
Regret Bounds for Online Portfolio Selection
with a Cardinality Constraint

Shinji Ito
NEC Corporation

Daisuke Hatano
RIKEN AIP

Hanna Sumita
Tokyo Metropolitan University

Akihiro Yabe
NEC Corporation

Takuro Fukunaga
RIKEN AIP, JST PRESTO

Naonori Kakimura
Keio University

Ken-ichi Kawarabayashi
National Institute of Informatics

Abstract

Online portfolio selection is a sequential decision-making problem in which a
learner repetitively selects a portfolio over a set of assets, aiming to maximize
long-term return. In this paper, we study the problem with the cardinality constraint
that the number of assets in a portfolio is restricted to be at most k, and consider
two scenarios: (i) in the full-feedback setting, the learner can observe price relatives
(rates of return to cost) for all assets, and (ii) in the bandit-feedback setting, the
learner can observe price relatives only for invested assets. We propose efficient
algorithms for these scenarios, which achieve sublinear regrets. We also provide
regret (statistical) lower bounds for both scenarios which nearly match the upper
bounds when k is a constant. In addition, we give a computational lower bound,
which implies that no algorithm maintains both computational efficiency, as well
as a small regret upper bound.

1 Introduction

Online portfolio selection [10, 22] is a fundamental problem in financial engineering, in which a
learner sequentially selects a portfolio over a set of assets, aiming to maximize cumulative wealth. For
this problem, principled algorithms (e.g., the universal portfolio algorithm [10]) have been proposed,
which behave as if one knew the empirical distribution of future market performance. On the other
hand, these algorithms work only under the strong assumption that we can hold portfolios of arbitrary
combinations of assets, and that we can observe price relatives, the multiplicative factors by which
prices change, for all assets. Due to these limitations, this framework does not directly apply to such
real-world applications as investment in advertising or R&D, where the available combination of
assets is restricted and/or price relatives (return on investment) are revealed only for assets that have
been invested in.

In order to overcome such issues, we consider the following problem setting: Suppose that there are
T rounds and a market has d assets, represented by [d] := {1, . . . , d}. In each round t, we design a
portfolio, that represents the proportion of the current wealth invested in each of the d assets. That is,
a portfolio can be expressed as a vector xt = [xt1, . . . , xtd]

> such that xti ≥ 0 for all i ∈ [d] and∑d
i=1 xti ≤ 1. The combination of assets is restricted with a set of available combinations S ⊆ 2[d],

that is, a portfolio xt must satisfy supp(xt) = {i ∈ [d] | xti 6= 0} ∈ S. Thus, in each period t,
we choose St from S and determine a portfolio xt only from assets in St. A typical example of
S can be given by cardinality constraints, i.e., Sk := {S ⊆ [d] | |S| = k} for some k ≤ d. We
denote by rt = [rt1, . . . , rtd]

> a price relative vector, where 1 + rti is the price relative for the i-th
asset in the t-th period. Then the wealth AT resulting from the sequentially rebalanced portfolios
x1, . . . ,xt is given by AT =

∏T
t=1(1 + r>t xt). The best constant portfolio strategy earns the wealth

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Table 1: Regret bounds for the full-feedback setting.

Constraints Upper bound by Algorithm 1 Lower bound
Single asset (S = S1) RT = O(

√
T log d) RT = Ω(

√
T log d)

Combination (S = Sk) RT = O

(√
Tk log d

k

)
RT = Ω

(√
T log d

k

)
for d ≥ 17k

(run in T
(
d
k

)
poly(k)-time)

and no poly(d, k, T)-time algorithm
achieves RT ≤ T 1−δpoly(d, k)

Table 2: Regret bounds for the bandit-feedback setting.

Constraint Upper bound by Algorithm 2 Lower bound
Single asset (S = S1) RT = O(

√
dT log T) RT = Ω(

√
dT)

Combination (S = Sk) RT = O

(√
Tk
(
d
k

)
log T

)
RT = Ω

(√
T
(

d
Ck3

)k)
for d > k

(run in Tpoly(d, k)-time)
and no poly(d, k, T)-time algorithm
achieves RT ≤ T 1−δpoly(d, k)

A∗T := maxx

∏T
t=1(1 + r>t x) subject to the constraint that x is a portfolio satisfying supp(x) ∈ S.

The performance of our portfolio selection is measured by RT = logA∗T − logAT , which we call
regret. The reason that we use logAT rather than AT comes from capital growth theory [16, 21].1
In terms of the observable information, we consider two different settings: (i) in the full-feedback
setting, we can observe all the price relatives rti for i = 1, . . . , d, and (ii) in the bandit-feedback
setting, we can observe the price relatives rti only for i ∈ St. Note that in each round t a portfolio xt
has to be determined before knowing rti in either of the settings. Note also that we do not make any
statistical assumption about the behavior of rti, but we assume that rti is bounded in a closed interval
[C1, C2], where C1 and C2 are constants satisfying −1 < C1 ≤ C2.

Our problem is a generalization of the standard online portfolio selection problem. In fact, if portfolios
combining all assets are available, i.e., if S = 2[d], then our problem coincides with the standard
online portfolio selection problem. For this special case, it has been shown that some online convex
optimization (OCO) methods [18, 17, 27] (e.g., the online Newton step method) achieve regret of
O(d log T), and that any algorithm will suffer from regret of Ω(d log T) in the worst case [26].

Our contribution is twofold; algorithms with sublinear regret upper bounds, and analyses proving
regret lower bounds. First, we propose the following two algorithms:

• Algorithm 1 for the full-feedback setting, achieving regret of O(
√
T log |S|).

• Algorithm 2 for the bandit-feedback setting, achieving regret of O(
√
Tk|S| log T), where

k denotes the largest cardinality among elements in S , i.e., k = maxS∈S |S|.

Tables 1 and 2 summarize the regret bounds for the special case in which the cardinality of assets
is restricted to be at most 1 or at most k. As shown in Table 1, Algorithm 1 can achieve regret of
O(
√
Tpoly(d)) even if k = Ω(d) when S has an exponentially large size with respect to d. In such a

case, however, Algorithm 1 requires exponentially large computational time. For the bandit-feedback
setting, the regret upper bound can be exponential w.r.t. d if k = Ω(d), but it is still sublinear in
T . One main idea behind our algorithms is to combine the multiplicative weight update method
(MWU) [3, 14] (in the full-feedback setting) / multi-armed bandit algorithms (MAB) [5, 6] (in the
bandit-feedback setting) with OCO. Specifically, for choosing the combination St of assets, we
employ MWU/MAB, which are online decision making methods over a finite set of actions. For
maintaining the proportion xt of portfolios, we use OCO, that is, online decision making methods for
convex objectives over a convex set of actions.

Second, we show regret lower bounds for both the full-feedback setting and the bandit-feedback
setting where S = Sk, which give insight into the tightness of regret upper bounds achieved with our
algorithms. As shown in Table 1, the proven lower bounds for the full-feedback setting are tight up to
theO(

√
k) term. For the bandit-feedback setting, the lower bounds are also tight up to theO(

√
log T)

term, if k = O(1). Note that, if k = d then the problem coincides with the standard online portfolio

1 For more details, see Appendix A in the supplementary material.

2

selection problem, and hence, there exist algorithms achieving RT = O(
√
T log d). This implies

that the assumption of d = Ω(k) is essential for proving the lower bounds of Ω(
√
T). We also

note that these statistical lower bounds are valid for arbitrary learners, including exponential-time
algorithms. Besides statistical ones, we also show computational lower bounds suggesting that there
is no polynomial-time algorithm achieving a regret bound with a sublinear term in T and a polynomial
term w.r.t. d and k, unless NP ⊆ BPP. This means that we cannot improve the computational
efficiency of Algorithm 1 to O(poly(d, k, T))-time while preserving its regret upper bound.

To prove the regret lower bounds, we use three different techniques: for the statistical lower bound
for the full-feedback setting, we consider a completely random market and evaluate how well the
“best” strategy worked after observing the market behavior, in a similar way to that for the lower
bound for MWU [3]; for the bandit-feedback setting, we construct a “good” combination S∗ ∈ S
of assets so that it is hard to distinguish it from the others, and bound the number of choosing this
“good” combination via a technique similar to that used in the proof of the regret lower bound for
MAB [5]; to prove the computational lower bound, we reduce the 3-dimensional matching problem
(3DM), one of Karp’s 21 NP-complete problems [20], to our problem.

