A Scenario specification

A scenario specification consists of a scenario description and outputs both p., (1), the accident rate,
and a dataset consisting of initial conditions and the minimum time to collision, our continuous
objective safety measure. Concretely, a scenario description includes

e a set of possible initial conditions, e.g. a range of velocities and poses for each agent
e a safety measure specification for the ego agent,
e a generative model of environment policies, an ego vehicle model,

e a world geometry model, e.g.a textured mesh of the static scene in which the scenario is to
take place.

Given the scenario description, the search module creates physics and rendering engine worker
instances, and Algorithm [I] then adaptively searches through many perturbations of conditions in
the scenario, which we call scenario realizations. A set of scenario realizations may be mapped to
multiple physics, rendering, and agent instantiations, evaluated in parallel, and reduced by a sink
node which reports a measure of each scenarios performance relative to the specification.

In our implementation the safety measure is minimum time-to-collision (TTC). TTC is defined as
the time it would take for two vehicles to intercept one another given that they each maintain their
current heading and velocity [52]. The TTC between the ego-vehicle and vehicle ¢ is given by

T (t)
TTC;(t) = ———=, 4
=5 @
where r; is the distance between the ego vehicle and vehicle ¢, and 7; the time derivative of this
distance (which is simply computed by projecting the relative velocity of vehicle 7 onto the vector
between the vehicles’ poses).

In this paper, vehicles are described as oriented rectangles in the 2D plane. Since we are interested in
the time it would take for the ego-vehicle to intersect the polygonal boundary of another vehicle on
the road, we utilize a finite set of range and range measurements in order to approximate the TTC
metric. For a given configuration of vehicles, we compute NV uniformly spaced angles 61, ...,0y in
the range [0, 27] with respect to the ego vehicle’s orientation and cast rays outward from the center
of the ego vehicle. For each direction we compute the distance which a ray could travel before
intersecting one of the M other vehicles in the environment. These form /N range measurements
s1,...,8n. Further, for each ray s;, we determine which vehicle (if any) that ray hit; projecting
the relative velocity of this vehicle with respect to ego vehicle gives the range-rate measurement s;.
Finally, we approximate the minimum TTC for a given simulation rollout X of length T" discrete

time steps by:
. . —si(t)
X) =
f(X) = min_ <i_?3.1.1.1,zv 5i(t) )

Note that this measure can approximate the true TTC arbitrarily well via choice of N and the
discretization of time used by the simulator. Furthermore, note that our definition of TTC is with
respect to the center of the ego vehicle touching the boundary of another vehicle. Crashing, on the
other hand, is defined in our simulation as the intersection of boundaries of two vehicles. Thus, TTC
values we evaluate in our simulation are nonzero even during crashes, since the center of the ego
vehicle has not yet collided with the boundary of another vehicle.

B Network architectures

The MGAIL generator model we use takes the same inputs as that of Kuefler et al. [33]—the
dynamical states of the vehicle as well as virtual lidar beam reflections. Specifically, we take as
inputs: geometric parameters (vehicle length/width), dynamical states (vehicle speed, lateral and
angular offsets with respect to the center and heading of the lane, distance to left and right lane
boundaries, and local lane curvature), three indicators for collision, road departure, and traveling
in reverse, and lidar sensor observations (ranges and range-rates of 20 lidar beams) as depicted in
Figure[d] The generator has two hidden layers of 200 and 100 neurons. The output consists of the
mean and variance of normal distributions for throttle and steering commands; we then sample from

13



Figure 4: Depiction of lidar sensor input used for GAIL models.

these distributions to draw a given vehicle’s action. The discriminator shares the same size for hidden
layers. The forward model used to allow fully-differentiable training first encodes both the state and
action through a 150 neuron layer and also adds a GRU layer to the state encoding. A Hadamard
product of the results creates a joint embedding which is put through three hidden layers each of 150
neurons. The output is a prediction of the next state.

The end-to-end highway autopilot model is a direct implementation of Bojarski et al. [9]] via the code
found at the link https://github.com/sullychen/autopilot-tensorflow. In our implemen-
tation of the vision-based policy, this highway autopilot model uses rendered images to produce
steering commands. Lidar inputs are used to generate throttle commands using the same network as
the non-vision policy.

C Supplementary videos

We have provided some videos to augment the analysis in our paper (available in the NeurIPS
supplement and at http://amansinha.org/docs/0KellySiNaDuTel18_videos.zip):

e gail.mp4 provides an example of a trained GAIL model driving alongside data traces from
real human drivers [36].

e Example videos from rollouts. The filenames start with “mttc =" to indicate the minimum
TTC that resulted between the ego and any other vehicle during the rollout. Note that even
crashes have nonzero values of TTC due to the definition we used for TTC from the center
of the ego vehicle (cf. Appendix [A]). The videos are all played back at 2.5x real-time speed.
The videos included in the supplement are:

— Crashes:
* mttc = 0.23 — crash.mp4
* mttc = 0.30.mp4
* mttc = 0.42.mp4
* mttc = 0.56.mp4

— Non-crashes:

mttc = 0.23 — nocrash.mp4
mttc = 0.79.mp4

mttc = 1.43.mp4

mttc = 2.01.mp4

mttc = 3.05.mp4

mttc = 6.00.mp4

mttc = 6.01.mp4

mttc = 10.11.mp4

These videos contain overhead, RGB, segmented, and depth views. We also include higher-
resolution RGB videos with the same base names as above but the extension “_hires.mp4”.

EE R S I R S

14


https://github.com/sullychen/autopilot-tensorflow
http://amansinha.org/docs/OKellySiNaDuTe18_videos.zip

	Introduction
	Rare-event simulation
	Simulation framework
	Data-driven generative modeling
	System architecture

	Experiments
	Related work and conclusions
	Scenario specification
	Network architectures
	Supplementary videos

