Learning to Repair Software Vulnerabilities
with Generative Adversarial Networks -
Supplementary Material

Jacob A. Harer'?, Onur Ozdemir', Tomo Lazovich?* Christopher P. Reale',
Rebecca L. Russell!, Louis Y. Kim!, Peter Chin?

!Draper, Cambridge, MA
2Department of Computer Science, Boston University, Boston, MA
3Lightmatter, Boston, MA

{jharer,oozdemir,creale,rrussell,lkim}@draper.com,
tomo@lightmatter.ai, spchin@cs.bu.edu

1 Network and Training Details

Here we provide additional network and training details useful for experimental replication.
All of the networks used in this paper use a similar architecture but vary in the number and
size of layers.

1.1 Network Architecture

For all the experiments, we use identical networks for the Generator in our GAN model as
well as in the NMT model in our seq2seq baseline. Thus when we refer to generator in the
rest of the section it applies to both models. Our network architecture is shown in Figure

Our generator consists of two RNNs, an encoder and a decoder. For Sorting and CFG
experiments, the generator RNNs contain 3 layers of 512 neurons each. For Sate4, it contains
4 layers of 512 neurons each. The encoder RNN processes the input sequence and produces
a set of hidden states h;. The final hidden state hp is used as the initial state to the decoder
RNN which generates outputs s; one at a time, feeding its outputs back as input to ¢; until
an end of sequence character is produced. The decoder and encoder are linked using global
dot product attention as per [I].

All networks share the same discriminator architecture. Discriminator inputs (sg, S1...S7)
each in R¥ are concatenated into a matrix G in R”*¥. They are then passed through a
single 1D convolutional layer with 300 filters each of sizes of 3, 7, and 11. These outputs
are then aggregated and fed into a max pooling operation over the entire sequence length.
This is fed into two fully connected layers, the first with 512 neurons, and the second with a
single neuron, the output of the discriminator.

1.2 Training

We first train our generator as a denoising autoencoder for which we use the Adam opti-
mization algorithm with a learning rate of 10™%. The same pretrained network is used to
initialize the generator for all GAN and seq2seq networks.

GAN networks are trained using the RMSprop optimization algorithm. Learning rates
are initialized to 5 * 10~* for the discriminator and 10~° for the generator. We train the
discriminator 15 times for every generator update. Seq2seq models are trained using the

*Work done while author was affiliated with Draper.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Multi Head Temporal Max
"‘T*" _Pool
& |
Norm ‘ Norm |
- — - T | Nx 1D Conv.

T T i

Figure 1: (Left) Generator consisting of N encoder layers feeding N decoder layers. Outputs
from the encoder are also used as inputs to the attention mechanism with the query coming
from the decoder output. (Right) Discriminator consisting of N convolution layers, a temporal
max pooling, and N fully connected layers.

Adam optimizer with a learning rate of 10~%. We experimented extensively with varying
the learning rate but found that increasing the discriminator learning rate made it unstable
causing its accuracy to decrease. Increasing the generator learning rate causes it to update to
quickly for the discriminator, meaning the discriminator would not remain close to optimal
and therefore gradients through it were not reliable. In order to ensure that the discriminator
starts at a good initial point, we initialize it by training it alone for the first 10 epochs.
The generators learning rate is decayed by a factor of 0.9 every 10 epochs. In models
where we employ curriculum learning, this decay is only performed after the curriculum is
completed. Networks are trained for 200, 400, and 1000 epochs for the sorting, CFG, and
SATE4 experiments, respectively.

GAN training uses the original clipped version of Wasserstein GAN [2] with a clipping
threshold of 0.05. We also experimented heavily with this threshold, and found that a lower
threshold led to low discriminator accuracy, and a higher threshold led to the same discrete
domain issues as discussed in the paper for WGAN-I in Section 3.2.

Our curriculum clips each sequence to a given length. We step up the curriculum length
either when the discriminator accuracy falls below 55% or after 40 epochs, whichever comes
first. Sorting and CFG curriculum starts at sequence length 5 and is increased by 2 at each
step. SATE4 curriculum starts at length 75 and is increased by 5 at each step.