2 Related work

Online portfolio selection has been studied in many research areas, including finance, statistics,
machine learning, and optimization [1, 10, 19, 22, 23] since Cover [10] formulated the problem
setting and proposed a universal portfolio algorithm that achieves regret of O(d log T) with ex-
ponential computation cost. This regret upper bound was shown to be optimal by Ordentlich and
Cover [26]. The computation cost was reduced by the celebrated work on the online gradient method
of Zinkervich [29] for solving online convex optimization (OCO) [17, 27], a general framework
including online portfolio selection, but the regret bound is O(d

√
T) and suboptimal for online

portfolio selection. A breakthrough w.r.t. this suboptimality came with the online Newton step and the
follow-the-approximation-leader method of Hazan et al. [18], which are computationally efficient and
achieve regret of O(d log T) for a special case of OCO, including online portfolio selection. Among
studies on online portfolio selection, the work by Das et al. [12] has a motivation similar to ours: the
aim of selecting portfolios with a group-sparse structure. However, their problem setting differs from
ours in that they did not put constraints about sparsity but, rather, defined regret containing regularizer
inducing group sparsity, and that they supposed that a learner can observe price relatives for all
assets after determining portfolios. In contrast to this, our work deals with the sparsity constraint
on portfolios, and our methods work even for the bandit-feedback setting, in which feedbacks are
observed only on assets that have been invested in.

Another closely related topic is the multi-armed bandit problem (MAB) [4, 5, 6]. For nonstochastic
MAB problems, a nearly optimal regret bound is achieved by the Exp3 algorithm [5], which our algo-
rithm strongly relies on. For combinatorial bandit problems [7, 8, 9] in which each arm corresponds
to a subset, the work by Chen et al. [8] gives solutions to a wide range of problems. However, this
work does not directly apply to our setting, because we need to maintain not only subsets St but also
continuous variables xt, and both of them affect regret.

3 Upper bounds

3.1 Notation and preliminary consideration

Let us introduce some notations. For S ⊆ [d], denote by ∆S the set of portfolios whose supports are
included in S, i.e., ∆S =

{
x | xi ≥ 0 (i ∈ [d]),

∑d
i=1 xi ≤ 1, supp(x) ⊆ S

}
. Let (S∗,x∗) denote

the optimal fixed strategy for T rounds, i.e., (S∗,x∗) ∈ arg max
S∈S,x∈∆S

∑T
t=1 log(1+r>t x). Let xt denote

the output of an algorithm for the t-th round. Then the regret RT of the algorithm can be expressed as

RT = max
S∈S,x∈∆S

T∑
t=1

log(1 + r>t x)−
T∑
t=1

log(1 + r>t xt) =

T∑
t=1

log(1 + r>t x
∗)−

T∑
t=1

log(1 + r>t xt).

3

Algorithm 1 An algorithm for the full-feedback setting.

Input: The number T of rounds. The number d of assets. The set of available subsets S ⊆ 2[d].
Parameters η > 0 and β > 0.

1: Set w1 = (wS1)S∈S ∈ RS and (xS1)S∈S by wS1 = 1 and xS1 = 0, respectively, for S ∈ S.
2: for t = 1, . . . , T do
3: Set St by randomly choosing S ∈ S with a probability proportional to wSt , i.e., choose S with

probability wSt /‖wt‖1.
4: Output St and xt = xStt and observe rti for all i ∈ [d].
5: Update wt; set wt+1 by wSt+1 = wSt (1 + r>t x

S
t)η for S ∈ S.

6: Update xSt ; set xSt+1 by equation (3) for S ∈ S.
7: end for

The algorithms presented in this section maintain vectors xSt ∈ ∆S for all S ∈ S at the beginning
of the t-th round. They then choose St from S, and output (St,x

St
t). Although other vectors xSt

(S 6= St) do not appear in the output, they are used to compute outputs in subsequent rounds.

In the computation of xSt+1, we refer to the following vectors gt and matrices HS
t :

gSt =
rt|S

1 + r>t x
S
t

, HS
t =

(1 + C1)2

(1 + C2)2
gSt g

S>
t = C3g

S
t g

S>
t , (1)

where rt|S = [r′t1, . . . , r
′
td]
> is defined by r′ti = rti for i ∈ S and r′ti = 0 for i ∈ [d] \ S. These gSt

and HS
t have the following property which plays an important role in our analysis:

Lemma 1. For any x ∈ ∆S , it holds that

log(1 + r>t x)− log(1 + r>t x
S
t) ≤ gS>t (x− xSt)− 1

2
(x− xSt)>HS

t (x− xSt). (2)

For the proof, see Appendix B in the supplementary material.

3.2 Algorithm for the full-feedback setting

We propose an algorithm for the full-feedback setting, created by combining the multiplicative
weight update method (MWU) [3] and the follow-the-approximate-leader method (FTAL) [18]. More
specifically, our proposed algorithm updates the probability of choosing a subset S ∈ S by MWU
and updates the portfolio vector xSt by FTAL. The entire algorithm is summarized in Algorithm 1.

Our algorithm maintains weight wSt ≥ 0 and a portfolio vector xSt for each subset S ∈ S at the
begining of the t-th round, where wS1 and xS1 are initialized by wS1 = 1 and xS1 = 0 for all S ∈ S.
In each round t, a subset St is chosen with a probability proportional to wSt . Given the feedback
rt, the algorithm computes wSt+1 and xSt+1. The weight wSt+1 is obtained from wSt by multiplying
(1 + r>t x

S
t)η, where η > 0 is a parameter we optimize later. The portfolio vector xSt+1 is computed

by FTAL as follows:

xSt+1 ∈ arg max
x∈∆S


t∑

j=1

(
gS>j (x− xSj)− 1

2
(x− xSj)>HS

j (x− xSj)

)
− β

2
‖x‖22

 , (3)

where β is a regularization parameter optimized later, and ‖ · ‖ stands for the `2 norm:
‖[x1, . . . , xd]

>‖22 =
∑d
i=1 x

2
i . Since (3) is a convex quadratic programming problem with lin-

ear constraints, xSt+1 can be computed efficiently by, e.g., interior point methods [24]. Recently, Ye
et al. [28] have proposed a more efficient algorithm for solving (3). For the special case of the single
asset selection setting, i.e., if S = S1 = {{i} | i ∈ [d]}, then x

{i}
t+1 = (0, . . . , 0, xt+1,i, 0, . . . , 0)

has a closed-form expression: xt+1,i = π[0,1]

(∑t
j=1 gji

β+C3
∑t
j=1 g

2
ji

)
, where gji :=

rji
1+rjixji

and π[0,1](·)
stands for a projection onto [0, 1] defined by π[0,1](y) = 0 for y < 0, π[0,1](y) = y for 0 ≤ y ≤ 1,
and π[0,1](y) = 1 for y > 1.

Our algorithm achieves the regret described below for arbitrary inputs, where constants C3, C4, C5

are given by C3 = (1+C1)2

(1+C2)2 , C4 = log 1+C2

1+C1
, and C5 =

max{C2
1 ,C

2
2}

(1+C1)2 .

4

Algorithm 2 An algorithm for the bandit-feedback setting.

Input: The number T of rounds. The number d of assets. The set of available subsets S ⊆ 2[d].
Parameters η > 0, γ ∈ (0, 1) and β > 0.

1: Set w1 = (wS1)S∈S ∈ RS and (xS1)S∈S by wS1 = 1 and xS1 = 0, respectively, for S ∈ S.
2: for t = 1, . . . , T do
3: Set the probability vector pt = (pSt)S∈S ∈ [0, 1]S by pSt = γ

|S| + (1− γ)
wSt
‖wt‖1 .

4: Randomly choose St ∈ S on the basis of the probability vector pt.
5: Output St and xt = xStt , and observe rti for i ∈ St.
6: Update wt; set wS

t+1 by wStt+1 = wtit

(
1+r>t xt
1+C1

)η/ptit
and wSt+1 = wSt for S ∈ S \ {St}.

