this study, we create a simple 2D
environment in a which a simulated user must move a point mass from its initial position to a target
position as quickly as possible using a discrete action space of four arrow keys and continuous,
low-dimensional observations of position and velocity. The system follows deterministic, linear
dynamics. Formally,

Tt41 = A.’I}t + But (9)
where & = (z,y, vy, vy)T denotes the state, u € {(£0.01,0)7, (0, £0.01)T} denotes the control,
1 0 a3 0 bll 0
A— |0 1 0 axy _ [0 b
B 0 0 ass 0 ’ - b31 0
00 0 oau 0 bap

At the beginning of each episode, the state is reset to g = (29 ~ Unif(0, 1), yo ~ Unif(0,1),0,0).
The episode ends if the agent reaches the target (gets within a 0.02 radius around the target), goes out
of bounds (outside the unit square), or runs out of time (takes longer than 200 timesteps).

14

2D Continuous-State Navigation Unassisted Assisted

- 3 .
220 Our Method . c .,
. .
L T I Random e . °.
. e (R
il 0 - .i:? S .':
e * e atehe o ¥
0.5 .. o ,0° o 0 %00 .‘3
F R . e ®c o wE""
=00 TR
0 2000 1000 6000 8000 10000 o
Number of Gradient Steps o

Figure 5: Our method is able to assist the simulated suboptimal user through internal-to-real dynamics transfer.
Sample paths followed by the unassisted and assisted user on a single task are shown above. Red paths end out
of bounds; green, at the target marked by a yellow star.

Corrupting the internal dynamics. In the simulation, actions control acceleration and inertia exists;
in other words, b;; = by = 0 and the rest of the parameters are set to 1. We create a simulated
suboptimal user that behaves as if their actions control velocity and inertia does not exist, which
causes them to follow trajectories that oscillate around the target or go out of bounds. The user
behaves near-optimally with respect to their internal beliefs about the dynamics, but because their
beliefs are incorrect, they act suboptimally in the real environment.

Evaluation. As before, we evaluate our method on its ability to learn the internal dynamics models
of the simulated suboptimal user given demonstrations of their failed attempts to solve the task.
‘We manipulate whether or not the user receives assistance in the form of internal-to-real dynamics
transfer using the learned internal dynamics model. The dependent measures are the L2 error of
the learned internal dynamics model parameters with respect to the ground truth internal dynamics
parameters, and the success and crash rates of the user in each condition.

Implementation details. We fix the number of training tasks at n = 49, and use a multi-layer per-
ceptron with one hidden layer of 32 units to represent the (g, functions. We use a linear model based
on Equation@to represent the internal dynamics T, in which a13, Go4, 433, Ga4, 11, b22, b31,ba2 €
[0, 1]. We collect 1000 demonstrations per training task, set p = 2 in Equation @ (in the main paper),
and sample constraints in Equation [6] (in the main paper) by collecting 500 rollouts of a random
policy in the real world (see Section [3.1]in the main paper for details).

Analysis. Our algorithm correctly learns the following internal dynamics parameters: (1) as3 =
G44 = 0 in the learned internal dynamics, which corresponds to the user’s belief that inertia does
not exist; (2) 511 = 1322 =1 and 1331 = 342 = 0 in the learned internal dynamics, which matches
the user’s belief that they have velocity control instead of acceleration control. The learned internal
dynamics maintains a;3 = do4 = 1, as in the real dynamics, which makes sense since the user’s
behavior is consistent with these parameters. Figure [5] (left plot) demonstrates the stability of our
algorithm in converging to the correct internal dynamics.

Figure 5] (center and right plots) shows examples of trajectories followed by the simulated suboptimal
user on their own and when they are assisted by internal-to-real dynamics transfer. The assisted user
tends to move directly to the target instead of oscillating around it or missing it altogether.

9.1.3 Learning Rewards from Misguided User Demonstrations

The previous simulation experiments show that our algorithm can learn internal dynamics models that
are useful for shared autonomy. Now, we explore a different application of our algorithm: learning
rewards from demonstrations generated by a user with a misspecified internal dynamics model. In
order to compare to prior methods that operate on tabular MDPs, we adopt the grid world setup from
Section[9.1.1] with globally scrambled actions as the internal dynamics corruption scheme.

Hypothesis. Standard IRL algorithms can fail to learn rewards from user demonstrations that are
‘misguided’, i.e., suboptimal in the real world but near-optimal with respect to the user’s internal
dynamics. Our algorithm can learn the internal dynamics model, then we can explicitly incorporate the
learned internal dynamics into standard IRL to learn accurate rewards from misguided demonstrations.

Evaluation. We evaluate our method on its ability to learn an internal dynamics model that is
useful for ‘debiasing’ misguided user demonstrations, which serve as input to the MaxCausalEnt

15

IRL algorithm described in Section [4.2] (in the main paper). We manipulate whether we use the
learned internal dynamics, or assume the internal dynamics to be the same as the real dynamics. The
dependent measure is the true reward collected by a policy that is optimized for the rewards learned
by MaxCausalEnt IRL.