2 Context Free Grammar

Our simple CFG experiment uses the following CFG. Each line is a production rule with
possible sequences separated by |. Symbols in quotes are terminals.

S: SOS NP VP EOS
SOS: "1’

EOS: "2’

NP: Det Nom | PropN
Nom: Adj N | N

VP: VNP | V NP PP
PP: P NP
PropN: ’3
Det: 6" |
N: 8 | 9’ | '10° | '11° | ’12
Adj: ’13° | 14’ | 15 | 16’ | 17’
V:o018 | '19° | '200 | 21

P: 22 | 23

Y4 | s
r7

3 Repair Examples

Here we provide additional selected examples of source code correctly and incorrectly repaired
by our GAN model. Tables [[}f4] show successfull repairs, and Tables [B}j6] show failures.

Table 1: Successful Repair - This functions reads the index of an array access from a socket
and returns the memory at the index. The vulnerable function only checks the lower bound
on the array size. Our GAN repairs it by adding an additional check on the upper bound.

With Vulnerability

Repaired

void CWE129_Improper_ Validation_ Of _
Array_Index() {
int data;
data = —1;

ifdef _ WIN32 WSADATA wsa_ data;
int wsa_ data__init = 0;
endif int recv_rv;
struct sockaddr__in s__in;
SOCKET connect__socket = INVALID__SOCKET;
char input__buf{CHAR__ARRAY_SIZE[;
do {
ifdef _ WIN32 if (WSAStartup(MAKEWORD(2,
2), &wsa__data) != NO_ERROR) break;
wsa__data__init = 1;
endif connect_socket = socket(AF_INET,
SOCK_STREAM, IPPROTO_ TCP);
if (connect_socket == INVALID_SOCKET)
break;
memset(&s_in, 0, sizeof(s_in));
s__in.sin_ family = AF_INET;
s_in.sin_addr.s_addr = inet_addr("127.0.0.1");
s_in.sin__port = htons(TCP_PORT);
if (connect(connect_socket, (struct sockaddr
*)\&s__in, sizeof(s_in)) ==
SOCKET_ERROR)
break;
recv_rv = recv(connect_socket, input__buf,
CHAR__ARRAY_ SIZE, 0);

if (connect_socket != INVALID_SOCKET)
CLOSE__ SOCKET (connect__socket);

ifdef _ WIN32 if (wsa_data__init) WSACleanup();

endif

el

int data_ copy = data;
int data = data_ copy;

int data_buf[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8,

printLine("ERROR: Array index is negative");

void CWE129_Improper_ Validation_ Of

Array_Index() {

int data;
data = —1;

~—~—

ifdef _ WIN32 WSADATA wsa_ data;

int wsa_ data__init = 0;

endif int recv_rv;

struct sockaddr_in s__in;

SOCKET connect__socket = INVALID_SOCKET;

char input_buf(CHAR_ARRAY_ SIZE];

do {

ifdef _ WIN32 if (WSAStartup(MAKEWORD(2,
2), &wsa_data) != NO_ERROR) break;

wsa__data__init = 1;

endif connect_socket = socket(AF_INET,
SOCK_STREAM, IPPROTO_TCP);

if (connect_socket == INVALID_SOCKET)

break;

memset(&s__in, 0, sizeof(s_in));

s_in.sin_ family = AF__INET;

s_in.sin_addr.s_addr = inet__addr("127.0.0.1");

s_in.sin_ port = htons(TCP__PORT);

if (connect(connect_socket, (struct sockaddr
*)&s__in, sizeof(s_in)) ==

SOCKET_ERROR)
break;

recv_rv = recv(connect_socket, input_ buf,

CHAR_ARRAY_SIZE, 0);

if (recv_rv == SOCKET__ERROR || recv_rv if (recvirv) == SOCKET_ERROR || recv_rv
brca;: 0) break;
data = atoi(input__buf); dat'a = atoi(input_buf);
} while (0); } while (0);

if (connect_socket != INVALID_SOCKET)
CLOSE__SOCKET(connect__socket);

ifdef _ WIN32 if (wsa_data_init) WSACleanup();

endif

int data_ copy = data;
int data = data__copy;

int data_ buf[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8,

9}; 9};
it () { it (— ;)
printIntLine(data_ buf[data]); printIntLine (data_buf[data]);

} else { — } else {

printLine("ERROR: Array index is
out—of—bounds");

Table 2: Successful Repair - This function attempts to accept a socket and use it before it
has bound it. Our GAN approach repairs the function by reordering the bind, listen, and

accept into the correct order.