7: Update xSt ; set xSt+1 by equation (7).
8: end for

Theorem 2. Algorithm 1 achieves the following regret upper bound if η ≤ 1/C4:

E[RT] ≤ log |S|
η

+ C2
4ηT +

1

2
β +

k

C3
log

(
1 +

C3C5T

β

)
. (4)

In particular, setting η = 1
C4

min

{
1,
√

log |S|
T

}
and β = 1, we obtain

E[RT] = O
(√

T log |S|+ k log T + log |S|
)
. (5)

Running time If (3) can be computed in p(k)-time, Algorithm 1 runs inO(|S|p(k))-time per round.
If S is an exponentially large set, e.g., if S = {S ⊆ [d] | |S| = k} and k = Θ(d), the computational
time for O(|S|p(k)) will be exponentially large w.r.t. d. This computational complexity is shown
to be inevitable in Section 4.1. For the special case of the single asset selection setting, i.e., if
S = S1 = {{i} | i ∈ [d]}, Algorithm 1 runs in O(d)-time per round since each x

{i}
t can be updated

in constant time.

3.3 Algorithm for the bandit-feedback setting

We construct an algorithm for the bandit-feedback setting by combining the Exp3 algorithm [5]
for the multi-armed bandit problem and FTAL. Similarly to the process used in Algorithm 1, the
algorithm updates the probability of choosing St ∈ S by the Exp3 algorithm (in place of MWU)
and updates portfolios xSt by FTAL. The main difficulty comes from the fact that the learner cannot
observe all the entries of (rti)

d
i=1. Due to this limitation, we cannot always update xSt for all S ∈ S.

In order to deal with this problem, we construct unbiased estimators of gSt and HS
t for each S ∈ S

by
ĝStt =

gStt
pStt

, ĤSt
t =

HSt
t

pStt
, ĝSt = 0, ĤS

t = O (S ∈ S \ {St}), (6)

where pSt is the probability of choosing S in round t, which is computed by a procedure similar to that
used in the Exp3 algorithm. Note that ĝSt and ĤS

t can be calculated from the observed information
alone. Using these unbiased estimators, we compute the portfolio vectors xSt+1 by FTAL as follows:

xSt+1 ∈ arg max
x∈∆S


t∑

j=1

(
ĝS>j (x− xSj)− 1

2
(x− xSj)>ĤS

j (x− xSj)

)
− 1

2
β‖x‖22

 . (7)

Note that xSt+1 = xSt for each S ∈ S \ {St} since ĝSt = 0 and ĤS
t = O. Hence the convex quadratic

programming problem (7) is solved only once in each round. The entire algorithm is summarized in
Algorithm 2.
Theorem 3. Algorithm 2 achieves the following regret upper bound if η ≤ γ

C4|S| :

E[RT] ≤ log |S|
η

+ (C2
4η|S|+ C4γ)T +

1

2
β +

k|S|
C3γ

log

(
1 +

C3C5T

β

)
. (8)

Setting γ = min

{
1,
√

k|S| log(1+T)
T

}
, η = γ

C4|S| min
{

1,
√

log |S|
k log(1+T)

}
and β = C3C5, we obtain

E[RT] = O
(√

T |S|k log T + |S|
√
k log |S| log T + |S|k

)
.

5

Running time Algorithm 2 runs in O(p(k) + log2(|S|))-time per round, assuming that (7) can
be computed in p(k)-time. In fact, from the definition (6) of ĝSt and ĤS

t , the update of xSt given
by (7) is needed only for S = St. Furthermore, for S = {S1, S2, . . . , S|S|}, both updating wSt
for some S ∈ S and computing the prefix sum

∑i
j=1 w

Sj
t for some i ∈ [|S|] can be performed in

O(log |S|)-time by using a Fenwick tree [13]. This implies that sampling St w.r.t. pSt = γ
|S| +

wSt
‖wt‖S

can be performed in O(log2 |S|)-time.

4 Lower bounds

In this section, we present lower bounds on regrets achievable by algorithms for the online portfolio
selection problem. We focus on the case of S = Sk = {S ⊆ [d] | |S| = k} throughout this section.

4.1 Computational complexity

We show that, unless the complexity class BPP includes NP, there exists no algorithm for the
online problem with a cardinality constraint such that its running time is polynomial both on d and T
and its regret is bounded by a polynomial in d and sublinear in T . This fact is shown by presenting a
reduction from the 3-dimensional matching problem (3DM). An instance U of 3DM consists of
3-tuples (x1, y1, z1), . . . , (xd, yd, zd) ∈ [k]× [k]× [k]. Two tuples, (xi, yi, zi) and (xj , yj , zj), are
called disjoint if xi 6= xj , yi 6= yj , and zi 6= zj . The task of 3DM is to determine whether or not
there exist k pairwise-disjoint tuples; if they do exist, we write U ∈ 3DM.

From a 3DM instance U = {(xj , yj , zj)}dj=1, we construct an input sequence (rt)t=1,...,T of
the online portfolio selection problem as follows. Let A = (aij) ∈ {0, 1}3k×d be a matrix such
that aij = 1 if i = xj or i = k + yj or i = 2k + zj , and aij = 0 otherwise. From A, we
construct B ∈ R3k×(d+1) by B = 1

3k [A,−13k], where 13k is the all-one vector of dimension 3k.
Let T ≥ max{(4 · 5184k4)2, (5184k4 · p2(d))

1
δ } for an arbitrary polynomial p2 and an arbitrary

positive parameter δ. For each t ∈ [T], take zt from the uniform random distribution on {−1, 1}3k,
independently. Then, rt can be defined by rt = 1d+1 + B>zt for each t ∈ [T]. Note that
rt ∈ [0, 2](d+1) holds for each t ∈ [T].

We give the sequence (rt)t=1,...,T to an algorithm A. Let (xt)t=1,...,T denote the sequence output
by A. We determine that U ∈ 3DM if

∑T
t=1 log(1 + r>t xt) ≥ T (log 2 − 1

5184k4) holds, while
otherwise we determine U /∈ 3DM to hold. We can prove that this determination is correct with a
probability of at least 2/3. For the proof, see Appendix E in the supplementary material.
Theorem 4. Let δ be an arbitrary positive number, and p1 and p2 be arbitrary polynomials. Assume
that there exists a p1(d, T)-time algorithm A for the full-feedback online portfolio selection problem
with S = Sk+1 that achieves regret RT ≤ p2(d)T 1−δ with a probability of at least 2/3. Then, given
a 3DM instance U ⊆ [k]× [k]× [k], one can decide if U ∈ 3DM with a probability of at least 2/3

in p1(|U |,max{k8, (k4p2(|U |)) 1
δ })-time.

Corollary 5. Under the assumption of NP 6⊆ BPP, if an algorithm achieves O(p(d, k)T 1−δ)
regret for arbitrary d and arbitrary k, the algorithm will not run in polynomial time, i.e., the running
time will be larger than any polynomial for some d and some k.

Note that the computational lower bounds described in Theorem 4 and Corollary 5 are also valid for
the bandit-feedback setting, since algorithms for the bandit-feedback settings can be used for the
full-feedback setting.

4.2 Regret lower bound for the full-feedback setting

We show here that, for the full-feedback setting of the online portfolio selection problem with S = Sk,

every algorithm (including exponential-time algorithms) suffers from regret of Ω

(√
T log d

k

)
in the

worst case. We can show this by analyzing the behavior of an algorithm for a certain random input.
In the analysis, we use the fact that the following two inequalities hold when rt follows the discrete
uniform distribution on {0, 1}d independently:

6

E
rt,xt

[
T∑
t=1

log(1 + r>t xt)

]
≤ T E

X

[
log

(
1 +

1

k
X

)]
,

E
rt,xt

[
max

S∈Sk,x∈∆S

T∑
t=1

log(1 + r>t x)

]
≥ T ·E

X

[
log

(
1 +

1

k
X

)]
+ Ω

(√
T log

d

k

)
,

where X is a binomial random variable following B(k, 1/2). See Appendix F for details regarding
the proof.

Theorem 6. Let d ≥ 17k, and consider the online portfolio selection problem with d assets and
available combinations S = Sk. There is a probability distribution of input sequences {rt}Tt=1 such

that the regret of any algorithm for the full-feedback setting is bounded as E[RT] = Ω

(√
T log d

k

)
,

where the expectation is with respect to the randomness of both r and the algorithm.