Implementation details. We implement the MaxCausalEnt IRL algorithm [55} [28]]. The reward
function is represented as a table R(s).

Analysis. Figure 2] (in the main paper, right plot) supports our claim that standard IRL is not capable
of learning rewards from misguided user demonstrations, and that after using our algorithm to
learn the internal dynamics and explicitly incorporating the learned internal dynamics into an IRL
algorithm’s behavioral model of the user, we learn accurate rewards.

9.2 User Study on the Lunar Lander Game

Task description. The reward function emits a large bonus at the end of the episode for landing
between the flags, a large penalty for crashing or going out of bounds, and is shaped to penalize
speed, tilt, and moving away from the landing site. The physics of the game are deterministic.

Evaluation protocol. We evaluate our method on its ability to learn the internal dynamics models of
human users given demonstrations of their failed attempts to solve the task in the default environment.
We manipulate whether or not the user receives assistance in the form of internal-to-real dynamics
transfer using the learned internal dynamics. The dependent measures are the success and crash rates
in each condition.

Implementation details. We fix the number of training tasks at n = 9 and use a multi-layer percep-
tron with one hidden layer of 32 units to represent the (), functions. We collect 5 demonstrations
per training task per user, set p = 2 - 10~3 in Equation [6|(in the main paper), and sample constraints
in Equation [6] (in the main paper) by collecting 100 rollouts of a random policy in the real world (see
Section [3.1]in the main paper for details).

The physics of the game are governed in part by a configurable vector 1» € R” that encodes engine
power, game speed, and other relevant parameters. Since we cannot readily access an analytical
expression of the dynamics, only a black-box function that forward-simulates the dynamics, we
cannot simply parameterize our internal dynamics model using ¢ (see Section[3.1]in the main paper
for details). Instead, we draw 100 random samples of 1) and represent our internal dynamics model as
a categorical probability distribution over the samples. In other words, we approximate the continuous
space of possible internal dynamics models using a discrete set of samples. To accommodate this
representation, we modify Equation 4] (in the main paper):

501-«75(3’ a) =S Qei(S,a) - IEj~Cat(100,¢) [/

s'€

T'lpj (Sl|s7 (L) (R’L (Sa a? S/) + ’yVGi(S/)) dSl
S

100

~Qo(sa) =Y ¢+ [Ty, (5l (Rulsa) 9V () 05
j=1 s'eS

Subject allocation. We recruited 9 male and 3 female participants, with an average age of 24. Each
participant was provided with the rules of the game and a short practice period of 9-18 episodes
to familiarize themselves with the controls and dynamics. Each user played in both conditions:
unassisted, and assisted. To avoid the confounding effect of humans learning to play the game better
over time, we counterbalanced the order of the two conditions. Each condition lasted 45 episodes.

Counterbalancing the order of the two conditions sometimes requires testing the user in the assisted
condition before the unassisted condition, which begs the question: where do the demonstrations used
to train the internal dynamics model used in internal-to-real dynamics transfer assistance come from,
if not the data from the unassisted condition? We train the internal dynamics model used to assist the
k-th participant on the pooled, unassisted demonstrations of all previous participants {1, 2, ...,k — 1}.
After the k-th participant completes both conditions, we train an internal dynamics model solely on
unassisted demonstrations from the k-th participant and verify that the resulting internal dynamics
model is the same as the one used to assist the k-th participant.

Analysis. After inspecting the results of our random search over the internal dynamics space, we
found that the game speed parameter in) had a much larger influence on the quality of the learned

16

Lunar Lander User Study (12 users) Lunar Lander User Study (12 users) Lunar Lander User Study (12 users)

—
—

® Unassisted
Assisted

>

ot
S
3

0.50

Success Rate
o

o
&

R
5 2
Assisted Crash Rate

Assisted Success Rate

’

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Crash Rate Unassisted Success Rate Unassisted Crash Rate

Figure 6: Assistance in the form of internal-to-real dynamics transfer increases success rates and decreases
crash rates.

internal dynamics and the resulting internal-to-real dynamics transfer than the other six parameters.
Hence, in Figure 3] (in the main paper, bottom left plot), we show the results of a grid search on the
game speed parameter, holding the other six parameters constant at their default values. The game
speed parameter governs the size of the time delta with which the game engine advances the physics
simulation at each discrete step. This parameter indirectly controls the strength of the forces in the
game physics: smaller time deltas lead to smaller forces and generally slower motion, and larger
deltas to larger forces and consequently faster motion.

We ran a one-way repeated measures ANOVA with the presence of assistance as a factor influencing
success and crash rates, and found that f(1,11) = 109.58,p < 0.0001 for the success rate and
f(1,11) = 126.33, p < 0.0001 for the crash rate. The assisted user succeeds significantly more often
and crashes significantly less often than the unassisted user. Figure [6]shows the raw data.

17