With Vulnerability

Repaired

void CWE666__Operation_on_ Resource__in_ Wrong__
Phase_of Lifetime___accept_listen_bind_ () {
{

char data[100] = "";
ifdef _ WIN32 WSADATA wsa_ data;
int wsa_ data_ init = 0;
endif int recv_ rv;
struct sockaddr_in s_in;
char *replace;
SOCKET listen__socket = INVALID_SOCKET;
SOCKET accept_socket = INVALID_SOCKET;
size_t data_len = strlen(data);
do {
ifdef _ WIN32 if (WSAStartup(MAKEWORD(2,
2), &wsa_data) != NO_ERROR) break;
wsa__data__init = 1;
endif listen_socket = socket(AF_INET,
SOCK_STREAM, IPPROTO_TCP);
if (listen_socket == INVALID_SOCKET)
break;
memset(&s__in, 0, sizeof(s_in));
s_in.sin_ family = AF__INET;
s_in.sin_addr.s_addr = INADDR__ANY;
s_in.sin__port = htons(TCP_PORT);

if (listen (listen _socket,
LISTEN_BACKLOG)
== SOCKET_ERROR)
break;

recv_rv = recv(accept_socket, (char x)data +
data__len,
(int)(100 — data_len — 1), 0);
if (recv_rv == SOCKET_ERROR || recv_rv
==0)
break;
data[recv_rv] = "\0’;
replace = strchr(data, '\r’);
if (replace)
*«replace = ’\0’;
replace = strchr(data, '\n’);
if (replace)
*«replace = ’\0’;
} while (0);
if (listen_socket != INVALID_SOCKET)
CLOSE__SOCKET(listen__socket);

void CWEG666__Operation__on_ Resource__in_ Wrong__
Phase_of Lifetime __ accept_listen_bind_ () {
{

char data[100] = "";
ifdef _ WIN32 WSADATA wsa_ data;
int wsa__data__init = 0;
endif int recv__rv;
struct sockaddr__in s__in;
char *replace;
SOCKET listen_socket = INVALID_SOCKET;
SOCKET accept__socket = INVALID_SOCKET);
size_t data_len = strlen(data);
do {
ifdef _ WIN32 if (WSAStartup(MAKEWORD(2,
2), &wsa_ data) != NO_ERROR) break;
wsa__data__init = 1;
endif listen_socket = socket(AF_INET,
SOCK_ STREAM, IPPROTO_ TCP);
if (listen_socket == INVALID_ SOCKET)
break;
memset(&s__in, 0, sizeof(s_in));
s_in.sin_ family = AF__INET;
s_in.sin_addr.s_addr = INADDR__ANY;
s_in.sin_ port = htons(TCP_PORT);

if (listen (listen_socket, LISTEN_BACKLOG)
== SOCKET_ERROR)

break;
laccept_socket = accept(listen_socket, NULL,
NULL);
if (accept_socket == SOCKET_ERROR)
break;
recv_rv = recv(accept_socket, (char x)data +
data__len,
(int)(100 — data_len — 1), 0);
if (recv_rv == SOCKET_ERROR || recv_rv
==0)
break;
data[recv_rv] = ’\0’;

replace = strchr(data, '\r’);
if (replace)
sreplace = "\07;
replace = strchr(data, '\n’);
if (replace)
«replace = "\07;
} while (0);
if (listen_socket != INVALID_SOCKET)
CLOSE__SOCKET(listen__socket);

Table 3: Successful Repair - This function has a buffer allocated which is too small for the
resulting data write. Our GAN repairs it by increasing the amount of memory allocated to

the buffer.