4.3 Regret lower bound for the bandit-feedback setting

In this subsection, we consider the bandit-feedback setting of the online portfolio selection problem
with S = Sk. We show that every algorithm (including exponential-time algorithms) for this setting

suffers from regret of Ω

(√
T (d

Ck3)k
)

when the input sequence is defined as follows. Let S∗ ∈ Sk.

We define a random distribution DS∗ on {−1, 1}d so that a random vector z = [z1, . . . , zd]
>

following this distribution satisfies∏
i∈S∗

zi =

{
1 w.p. 1/2− ε
−1 w.p. 1/2 + ε

,
∏
i∈S

zi =

{
1 w.p. 1/2
−1 w.p. 1/2

(S ∈ 2[d] \ {∅, S∗}).

Such a distribution can be constructed as follows: fix an index i∗ ∈ S∗, let zi =

{
1 w.p. 1/2
−1 w.p. 1/2

for each i ∈ [d] \ {i∗}, and let z0 =

{
1 w.p. 1/2− ε
−1 w.p. 1/2 + ε

independently. Define zi∗ =

z0

∏
i∈S∗\{i∗} zi. Then z = [z1, . . . , zd]

> ∼ DS∗ . The price relative vector rt in the t-th round can
be defined by rt = 1d − zt, where zt ∼ D∗S independently for t ∈ [T]. We can show that rt|S
follows a uniform distribution for any S ∈ Sk \ {S∗} and only rt|S∗ follows a slightly different
distribution. Because of this, it is difficult for algorithms to distinguish S∗ from others, which makes
their regrets large. For more details, see Appendix G.

Theorem 7. Let d ≥ k − 1, and consider the online portfolio selection problem with d assets and
available combinations S = Sk. There is a probability distribution of input sequences {rt}Tt=1
such that the regret of any algorithm for the bandit-feedback setting is bounded as E[RT] =

Ω

(
min

{
T

k(Ck)k
,
√
T (d

Ck3)k
})

, where the expectation is with respect to the randomness of both r

and the algorithm, and C is a constant depending on C1 and C2.

5 Experimental evaluation

We show the empirical performance of our algorithms through experiments over synthetic and real-
world data. In this section, we consider the online portfolio selection problem with S = S1. A
problem instance is parameterized by a tuple (d, T, {rt}Tt=1). A synthetic instance is generated as
follows: given parameters d, T , C1, and C2, we randomly choose an asset i∗ from [d], and generate
rti∗ ∼ U((C2 + C1)/2, C2) and rti ∼ U(C1, C2) for i ∈ [d] \ {i∗}.
We also conduct our experiments for two real-world instances. The first is based on crypto coin
historical data2, including dates and price data for 19 crypto coins. From this data, we select 7 crypto
coins, each having 929 prices, and obtain price relatives rti of coin i at time t by (pti/pt−1,i)− 1,
where pti indicates the price of coin i at time t. Thus, d = 7 and T = 928 in this instance. The other

2https://www.kaggle.com/sudalairajkumar/cryptocurrencypricehistory

7

https://www.kaggle.com/sudalairajkumar/cryptocurrencypricehistory

instance is based on S&P 500 stock data3, including dates and price data for 505 companies. From
this data, we choose d = 470 companies, each having 1259 stock prices, and compute T = 1258
price relatives for each company in the same way.

For purposes of comparison, we prepare three baseline algorithms: Exp3_cont, Exp3_disc, and
MWU_disc. MWU_disc (based on MWU [3]) works in the full-feedback setting and is compared
with Algorithm 1. Exp3_cont and Exp3_disc (based on Exp3 [5]) work in the bandit-feedback setting
and are compared with Algorithm 2. These baseline algorithms have different ways of updating xSt
from those of Algorithms 1 and 2. Note that since S = S1 = {{i} | i ∈ [d]}, xSt can be expressed as
xSt = x

{i}
t = [0, . . . , 0, xti, 0, . . . , 0]>. Below, we offer a brief explanation of the comparisons.

MWU_disc Set xti = 1 if
∑t−1
j=1 rji ≥ 0 and xti = 0 otherwise. For each t ∈ [T], select it

by MWU, where rewards in the t-th round are given by [log(1 + rtixti)]
d
i=1, and output

it,x
{it}
t .

Exp3_disc Set xti = 1 if
∑
j∈[t−1]:ij=i

rji ≥ 0 and xti = 0 otherwise. For each t ∈ [T], select it
by Exp3, where reward in the t-th round is given by log(1 + rtitxtit), and output it,x

{it}
t .

Exp3_cont Set a parameter B ∈ N, and consider an MAB problem instance with d(B + 1)
arms in which the rewards for the d(B + 1) arms in the t-th round are given by
(log(1 + rtib/B))1≤i≤d,0≤b≤B . Apply Exp3 to this MAB problem instance.

We assess the performance of the algorithms on the basis of regrets for synthetic instances and of
cumulative price relatives for real-world instances, where regrets and cumulative price relatives are
averaged over 10 executions. We set parameters η according to Theorem 2 for Algorithm 1 and
MWU_disc, and η and γ according to Theorem 3 for Algorithm 2, Exp3_disc, and Exp3_cont.

Figure 1 shows average regrets for a synthetic instance with (d, T, C1, C2) = (20, 10000,−0.5, 0.5).
We observe that both Algorithms 1 and 2 converge faster than MWU_disc, Exp3_cont, and Exp3_disc.
In addition, the results empirically show that our theoretical bounds are correct.

Figures 2 and 3 show average cumulative price relatives for a real-world instance of S&P 500 stock
data with (d, T, C1, C2) = (470, 1258,−0.34, 1.04) and for a real-world instance of crypto coin data
with (d, T, C1, C2) = (7, 928,−0.7, 3.76), respectively. From these figures, we observe that the
cumulative price relatives of our algorithms are higher than those of baseline algorithms.

0 0.2 0.4 0.6 0.8 1

·104

0

1,000

2,000

T

R
T

Algorithm 1
MWU_disc
Algorithm 2
Exp3_cont
Exp3_disc

Figure 1: The average
regrets over the synthetic
dataset with (d, T, C1, C2) =
(20, 10000,−0.5, 0.5)

0 200 400 600 800 1,0001,200

−0.4

−0.2

0

T

C
um

ul
at

iv
e

pr
ic

e
re

la
tiv

e

Algorithm 1
MWU_disc
Algorithm 2
Exp3_cont
Exp3_disc

Figure 2: The average cumu-
lative price relatives over S&P
500 stock dataset

0 200 400 600 800 1,000

0

2

4

6

T

C
um

ul
at

iv
e

pr
ic

e
re

la
tiv

e Algorithm 1
MWU_disc
Algorithm 2
Exp3_cont
Exp3_disc

Figure 3: The average cumu-
lative price relatives over the
cryptocoin historical dataset

Acknowledgement

This work was supported by JST ERATO Grant Number JPMJER1201, Japan, and JSPS KAKENHI
Grant Number JP18H05291.

3https://www.kaggle.com/camnugent/sandp500

8

https://www.kaggle.com/camnugent/sandp500

References
[1] A. Agarwal, E. Hazan, S. Kale, and R. E. Schapire. Algorithms for portfolio management based

on the Newton method. Proceedings of the 23rd International Conference on Machine Learning
- ICML ’06, pages 9–16, 2006.

[2] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, 2004.

[3] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm
and applications. Theory of Computing, 8(1):121–164, 2012.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235–256, 2002.

[5] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[6] S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

[7] N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422, 2012.

[8] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework and
applications. In International Conference on Machine Learning, pages 151–159, 2013.

[9] R. Combes, M. S. T. M. Shahi, A. Proutiere, et al. Combinatorial bandits revisited. In Advances
in Neural Information Processing Systems, pages 2116–2124, 2015.

[10] T. M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991.

[11] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 2012.

[12] P. Das, N. Johnson, and A. Banerjee. Online portfolio selection with group sparsity. In
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[13] P. M. Fenwick. A new data structure for cumulative frequency tables. Software: Practice and
Experience, 24(3):327–336, 1994.

[14] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[15] J. E. Gentle. Computational Statistics. Springer Science & Business Media, 2009.

[16] N. H. Hakansson and W. T. Ziemba. Capital growth theory. Handbooks in Operations Research
and Management Science, 9:65–86, 1995.

