Appendix

A Details about learning

A.1 Reward Design

Our reward function consists of two parts: early reward and continuous reward.

Early reward The early reward constitutes quick feedback obtained by performing lightweight
structure checks during the process of loop invariant generation. The goal is to quickly remove
meaningless predicates that are trivially true (e.g. "e==e") or false (e.g. "e<e") or missing variables
(e.g. "1<2"), or simple contradictions like "el<e2 && el>e2". Early reward is computed at the end of
each action; if the partially generated invariant fails to pass the above checks, the generation process
terminates immediately by returning a large negative reward -4; otherwise, a positive reward 0.5 is given.
Note that one promising future work could be taking advantage of UNSAT cores from counterexamples
to identify contradictory parts of the candidate invariant. These contradictory parts will be "non-trivial"
contradictions, compared to trivial patterns we have considered.

Continuous reward The goal of continuous reward is to reflect proof progress smoothly. It is
computed after the loop invariant is generated and is based on three kinds of counterexamples. Let
Cepre,Ceiny,Cepost denote the sets of counterexamples accumulated so far at the pre, inv, post step,
respectively. Similarly, let pass,ye,pa58iny,PaSSp0st be the sets of counterexamples passed by current
loop invariant candidate. The continuous reward is modeled as a function that takes these six sets of
counterexamples as input and produces a scalar value. We used a simple but effective function, that is,
the sum of ratios. Specifically, in the case no new counterexample is introduced, we used the sum of
passed ratios of counterexamples:

[passpr| |passiny| |passpost|

‘cepre ‘ |C€i7w | |Cepost ‘

When a new counterexample is returned, we used the staged sum:

|pa58p7'e| |pa58inv‘

|cepre]

where [-] is Iverson bracket. It examines counterexamples in an ordered way (i.e. pre, inv, post) so that
counterexamples in the next step are considered only after all counterexamples in the previous step
get passed. When we get the highest continuous reward, which is 3, we invoke the theorem prover
to verify the current loop invariant candidate; if the theorem prover accepts it, then a correct loop
invariant is found; otherwise, a new counterexample is returned, and we recompute the continuous
reward according to the above reward function.

] Ipasspost |

+[passpre = cepre][PaSSiny = CCiny cenont]
post

+[passpre =cepre] T
mnv

A.2 Hyperparameters

By default, the embedding size used throughout the paper is 128. Batch size is set to 10. To compute the
graph structured external memory representation, we run the message passing operator (as described in
Equation (1)) for 20 steps. Learning rate is set to 0.001 and fixed.

We maintain a circular buffer for the counterexamples. The buffer size is set to 100, i.e., we remove the
old counterexamples when the buffer size is exceeded (although we seldom reached the 100 limit in our
experiments). We use the counterexample to compute continuous feedback only after we collect 5 or
more of them.

B Dataset

Our dataset is collected from recent literature [3, 7] and the 2017 SyGuS competition [31]. Dillig et
al. [7] create a suite of 46 C programs for evaluation of loop invariant inference, on top of which Garg
et al. [3] introduce 40 more benchmarks. The 2017 SyGuS competition consists of 74 benchmarks,
which is in the SMT-LIB like format [52]. We manually convert benchmarks from SyGus competition
to C programs, which have some overlaps with the above two benchmark suite, so we remove the
overlapped ones. Figure 7 shows some example programs in the SyGusS challenge dataset.

13



04 (0 £ 0 A1 O {

c; X; G X5
n; . Yi .
yi yi
72f q
(c = o) 2 o
assume((n ) x ! (c )i 22;
; — (y )i assume((y ))s 23;
ink v assume H
unknown (y ) { 22 u'\?((y V)i Ul assume((x ));
( unknown() ) { { assume((x ));
( (c n) ) (x (x +y)); (unknown()) { assume((y 7
{ (y (y )); ( (c ) ) assume((y
(c (c 1) } {
¥ (z (z DL (unknown()) {
b { } (c (c ));
i ( (c n) ) ¥ (x (x ));
. assert( (x y) ); ly ly M;
;c )5 } } 1
} ( (c ) )
assert( (z ) g ¥
+ ¥
( (x ) )
} assert( (y ) );
( (c==n)) }

Figure 7: Examples of programs in SyGusS challenge dataset (after converting to C).

B.1 Training data augmentation

We augment the training dataset on top of the set of programs that CODE2INV can solve. Given a
program, we first randomly select an integer K ranging from 1 to 5, which is the number of confounding
variables to insert. Then, we initialize each newly created variable with a value ranging from -100
and 100. After that, we insert a statement after each statement in the loop body. The newly inserted
statement only uses confounding variables and constants so that any valid loop invariant in the original
program is still valid after augmentation. The /value of the statement is randomly and uniformly
sampled from confounding variables, and for the rvalue expression of statement, we first randomly
choose a depth (either 1 or 2) for the AST tree of the expression, then randomly and uniformly pick an
operator from { +, —, * }, and operands from confounding variables and constants ranging between
-100 and 100. For each program and each chosen parameter K, we repeat the above process a 100 times.

C Attention score interpretation

The learned attention scores measure the importance of different nodes in the program graph memory.
In Figure 6¢c and 6d we converted the attention into the raw program file. Here we include the original
graphs, together with the attentions that represented by different scale of colors. See Figure 8 and 9.

14






program graph, which converts to Figure 6d in main text.

Figure 9: Attention over

16