With Vulnerability

Repaired

void CWE131_ Incorrect__Calculation_ Of
Buffer_ Size() {
wchar__t xdata;
data = NULL;
data = (wchar_t *)malloc(llll * sizeof(wchar_t));
{
wchar__t data_src[10 + 1] = SRC__STRING;
size_t i, src_len;
src_len = wcslen(data_src);
for (i = 0; i < src_len; i++) {
data[i] = data_ src[i];

datalwcslen(data_src)] = L "\0’;
printWLine(data);
free (data);

void CWE131_ Incorrect__Calculation_ Of _
Buffer_ Size() {
wchar__t xdata;
data = NULL;
data = (wchar_t *)malloc(([TOREI) *

sizeof(wchar_t));

wchar_t data_src[10 + 1] = SRC_STRING;
size_t i, src_len;
src_len = weslen(data_src);
for (i = 0; i < src_len; i++) {
data[i] = data_src[i];

}

data[wcslen(data_src)] = L "\07;
printWLine(data);

free (data);

Table 4: Successful Repair - This function calls sprintf to print out two strings, but only

provides the first string to print. Our GAN repairs it by providing a second string.

With Vulnerability

Repaired

Number_ Of Arguments() {
char dst[DST_SZ];
sprintf (dst, "%s %s", SRC_STR);
printLine(dst);

void CWEG685_ Function_ Call_ With_ Incorrect__

printLine(dst);

void CWEG685_ Function_ Call_ With_ Incorrect__
Number_ Of _Arguments() {
char dst[DST_SZ];

sprintf (dst, "%s %s", SRC_STR, _),

Table 5: Incorrect Repair - This function tries to print out from data which has not been
fully initialized. Our GAN corrects this by fully initializing the variable, but then attempts

to call a variable identifier instead of making the appropriate function call.

With Vulnerability

GAN Attempted Repaired

Golden Repair

void CWE457__Use_ of
__Uninitialized_ Variable() {
double *xdata;
data = (double *) ALLOCA(10 =
sizeof(double));

int i;
for (i =051 < (10 /2); i++)

data[i] = (double)i;

}

{
int i;
for (i =0;1 < 10; i++4+) {

printDoubleLine(datali]) ;

}

}

}

void CWE457__Use_ of__
Uninitialized__Variable(){
double xdata;
data = (double *) ALLOCA(10 *
sizeof(double));

size_t i;
for (i =0;1 < 10; i++) {
data[i] = (double)i;

s
{
int i;
for (i =0;1 < 10; i++) {
}
¥
}

void CWE457__Use_ of__
Uninitialized_ Variable() {
double xdata;
data = (double *) ALLOCA(10 =
sizeof(double));

int i;
for (i =0;1i < 10; i++4) {
data[i] = (double)i;

s
{
int i;
for (i =0;1i < 10; i++) {

}
}
}

Table 6: Incorrect Repair - This function encounters an integer underflow by assigning a
random value to a char and then subtracting 1. If the random value is 0 this will underflow
the char. The given golden repair in this case is simply to change the random char to a
known value. However, our GAN gets confused. It instead modifies the rand function in an

unknown way and proceeds to free the data rather then print it.

With Vulnerability

GAN Attempted Repaired

Golden Repair

void CWE191_ Integer__
Underflow() {
unsigned char data;

data =’ 7
data = (unsigned char)rand();
{

unsigned char result =

data — 1;

printHexUnsignedCharLine(result);

void CWE191_ Integer__
Underflow(){
unsigned char data;
data = 7;
data = (unsigned char)

{

void CWE191_ Integer__
Underflow() {
unsigned char data;

data =’ 7;
data = [5];
{
unsigned char result =
data — 1;
}
¥

References

[1] M.-T. Luong, H. Pham, and C. D. Manning. Effective Approaches to Attention-based Neu-
ral Machine Translation. Empirical Methods in Natural Language Processing (EMNLP),
2015.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein Generative Adversarial Networks.
International Conference on Machine Learning (ICML), 2017.

	Network and Training Details
	Network Architecture
	Training

	Context Free Grammar
	Repair Examples