[17] E. Hazan. Introduction to online convex optimization. Foundations and Trends R© in Optimiza-
tion, 2(3-4):157–325, 2016.

[18] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimiza-
tion. Machine Learning, 69(2-3):169–192, 2007.

[19] A. Kalai and S. Vempala. Efficient algorithms for universal portfolios. Journal of Machine
Learning Research, 3(Nov):423–440, 2002.

[20] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Compu-
tations, pages 85–103. Springer, 1972.

[21] J. Kelly. A new interpretation of information rate. Bell Sys. Tech. Journal, 35:917–926, 1956.

[22] B. Li and S. C. Hoi. Online portfolio selection: A survey. ACM Computing Surveys (CSUR),
46(3):35, 2014.

[23] B. Li and S. C. H. Hoi. On-Line Portfolio Selection with Moving Average Reversion. Proceed-
ings of the 29th International Conference on Machine Learning (ICML-12), pages 273–280,
2012.

9

[24] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone
programming. Linear Algebra and Its Applications, 284(1-3):193–228, 1998.

[25] J. Matoušek and J. Vondrák. The probabilistic method. Lecture Notes, Department of Applied
Mathematics, Charles University, Prague, 2001.

[26] E. Ordentlich and T. M. Cover. The cost of achieving the best portfolio in hindsight. Mathematics
of Operations Research, 23(4):960–982, 1998.

[27] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends R©
in Machine Learning, 4(2):107–194, 2012.

[28] Y. Ye, L. Lei, and C. Ju. Hones: A fast and tuning-free homotopy method for online newton
step. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and
Statistics (AISTATS-18), pages 2008–2017, 2018.

[29] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
928–936, 2003.

10

Appendix

A A note on the definition of the regret

Remark 1. When the rewardAT changes multiplicatively, the expectation of the logarithm E[logAT]
can be regarded to be a more reasonable evaluation metrics than would be the expected reward
E[AT]. This is supported by the following example: suppose that (Xt)

T
t=1 = ((X

(1)
t , X

(2)
t))Tt=1

are Bernoulli random variables such that X(1)
t =

{
1.3 w. p. 0.5
0.9 w. p. 0.5

, X(2)
t =

{
2.0 w. p. 0.5
0.4 w. p. 0.5

,

and that Xt and Xt′ are independent random variables for t 6= t′. Note that we do not assume
X

(1)
t and X(2)

t to be independent. Define A(1)
T =

∏T
t=1X

(1)
t and A(2)

T =
∏T
t=1X

(2)
t . Then, since

E[X
(1)
t] = 1.1 and E[X

(1)
t] = 1.2, we have E[A

(1)
T] = 1.1T < E[A

(2)
T] = 1.2T , which implies

that we prefer A(1)
T to A(2)

T when determining on the basis of the expectation. However, we can
show that limT→∞A

(1)
T =∞ and limT→∞A

(2)
T = 0 with probability one, respectively. In fact, if

AT =
∏T
t=1Xt is the product of i.i.d. random variables, we have

lim
T→∞

(AT)
1
T = exp

(
lim
T→∞

1

T

T∑
t=1

logXt

)
= exp(E[logX1]) (9)

with probability one, where the last equality comes from the law of large numbers. Applying (9)
to A(1)

T and A(2)
T , we obtain limT→∞(A

(2)
T)

1
T < 1 < limT→∞(A

(1)
T)

1
T with probability one. In

general, if A(1)
T =

∏T
t=1X

(1)
t and A(2)

T =
∏T
t=1X

(2)
t are products of i.i.d. random variables,

then E[logX
(1)
1] > E[logX

(2)
1] if and only if limT

t=1A
(1)
T /A

(2)
T = ∞ with probability one. These

arguments imply that, in the case of a multiplicative reward model, it is reasonable to compare reward
logarithms if we focus on events expected to happen with high probability.

B Proof of Lemma 1

Proof. Since it holds for all x, x0 ∈ [C1, C2] that d
dx log(1 + x) = 1

1+x and d2

dx2 log(1 + x) =

− 1
(1+x)2 , we have log(1 + x) − log(1 + x0) ≤ x−x0

1+x0
− (x−x0)2

2(1+C2)2 ≤ x−x0

1+x0
− C3

2 (x−x0

1+x0
)2, where

we set C3 = (1+C1)2

(1+C2)2 . Hence, by substituting x = r>t x, x0 = r>t x
S
t for arbitrary t ∈ [T], S ∈ S

and x ∈ ∆S , we obtain log(1 + r>t x) − log(1 + r>t x
S
t) ≤ r>t (x−xSt)

1+r>t xSt
− C3

2

(
r>t (x−xSt)

1+r>t xSt

)2

≤
gS>t (x− xSt)− C3

2 (gS>t (x− xSt))2 = gS>t (x− xSt)− 1
2 (x− xSt)>HS

t (x− xSt),

C Proof of Theorem 2

Proof. In the following, we denote ft(x) = log(1 + r>t x) − log(1 + C1). The regret RT can be
expressed as

RT =

(
T∑
t=1

ft(x
∗)−

T∑
t=1

ft(x
S∗

t)

)
+

(
T∑
t=1

ft(x
S∗

t)−
T∑
t=1

ft(x
St
t)

)
. (10)

Since St is chosen by MWU taking the input (FSt)S∈S = (ft(x
S
t))S∈S , the second term on the

right-hand side of (10) can be bounded as follows (see e.g., [3]):

E

[
T∑
t=1

ft(x
S∗

t)−
T∑
t=1

ft(x
St
t)

]
≤ log |S|

η
+ C2

4ηT. (11)

Since xS
∗

t is computed by FTAL, the first term on the right-hand side of (10) can be bounded as
follows (see e.g., [18]):

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(x
S∗

t) ≤ β

2
+
|S∗|
C3

log

(
1 +

C3C5T

β

)
. (12)

Combining (10), (11) and (12), we obtain (4).

11

D Proof of Theorem 3

Proof. The regret RT can be expressed as (10). Since St is chosen by Exp3 taking the input
(FSt)S∈S = (ft(x

S
t))S∈S , the second term on the right-hand side of (10) can be bounded as follows

(see e.g., [5]):

E

[
T∑
t=1

ft(x
S∗

t)−
T∑
t=1

ft(x
St
t)

]
≤ log |S|

η
+ (C2

4η|S|+ C4γ)T. (13)

The first term on the right-hand side of (10) can be bounded as follows:

E

[
T∑
t=1

ft(x
∗)−

T∑
t=1

ft(x
S∗

t)

]
≤ E

[
T∑
t=1

(gS
∗>

t (x∗ − xS
∗

t)− 1

2
(x∗ − xS

∗

t)>HS∗

t (x∗ − xS
∗

t))

]

= E

[
T∑
t=1

(ĝS
∗>

t (x∗ − xS
∗

t)− 1

2
(x∗ − xS

∗

t)>ĤS∗

t (x∗ − xS
∗

t))

]
,

(14)

where the inequality comes from (2) and the equality comes from the fact that ĝSt and ĤS
t are

unbiased estimators of gSt and HS
t , respectively. Since xS

∗

t is computed by FTAL as in (7), the
right-hand side of can be bounded as follows (see e.g., [18]):

T∑
t=1

(ĝS
∗>

t (x∗ − xS
∗

t)− 1

2
(x∗ − xS

∗

t)>ĤS∗

t (x∗ − xS
∗

t))

≤ β‖x∗‖22
2

+

T∑
t=1

ĝS
∗>

t (βI +

t∑
j=1

ĤS∗

j)−1ĝS
∗

t

≤ β

2
+
|S|
C3γ

T∑
t=1

C3p
S∗

t ĝS
∗>

t (βI +

t∑
j=1

C3p
S∗

j ĝS
∗

j ĝS
∗>

j)−1ĝS
∗

t

≤ β

2
+
|S|
C3γ

log
det(βI + C3

∑T
j=1 p

S∗

j ĝS
∗

j ĝS
∗>

j)

detβI
, (15)

where the first and third inequalities come from the standard analysis of FTAL, and the second
inequality holds since pSt |S|/γ ≤ 1 from the definition of pSt . Denote MT = C3

∑T
j=1 p

S∗

j ĝS
∗

j ĝS
∗>

j .
Since ‖gS∗t ‖0 ≤ |S∗| ≤ k, the eigenvalues {λ1, . . . , λd} of MT include at least d − k

zero eigenvalues. From this and the fact that λi ≥ 0 and
∑d
j=1 λj = tr(Mt), we have

det(βI +MT) =
∏d
j=1(β + λi) ≤ βd−k(β + 1

k tr(MT))k. This inequality and Jensen’s inequality
yield E[log(det(βI+MT))] ≤ (d−k) log β+E[k log(β+ 1

k tr(MT))] ≤ (d−k) log β+k log(β+
1
k E[tr(MT)]). Since E[tr(MT)] =

∑T
t=1 E[tr(ĤS∗

t)] =
∑T
t=1 E[tr(HS∗

t)] ≤ TkC3C5, we have
E[log(det(βI +MT))] ≤ (d− k) log β + k log(β + TC3C5). Combining this with (14) and (15),
we obtain (8).

E Proof of Theorem 4

Proof. From a 3DM instance U = {(xj , yj , zj)}dj=1, we construct an input sequence (rt)t=1,...,T

for algorithm A as follows. Let A = (aij) ∈ {0, 1}3k×d be a matrix such that aij = 1 if
i = xj or i = k + yj or i = 2k + zj , and aij = 0 otherwise. From A, we construct
B ∈ R3k×(d+1) by B = 1

3k [A,−13k], where 13k is an all-one vector of dimension 3k. Let
T ≥ max{(4 · 5184k4)2, (5184k4 · p2(d))

1
δ }. For each t ∈ [T], take zt from the uniform random

distribution on {−1, 1}3k, independently. Then, rt can be defined by rt = 1d+1 + B>zt for each
t ∈ [T]. Note that rt ∈ [0, 2](d+1) holds for each t ∈ [T].

We give the sequence (rt)t=1,...,T to A. Let (xt)t=1,...,T denote the sequence output by A. We
determine that U ∈ 3DM if

∑T
t=1 log(1 + r>t xt) ≥ T (log 2− 1

5184k4) holds, while otherwise we

12

determine that U /∈ 3DM holds. Below, we prove that this determination is correct with a probability
of at least 2/3.

Assume that U ∈ 3DM. Then, there exists y∗ ∈ {0, 1}d such that ‖y∗‖0 = k and Ay∗ =
13k, and there exists y∗ ∈ {0, 1}d such that ‖y∗‖0 = ‖y∗‖1 = k and Ay∗ = 13k. Define

x∗ := 1
k+1

[
y∗

1

]
. The vector x∗ satisfies x∗ ∈ ∆S for some S ∈ Sk+1. Moreover, it holds that

r>t x
∗ = 1>d+1x

∗ + z>t Bx∗ = 1 + 1
3k(k+1)z

>
t (Ay∗ − 13k) = 1. Hence, we obtain

max
S∈Sk+1,x∈∆S

T∑
t=1

log(1 + r>t x) ≥
T∑
t=1

log(1 + r>t x
∗) = T log 2.

From this inequality and RT ≤ p2(d)T 1−δ (with a probability ≥ 2/3), we obtain
T∑
t=1

log(1 + r>t xt) ≥ max
S∈Sk+1,x∈∆S

T∑
t=1

log(1 + r>t x)−RT

≥ T log 2− p2(d)T 1−δ ≥ T
(

log 2− 1

5184k4

)
,

where the last inequality comes from T ≥ (5184k4 · p2(d))
1
δ . This inequality means that the decision

is correct with a probability ≥ 2/3 if U ∈ 3DM.

For the remainder of the proof, we assume that U /∈ 3DM. This assumption implies that, for all
y ∈ Rd≥0 satisfying ‖y‖0 ≤ k, we have min1≤i≤3k(Ay)i = 0. Moreover, since each column of A
has at least one entry of value 1, we have max1≤i≤3k(Ay)i ≥ ‖y‖∞ for all y ∈ Rd≥0.

We first prove that ‖Bx‖2 ≥ 1
12k2 ‖x‖1 holds for all x ∈ Rd+1

≥0 satisfying ‖x‖0 ≤ k+1. We consider
the following two cases: the last entry of x is either positive or zero. The former case is when x is

expressed as x =

[
y
y0

]
with y ∈ Rd≥0, ‖y‖0 ≤ k and y0 > 0. In this case, we have

‖Bx‖∞ ≥
1

3k
max

{
| min
1≤i≤3k

(Ay)i − y0|, | max
1≤i≤3k

(Ay)i − y0|
}

=
1

3k
max

{
|y0|, | max

1≤i≤3k
(Ay)i − y0|

}
≥ 1

3k
max

{
|y0|,

1

2
| max
1≤i≤3k

(Ay)i|
}
≥ 1

3k
max

{
|y0|,

1

2
‖y‖∞

}
≥ 1

6k
‖x‖∞,

where the second inequality comes from the fact that arbitrary y0 satisfies max{|y0|, |a−y0|} ≥ |a|/2.

In the latter case, namely, when x =

[
y
0

]
with some x ∈ Rd≥0 such that ‖y‖0 ≤ k + 1, we have

‖Bx‖∞ ≥ 1
3k‖y‖∞ = 1

3k‖x‖∞. Accordingly, in both of these cases, we have ‖Bx‖∞ ≥ 1
6k‖x‖∞,

and hence, we have ‖Bx‖2 ≥ ‖Bx‖∞ ≥ 1
6k‖x‖∞ ≥ 1

6k(k+1)‖x‖1 ≥ 1
12k2 ‖x‖1.

Then, since log(1 + y) ≤ log 2 + 1
2 (y − 1)− 1

18 (y − 1)2 for y ∈ [0, 2], and since zt are statistically
independent of xt and E[zt] = 0,E[ztz

>
t] = I , we have

E
zt,xt

[log(1 + r>t xt)]

≤ log 2 + E
zt,xt

[
1

2
(‖xt‖1 + z>t Bxt − 1)− 1

18
(‖xt‖1 + z>t Bxt − 1)2

]
= log 2− 1

2
+ E

xt,zt

[
1

2
‖xt‖1 −

1

18

(
x>t B

>ztz
>
t Bxt − 2z>t Bxt(‖xt‖1 − 1) + (‖xt‖1 − 1)2

)]
≤ log 2− 1

2
+ E

xt

[
1

2
‖xt‖1 −

1

18
‖Bxt‖22

]
≤ log 2− 1

2
+ E

xt

[
1

2
‖xt‖1 −

1

18(12k2)2
‖xt‖21

]
≤ log 2− 1

2592k4
.

13

This inequality means that the stochastic process {Xt}Tt=1 defined by Xt =
∑t
j=1 log(1 + rtxt)−

t(log 2− 1
2592k4) is a sub-martingale. From the definition, {Xt}Tt=1 satisfies |Xt −Xt+1| < log 3

for all t. Hence, from the Azuma-Hoeffding inequality [2], XT is bounded as XT < 4
√
T with a

probability of at least 2/3. Consequently, we have

T∑
t=1

log(1 + r>t xt) < T (log 2− 1

2592k4
) + 4

√
T ≤ T

(
log 2− 1

5184k4

)
,

where the last inequality comes from T ≥ (4 · 5184k4)2. This means that the decision is correct with
a probability of at least 2/3.

F Proof of Theorem 6

Let us first consider the following lemma.
Lemma 8. If 0 ≤ p1 ≤ p2 ≤ 1 and random variables X1, X2 follow the binomial random
distributions B(k, p1), B(k, p2), respectively, then we have

E
X2∼B(k,p2)

[
log

(
1 +

1

k
X2

)]
− E
X1∼B(k,p1)

[
log

(
1 +

1

k
X1

)]
≥ p2 − p1

2
(16)

Proof. Define Y1 = k−X1 and Y2 = k−X2. Then we have Y1 ∼ B(k, 1−p1) and Y2 ∼ B(k, 1−
p2). From the Maclaurin series of log(2− x) = log 2− 1

2x− 1
2·22x

2 − · · · = log 2 −∑∞n=1
xn

n2n ,
we have

E
X2∼B(k,p2)

[
log

(
1 +

1

k
X2

)]
− E
X1∼B(k,p1)

[
log

(
1 +

1

k
X1

)]
= E
Y2∼B(k,1−p2)

[
log

(
2− 1

k
Y2

)]
− E
Y1∼B(k,1−p1)

[
log

(
2− 1

k
Y1

)]
=

∞∑
n=1

1

n(2k)n

(
E

Y1∼B(k,1−p1)
[Y n1]− E

Y2∼B(k,1−p2)
[Y n2]

)
≥ 1

2k

(
E

Y1∼B(k,1−p1)
[Y1]− E

Y2∼B(k,1−p2)
[Y2]

)
=
p2 − p1

2
.

We are now ready to prove Theorem 6.

Proof of Theorem 6. We construct an input sequence {rt}t=1,2,... so that entries rti follow a uniform
random distribution over {0, 1} independently. We can show that

E
r,x

[RT (r)] = E
r,x

[
max

S∈Sk,x∈∆S

T∑
t=1

log(1 + r>t x)−
T∑
t=1

log(1 + r>t xt)

]
= Ω

(√
T log

d

k

)
(17)

for all algorithms, by means of considering the following two inequalities:

E
rt,xt

[log(1 + r>t xt)] ≤ E
X1

[
log

(
1 +

1

k
X1

)]
, (18)

E
rt,xt

[
max

S∈Sk,x∈∆S

T∑
t=1

log(1 + r>t x)

]
≥ T · E

X1

[
log

(
1 +

1

k
X1

)]
+ Ω

(√
T log

d

k

)
, (19)

where X1 is a binomial random variable following B(k, 1/2).

First, let us prove the inequality (18). Consider a function x 7→ E
rt

[log(1 + r>t x)], and suppose

S ∈ Sk. We can then confirm that this is a concave function and that, for the optimization problem

14

arg max
x∈∆S

E
rt

[log(1 + r>t x)], the vector 1
k1S is the unique point satisfying KKT conditions, where 1S

stands for the indicator vector of S, i.e., 1S = [χ1, . . . , χd]
> where χi = 1 if i ∈ S and χi = 0 if i ∈

[d] \S. Consequently, we have maxx∈∆S log(1 + r>t x) = E
rt

[log(1 + 1
k1
>
S rt)] = E

X1

[log(1 + 1
kX1)]

since 1>S rt follows the binomial distributionB(k, 1/2). Since xt ∈ ∆St for some St ∈ Sk and St,xt
are stochastically independent of rt, we obtain E

rt,xt

[
log(1 + r>t xt)

]
≤ E

rt

[
log
(
1 + 1

kr
>
t 1St

)]
=

E
X1

[
log
(
1 + 1

kX1

)]
.

Next, let us prove the inequality (19). For each i ∈ [d], define ri :=
∑T
t=1 rti. Since rti follows

a Bernoulli distribution with parameter 1/2 independently, ri follows the binomial distribution
B(T, 1/2). Let σ : [d − k] → [d − k] be a permutation such that rσ(1) ≥ rσ(2) ≥ · · · ≥ rσ(d−k).
Since the posterior random distribution of rti given ri is the Bernoulli distribution of parameter ri/T ,
for x2 = 1

k1{σ(1),σ(2),...,σ(k)} and for arbitrary constant s ≥ T/2, we have

E
r

[
χ{rσ(k)≥s} ·

T∑
t=1

log(1 + r>t x2)

]
≥ E
X2∼B(k, sT)

[
χ{rσ(k)≥s} ·

T∑
t=1

log(1 +
1

k
X2)

]

= T · Prob[rσ(k) ≥ s] · E
X2∼B(k, sT)

[
log(1 +

1

k
X2)

]
,

where χA stands for the indicator function for arbitrary events A. Moreover, since rd−k+1, . . . , rd
are independent of rσ(k), for x1 = 1

k1{d−k+1,...,d}, we have

E
r

[
χ{rσ(k)<s}

T∑
t=1

log(1 + r>t x1)

]
= T · Prob[rσ(k) < s] · E

X1∼B(k, 12)

[
log(1 +

1

k
X1)

]
.

Hence, we obtain

E
r

[
max

S∈Sk,x∈∆S

T∑
t=1

log(1 + r>t x)

]

= E
r

[
χ{rσ(k)≥s} max

S∈Sk,x∈∆S

T∑
t=1

log(1 + r>t x)

]
+ E

r

[
χ{rσ(k)<s} max

S∈Sk,x∈∆S

T∑
t=1

log(1 + r>t x)

]

≥ E
r

[
χ{rσ(k)≥s}

T∑
t=1

log(1 + r>t x2)

]
+ E

r

[
χ{rσ(k)<s}

T∑
t=1

log(1 + r>t x1)

]

≥ T · Prob[rσ(k) ≥ s] · E
X2

[
log(1 +

1

k
X2)

]
+ T · Prob[rσ(k) ≤ s] · E

X1

[
T∑
t=1

log(1 +
1

k
X1)

]

≥ T · E
X1

[
log(1 +

1

k
X1)

]
+ T · Prob[rσ(k) ≥ s] ·

1

2
·
(
s

T
− 1

2

)
,

where X1 ∼ B(k, 1
2), X2 ∼ B(k, sT) and the last inequality comes from Lemma 8. We now can

show that we have Prob[rσ(k) ≥ s] = Ω(1) for s = T
2 + Ω(

√
T log d

k), which proves (19). Let
F : R→ [0, 1] denote the cumulative distribution function of B(T, 1/2), i.e., F (x) = Prob[ri ≤ x].
From a standard concentration lemma of a binomial distribution (see, e.g., Proposition 7.3.2 in [25]),

we have F (T2 + t) ≤ 1− 1
15 exp

(
−16 t

2

T

)
. Hence, setting t = 1

4

√
T log d−k

15k , we obtain

Prob

[
rσ(k) ≥

T

2
+ t

]
= Prob

[
F (rσ(k)) ≥ F

(
T

2
+ t

)]
≥ Prob

[
F (rσ(k)) ≥ 1− 1

15
exp

(
−16

t2

T

)]
= Prob

[
F (rσ(k)) ≥ 1− k

d− k

]
Since F (ri) follows the uniform distribution on [0, 1] independently, F (rσ(k)) follows the probability
distribution of the order statistic sampled from the standard uniform distribution, which is the beta

15

distribution Beta(d− 2k+ 1, k) (see, e.g., [15]). This means that Prob[1−F (rσ(k)) ≤ k
d−k] ≥ 1/2.

Combining the above two inequalities, for s = T
2 + 1

4

√
T log d−k

15k , we have

E
r

[
max

S∈Sk,x∈∆S

T∑
t=1

log(1 + r>t x)

]

≥ T · E
X1

[
log(1 +

1

k
X1)

]
+

1

2
Prob[rσ(k) ≥ s] ·

(
s− T

2

)
≥ T · E

X1

[
log(1 +

1

k
X1)

]
+

1

16

(√
T log

d− k
15k

)

≥ T · E
X1

[
log(1 +

1

k
X1)

]
+ Ω

(√
T log

d

k

)
,

where the last inequality comes from d ≥ 17k. Consequently, we obtain (19). From (18) and (19) we
have (17).

G Proof of Theorem 7

Lemma 9. For arbitrary ε ∈ [0, 1/2], let z0, z1, . . . , zk ∈ {−1, 1} be independent random variables

such that z0 =

{
1 w.p. 1/2− ε
−1 w.p. 1/2 + ε

and zi =

{
1 w.p. 1/2
−1 w.p. 1/2

for i = 1, . . . , d. Set X1 =∑k
i=1 zi and X2 =

∑k−1
i=1 zi + z0

∏k−1
j=1 zj . We then have

E

[
log

(
2− 1

k
X2

)]
−E

[
log

(
2− 1

k
X1

)]
≥ 2ε

k(2k)k
. (20)

Proof. Denote w = z0

∏k−1
j=1 zj . Let n1, n2, . . . , nk be arbitrary non-negative integers. Set mi to be

ni modulo 2, i.e., mi = 0 if ni is even and mi = 1 if ni is odd, for i = 1, . . . , k. We then have

E[zn1
1 zn2

2 · · · z
nk−1

k−1 z
nk
k] = E[zm1

1 zm2
2 · · · zmk−1

k−1 zmkk] =

{
1 if m1 = · · · = mk = 0
0 otherwise

E[zn1
1 zn2

2 · · · z
nk−1

k−1 w
nk] = E[zm1

1 zm2
2 · · · zmk−1

k−1 wmk] =

{
1 if m1 = · · · = mk = 0
−2ε if m1 = · · · = mk = 1

0 otherwise
,

which means E[zn1
1 · · · z

nk−1

k−1 z
nk
k] ≥ E[zn1

1 · · · z
nk−1

k−1 w
nk]. Hence, X1 =

∑k
i=1 zi and X2 =∑k−1

i=1 zi + w satisfies E[Xn
1] ≥ E[Xn

2] for all non-negative integers n and E[Xk
1]− E[Xk

2] = 2ε.
From the Maclaurin series of log(2− x) = log 2−∑∞n=1

xn

n2n , we have

E

[
log

(
2− 1

k
X2

)]
−E

[
log

(
2− 1

k
X1

)]
=

∞∑
n=1

1

n(2k)n
(E[Xn

1]−E[Xn
2])

≥ 1

k(2k)k
(E[Xk

1]−E[Xk
2]) =

2ε

k(2k)k
.

Proof of Theorem 7

Proof. For each S∗ ∈ Sk, we define a random distribution DS∗ on {−1, 1}d so that z =
[z1, . . . , zd]

> ∼ DS∗ satisfies∏
i∈S∗

zi =

{
1 w. p. 1/2− ε
−1 w. p. 1/2 + ε

,
∏
i∈S

zi =

{
1 w. p. 1/2
−1 w. p. 1/2

(S ∈ 2[d] \ {∅, S∗}). (21)

16

Such a distribution can be constructed as follows: fix an index i∗ ∈ S∗ and, for i ∈ [d] \ {i∗},
let zi =

{
1 w. p. 1/2
−1 w. p. 1/2

and z0 =

{
1 w. p. 1/2− ε
−1 w. p. 1/2 + ε

independently. Define zi∗ =

z0

∏
i∈S∗\{i∗} zi. Suppose that the input sequence rt is given by rt = 1 − zt, where zt ∼ D∗S

independently for t = 1, 2, . . . , T . If z follows D∗S , for any S ∈ Sk \ {∅S∗}, z|S follows
the uniform distribution on {−1, 1}S , and hence, we have maxx∈∆S′ E

zt∼DS∗

[
log
(
1 + r>t x

)]
=

E
zt∼DS∗

[
log
(
1 + 1

kr
>
t 1S

)]
. From Lemma 9, for S ∈ Sk \ {∅S∗}, we have

E
zt∼DS∗

[
log

(
1 +

1

k
r>t 1S∗

)]
− max

x∈∆S
E

zt∼DS∗

[
log
(
1 + r>t x

)]
≥ E

zt∼DS∗

[
log

(
1 +

1

k
r>t 1S∗

)]
− E

zt∼DS∗

[
log

(
1 +

1

k
r>t 1S

)]
≥ 2ε

k(2k)k
. (22)

Since any randomized algorithm is equivalent to an a priori random choice from the set of all
deterministic strategies, and since the input defined above is oblivious to the output of the algorithm,
it suffices to prove a lower bound on the expected regret of any deterministic algorithm (this is not
crucial for the proof but simplifies the notation). We consider an arbitrary deterministic algorithm
and let {(St,xt)}Tt=1 denote the output for the random input sequence {rt}Tt=1 given by rt = 1 + zt
and zt ∼ DS∗ . Let NS be a random variable denoting the number of t ∈ [T] such that St = S, i.e.,
NS = |{t ∈ [T] | St = S}|. From the equation (22), we have

E
zt∼DS∗

[RT] ≥
T∑
t=1

E
zt∼DS∗

[
log

(
1 +

1

k
r>t 1S

)]
−

T∑
t=1

E
St

[
max
x∈∆St

E
zt∼DS∗

[
log
(
1 + r>t x

)]]
≥
(
T − E

zt∼DS∗
[NS∗]

)
2ε

k(2k)k
. (23)

Let us evalute E
zt∼DS∗

[NS∗]. Define D0 to be the uniform probabilistic distribution on {−1, 1}d.

Then, for all S ∈ Sk \ {∅, S∗}, we have DS∗ |S = D0|S , i.e., if z ∼ DS∗ and z′ ∼ D0, then z|S and
z′|S follows the same distribution (a uniform distribution on {−1, 1}S). Hence, in the same way as
in Lemma A.1. of [5], we can show that

E
zt∼DS∗

[NS∗]− E
zt∼D0

[NS∗] ≤
T√
2

√
E

zt∼D0

[NS∗] ·KL
(
D0|S∗

∣∣∣∣∣∣ DS∗ |S∗
)

(24)

where KL(P ||Q) = E
P

(log dP
dQ) is the Kullback-Leibler divergence. The chain rule for relative

entropy (see, e.g., Theorem 2.5.3 of [11]) gives, for S∗ = {i1, . . . ik},

KL
(
D0|S∗

∣∣∣∣∣∣ DS∗ |S∗
)

= KL(Probz∼D0 [(zi)i∈S∗] || Probz∼DS∗ [(zi)i∈S∗])

=

k∑
j=1

E
(zis)s<j

[
KL(Probz∼D0

[zij | (zis)s<j] || Probz∼DS∗ [zij | (zis)s<j])
]

= E
(zis)s<k

[KL(Probz∼D0 [zik | (zis)s<k] || Probz∼DS∗ [zik | (zis)s<k])]

= −1

2
log(1− 4ε2). (25)

In the above equations, the third equality holds because Probz∼D0 [zij | (zis)s<j] and
Probz∼DS∗ [zij | (zis)s<j] are equal to the Bernoulli distribution of parameter 1/2 for j < k.
The last equality holds because Probz∼D0

[zik | (zis)s<k] follows Bernoulli distribution of parameter
1/2 and Probz∼DS∗ [zik | (zis)s<k] follows Bernoulli distribution of parameter 1/2 + ε or 1/2− ε.
Combining (23), (24) and (25), we have

E
zt∼DS∗

[RT] ≥
(
T − E

zt∼D0

[NS∗]−
T

2

√
− E

zt∼D0

[NS∗] log(1− ε2)

)
2ε

k(2k)k
.

17

Suppose that S∗ is chosen at random uniformly from Sk, before play begins. Then, from the above
inequality, the expected regret is bounded as

E
S∗,zt∼DS∗

[RT] ≥ 1

|Sk|
∑
S∗∈Sk

(
T − E

zt∼D0

[NS∗]−
T

2

√
− E

zt∼D0

[NS∗] log(1− 4ε2)

)
2ε

k(2k)k

≥
(
T − T

|Sk|
− T

2

√
− T

|Sk|
log(1− 4ε2)

)
2ε

k(2k)k
,

where the second inequality comes from
∑
S∈Sk E

zt∼D0

[NS] = T and
∑
S∈Sk

√
E

zt∼D0

[NS] ≤√
T |Sk|. Using the inequality − log(1− x) ≤ x/2 for x ∈ [0, 1/4], we have

E
S∗,zt∼DS∗

[RT] ≥ T
(

1− 1

|Sk|
− ε
√

T

2|Sk|

)
2ε

k(2k)k

for ε ∈ [0, 1/4]. By setting ε = min{1/4, 1
2

√
|Sk|
T }, we obtain

E
S∗,zt∼DS∗

[RT] = Ω

(
min

{
T

k(2k)k
,

√
T |Sk|

k2(2k)2k

})
≥ Ω

min

 T

k(2k)k
,

√
T

(
d

5k3

)k
 ,

(26)

where the second inequality follows from |Sk| =
(
d
k

)
≥ (dk)k and k2 = O((5

4)k).

Consider an arbitrary randomized algorithm and let λ denote the algorithm’s internal randomization.
Then, since λ is probabilistically independent from S∗, r and (26) for all deterministic algorithms,
we have

E
S∗,{r}

[
E
λ

[RT]

]
= E

λ

[
E

S∗,{r}
[RT]

]
= Ω

min

 T

k(2k)k
,

√
T

(
d

5k3

)k
 .

18

	Introduction
	Related work
	Upper bounds
	Notation and preliminary consideration
	Algorithm for the full-feedback setting
	Algorithm for the bandit-feedback setting

	Lower bounds
	Computational complexity
	Regret lower bound for the full-feedback setting
	Regret lower bound for the bandit-feedback setting

	Experimental evaluation
	A note on the definition of the regret
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 6
	Proof of Theorem 7

